Beispiel #1
0
DSApriv*
dsagen(DSApub *opub)
{
	DSApub *pub;
	DSApriv *priv;
	mpint *exp;
	mpint *g;
	mpint *r;
	int bits;

	priv = dsaprivalloc();
	pub = &priv->pub;

	if(opub != nil){
		pub->p = mpcopy(opub->p);
		pub->q = mpcopy(opub->q);
	} else {
		pub->p = mpnew(0);
		pub->q = mpnew(0);
		DSAprimes(pub->q, pub->p, nil);
	}
	bits = Dbits*pub->p->top;

	pub->alpha = mpnew(0);
	pub->key = mpnew(0);
	priv->secret = mpnew(0);

	// find a generator alpha of the multiplicative
	// group Z*p, i.e., of order n = p-1.  We use the
	// fact that q divides p-1 to reduce the exponent.
	exp = mpnew(0);
	g = mpnew(0);
	r = mpnew(0);
	mpsub(pub->p, mpone, exp);
	mpdiv(exp, pub->q, exp, r);
	if(mpcmp(r, mpzero) != 0)
		sysfatal("dsagen foul up");
	while(1){
		mprand(bits, genrandom, g);
		mpmod(g, pub->p, g);
		mpexp(g, exp, pub->p, pub->alpha);
		if(mpcmp(pub->alpha, mpone) != 0)
			break;
	}
	mpfree(g);
	mpfree(exp);

	// create the secret key
	mprand(bits, genrandom, priv->secret);
	mpmod(priv->secret, pub->p, priv->secret);
	mpexp(pub->alpha, priv->secret, pub->p, pub->key);

	return priv;
}
Beispiel #2
0
// find a prime p of length n and a generator alpha of Z^*_p
// Alg 4.86 Menezes et al () Handbook, p.164
void
gensafeprime(mpint *p, mpint *alpha, int n, int accuracy)
{
	mpint *q, *b;

	q = mpnew(n-1);
	while(1){
		genprime(q, n-1, accuracy);
		mpleft(q, 1, p);
		mpadd(p, mpone, p); // p = 2*q+1
		if(probably_prime(p, accuracy))
			break;
	}
	// now find a generator alpha of the multiplicative
	// group Z*_p of order p-1=2q
	b = mpnew(0);
	while(1){
		mprand(n, genrandom, alpha);
		mpmod(alpha, p, alpha);
		mpmul(alpha, alpha, b);
		mpmod(b, p, b);
		if(mpcmp(b, mpone) == 0)
			continue;
		mpexp(alpha, q, p, b);
		if(mpcmp(b, mpone) != 0)
			break;
	}
	mpfree(b);
	mpfree(q);
}
Beispiel #3
0
DSAsig*
dsasign(DSApriv *priv, mpint *m)
{
	DSApub *pub = &priv->pub;
	DSAsig *sig;
	mpint *qm1, *k, *kinv, *r, *s;
	mpint *q = pub->q, *p = pub->p, *alpha = pub->alpha;
	int qlen = mpsignif(q);

	qm1 = mpnew(0);
	kinv = mpnew(0);
	r = mpnew(0);
	s = mpnew(0);
	k = mpnew(0);
	mpsub(pub->q, mpone, qm1);

	// find a k that has an inverse mod q
	while(1){
		mprand(qlen, genrandom, k);
		if((mpcmp(mpone, k) > 0) || (mpcmp(k, qm1) >= 0))
			continue;
		mpextendedgcd(k, q, r, kinv, s);
		if(mpcmp(r, mpone) != 0)
			continue;
		break;
	}

  	// make kinv positive
	mpmod(kinv, qm1, kinv);

	// r = ((alpha**k) mod p) mod q
	mpexp(alpha, k, p, r);
	mpmod(r, q, r);

	// s = (kinv*(m + ar)) mod q
	mpmul(r, priv->secret, s);
	mpadd(s, m, s);
	mpmul(s, kinv, s);
	mpmod(s, q, s);

	sig = dsasigalloc();
	sig->r = r;
	sig->s = s;
	mpfree(qm1);
	mpfree(k);
	mpfree(kinv);
	return sig;
}
Beispiel #4
0
EGpriv*
eggen(int nlen, int rounds)
{
	EGpub *pub;
	EGpriv *priv;

	priv = egprivalloc();
	pub = &priv->pub;
	pub->p = mpnew(0);
	pub->alpha = mpnew(0);
	pub->key = mpnew(0);
	priv->secret = mpnew(0);
	gensafeprime(pub->p, pub->alpha, nlen, rounds);
	mprand(nlen-1, genrandom, priv->secret);
	mpexp(pub->alpha, priv->secret, pub->p, pub->key);
	return priv;
}
Beispiel #5
0
ECpriv*
ecgen(ECdomain *dom, ECpriv *p)
{
	if(p == nil){
		p = mallocz(sizeof(*p), 1);
		if(p == nil)
			return nil;
		p->x = mpnew(0);
		p->y = mpnew(0);
		p->d = mpnew(0);
	}
	for(;;){
		mprand(mpsignif(dom->n), genrandom, p->d);
		if(mpcmp(p->d, mpzero) > 0 && mpcmp(p->d, dom->n) < 0)
			break;
	}
	ecmul(dom, dom->G, p->d, p);
	return p;
}
Beispiel #6
0
static int
mpsqrt(mpint *n, mpint *p, mpint *r)
{
	mpint *a, *t, *s, *xp, *xq, *yp, *yq, *zp, *zq, *N;

	if(mpleg(n, p) == -1)
		return 0;
	a = mpnew(0);
	t = mpnew(0);
	s = mpnew(0);
	N = mpnew(0);
	xp = mpnew(0);
	xq = mpnew(0);
	yp = mpnew(0);
	yq = mpnew(0);
	zp = mpnew(0);
	zq = mpnew(0);
	for(;;){
		for(;;){
			mprand(mpsignif(p), genrandom, a);
			if(mpcmp(a, mpzero) > 0 && mpcmp(a, p) < 0)
				break;
		}
		mpmul(a, a, t);
		mpsub(t, n, t);
		mpmod(t, p, t);
		if(mpleg(t, p) == -1)
			break;
	}
	mpadd(p, mpone, N);
	mpright(N, 1, N);
	mpmul(a, a, t);
	mpsub(t, n, t);
	mpassign(a, xp);
	uitomp(1, xq);
	uitomp(1, yp);
	uitomp(0, yq);
	while(mpcmp(N, mpzero) != 0){
		if(N->p[0] & 1){
			mpmul(xp, yp, zp);
			mpmul(xq, yq, zq);
			mpmul(zq, t, zq);
			mpadd(zp, zq, zp);
			mpmod(zp, p, zp);
			mpmul(xp, yq, zq);
			mpmul(xq, yp, s);
			mpadd(zq, s, zq);
			mpmod(zq, p, yq);
			mpassign(zp, yp);
		}
		mpmul(xp, xp, zp);
		mpmul(xq, xq, zq);
		mpmul(zq, t, zq);
		mpadd(zp, zq, zp);
		mpmod(zp, p, zp);
		mpmul(xp, xq, zq);
		mpadd(zq, zq, zq);
		mpmod(zq, p, xq);
		mpassign(zp, xp);
		mpright(N, 1, N);
	}
	if(mpcmp(yq, mpzero) != 0)
		abort();
	mpassign(yp, r);
	mpfree(a);
	mpfree(t);
	mpfree(s);
	mpfree(N);
	mpfree(xp);
	mpfree(xq);
	mpfree(yp);
	mpfree(yq);
	mpfree(zp);
	mpfree(zq);
	return 1;
}
Beispiel #7
0
RSApriv*
rsagen(int nlen, int elen, int rounds)
{
	mpint *p, *q, *e, *d, *phi, *n, *t1, *t2, *kp, *kq, *c2;
	RSApriv *rsa;

	p = mpnew(nlen/2);
	q = mpnew(nlen/2);
	n = mpnew(nlen);
	e = mpnew(elen);
	d = mpnew(0);
	phi = mpnew(nlen);

	// create the prime factors and euclid's function
	genprime(p, nlen/2, rounds);
	genprime(q, nlen - mpsignif(p) + 1, rounds);
	mpmul(p, q, n);
	mpsub(p, mpone, e);
	mpsub(q, mpone, d);
	mpmul(e, d, phi);

	// find an e relatively prime to phi
	t1 = mpnew(0);
	t2 = mpnew(0);
	mprand(elen, genrandom, e);
	if(mpcmp(e,mptwo) <= 0)
		itomp(3, e);
	// See Menezes et al. p.291 "8.8 Note (selecting primes)" for discussion
	// of the merits of various choices of primes and exponents.  e=3 is a
	// common and recommended exponent, but doesn't necessarily work here
	// because we chose strong rather than safe primes.
	for(;;){
		mpextendedgcd(e, phi, t1, d, t2);
		if(mpcmp(t1, mpone) == 0)
			break;
		mpadd(mpone, e, e);
	}
	mpfree(t1);
	mpfree(t2);

	// compute chinese remainder coefficient
	c2 = mpnew(0);
	mpinvert(p, q, c2);

	// for crt a**k mod p == (a**(k mod p-1)) mod p
	kq = mpnew(0);
	kp = mpnew(0);
	mpsub(p, mpone, phi);
	mpmod(d, phi, kp);
	mpsub(q, mpone, phi);
	mpmod(d, phi, kq);

	rsa = rsaprivalloc();
	rsa->pub.ek = e;
	rsa->pub.n = n;
	rsa->dk = d;
	rsa->kp = kp;
	rsa->kq = kq;
	rsa->p = p;
	rsa->q = q;
	rsa->c2 = c2;

	mpfree(phi);

	return rsa;
}
Beispiel #8
0
/*
 * Miller-Rabin probabilistic primality testing
 *	Knuth (1981) Seminumerical Algorithms, p.379
 *	Menezes et al () Handbook, p.39
 * 0 if composite; 1 if almost surely prime, Pr(err)<1/4**nrep
 */
int
probably_prime(mpint *n, int nrep)
{
	int j, k, rep, nbits, isprime;
	mpint *nm1, *q, *x, *y, *r;

	if(n->sign < 0)
		sysfatal("negative prime candidate");

	if(nrep <= 0)
		nrep = 18;

	k = mptoi(n);
	if(k == 2)		/* 2 is prime */
		return 1;
	if(k < 2)		/* 1 is not prime */
		return 0;
	if((n->p[0] & 1) == 0)	/* even is not prime */
		return 0;

	/* test against small prime numbers */
	if(smallprimetest(n) < 0)
		return 0;

	/* fermat test, 2^n mod n == 2 if p is prime */
	x = uitomp(2, nil);
	y = mpnew(0);
	mpexp(x, n, n, y);
	k = mptoi(y);
	if(k != 2){
		mpfree(x);
		mpfree(y);
		return 0;
	}

	nbits = mpsignif(n);
	nm1 = mpnew(nbits);
	mpsub(n, mpone, nm1);	/* nm1 = n - 1 */
	k = mplowbits0(nm1);
	q = mpnew(0);
	mpright(nm1, k, q);	/* q = (n-1)/2**k */

	for(rep = 0; rep < nrep; rep++){
		for(;;){
			/* find x = random in [2, n-2] */
		 	r = mprand(nbits, prng, nil);
		 	mpmod(r, nm1, x);
		 	mpfree(r);
		 	if(mpcmp(x, mpone) > 0)
		 		break;
		}

		/* y = x**q mod n */
		mpexp(x, q, n, y);

		if(mpcmp(y, mpone) == 0 || mpcmp(y, nm1) == 0)
		 	continue;

		for(j = 1;; j++){
		 	if(j >= k) {
		 		isprime = 0;
		 		goto done;
		 	}
		 	mpmul(y, y, x);
		 	mpmod(x, n, y);	/* y = y*y mod n */
		 	if(mpcmp(y, nm1) == 0)
		 		break;
		 	if(mpcmp(y, mpone) == 0){
		 		isprime = 0;
		 		goto done;
		 	}
		}
	}
	isprime = 1;
done:
	mpfree(y);
	mpfree(x);
	mpfree(q);
	mpfree(nm1);
	return isprime;
}
Beispiel #9
0
// Miller-Rabin probabilistic primality testing
//	Knuth (1981) Seminumerical Algorithms, p.379
//	Menezes et al () Handbook, p.39
// 0 if composite; 1 if almost surely prime, Pr(err)<1/4**nrep
int
probably_prime(mpint *n, int nrep)
{
	int j, k, rep, nbits, isprime = 1;
	mpint *nm1, *q, *x, *y, *r;

	if(n->sign < 0)
		sysfatal("negative prime candidate");

	if(nrep <= 0)
		nrep = 18;

	k = mptoi(n);
	if(k == 2)		// 2 is prime
		return 1;
	if(k < 2)		// 1 is not prime
		return 0;
	if((n->p[0] & 1) == 0)	// even is not prime
		return 0;

	// test against small prime numbers
	if(smallprimetest(n) < 0)
		return 0;

	// fermat test, 2^n mod n == 2 if p is prime
	x = uitomp(2, nil);
	y = mpnew(0);
	mpexp(x, n, n, y);
	k = mptoi(y);
	if(k != 2){
		mpfree(x);
		mpfree(y);
		return 0;
	}

	nbits = mpsignif(n);
	nm1 = mpnew(nbits);
	mpsub(n, mpone, nm1);	// nm1 = n - 1 */
	k = mplowbits0(nm1);
	q = mpnew(0);
	mpright(nm1, k, q);	// q = (n-1)/2**k

	for(rep = 0; rep < nrep; rep++){
		
		// x = random in [2, n-2]
		r = mprand(nbits, prng, nil);
		mpmod(r, nm1, x);
		mpfree(r);
		if(mpcmp(x, mpone) <= 0)
			continue;

		// y = x**q mod n
		mpexp(x, q, n, y);

		if(mpcmp(y, mpone) == 0 || mpcmp(y, nm1) == 0)
			goto done;

		for(j = 1; j < k; j++){
			mpmul(y, y, x);
			mpmod(x, n, y);	// y = y*y mod n
			if(mpcmp(y, nm1) == 0)
				goto done;
			if(mpcmp(y, mpone) == 0){
				isprime = 0;
				goto done;
			}
		}
		isprime = 0;
	}
done:
	mpfree(y);
	mpfree(x);
	mpfree(q);
	mpfree(nm1);
	return isprime;
}