Beispiel #1
0
/* This version is for sequential machines, OpenMP, and the XMT. */
void scramble_edges_shared(uint64_t userseed1, uint64_t userseed2, int64_t nedges, int64_t* result /* Input and output array of edges (size = 2 * nedges) */) {
  mrg_state st;
  uint_fast32_t seed[5];
  int64_t* new_result;
  int64_t i;
  int64_t* perm = (int64_t*)xmalloc(nedges * sizeof(int64_t));
  make_mrg_seed(userseed1, userseed2, seed);
  mrg_seed(&st, seed);
  mrg_skip(&st, 5, 0, 0); /* To make offset different from other PRNG uses */
  rand_sort_shared(&st, nedges, perm);
  new_result = (int64_t*)xmalloc(nedges * 2 * sizeof(int64_t));
  
#ifdef __MTA__
#pragma mta assert parallel
#pragma mta block schedule
#endif
#ifdef GRAPH_GENERATOR_OMP
#pragma omp parallel for
#endif
  for (i = 0; i < nedges; ++i) {
    int64_t p = perm[i];
    new_result[i * 2 + 0] = result[p * 2 + 0];
    new_result[i * 2 + 1] = result[p * 2 + 1];
  }
  free(perm);
  memcpy(result, new_result, nedges * 2 * sizeof(int64_t));
  free(new_result);
}
/* PRNG interface for implementations; takes seed in same format as given by
 * users, and creates a vector of doubles in a reproducible (and
 * random-access) way. */
void make_random_numbers(
    /* in */ int64_t nvalues    /* Number of values to generate */,
    /* in */ uint64_t userseed1 /* Arbitrary 64-bit seed value */,
    /* in */ uint64_t userseed2 /* Arbitrary 64-bit seed value */,
    /* in */ int64_t position   /* Start index in random number stream */,
    /* out */ double* result    /* Returned array of values */
) {
    int64_t i;
    uint_fast32_t seed[5];
    make_mrg_seed(userseed1, userseed2, seed);

    mrg_state st;
    mrg_seed(&st, seed);

    mrg_skip(&st, 2, 0, 2 * position); /* Each double takes two PRNG outputs */

    for (i = 0; i < nvalues; ++i) {
        result[i] = mrg_get_double_orig(&st);
    }
}
Beispiel #3
0
/* For MPI distributed memory. */
void scramble_edges_mpi(MPI_Comm comm,
                        const uint64_t userseed1, const uint64_t userseed2,
                        const int64_t local_nedges_in,
                        const int64_t* const local_edges_in,
                        int64_t* const local_nedges_out_ptr,
                        int64_t** const local_edges_out_ptr /* Allocated using xmalloc() by scramble_edges_mpi */) {
  int rank, size;

  MPI_Comm_rank(comm, &rank);
  MPI_Comm_size(comm, &size);

  mrg_state st;
  uint_fast32_t seed[5];
  make_mrg_seed(userseed1, userseed2, seed);
  mrg_seed(&st, seed);
  mrg_skip(&st, 5, 0, 0); /* To make offset different from other PRNG uses */
  int64_t total_nedges;
  MPI_Allreduce((void*)&local_nedges_in, &total_nedges, 1, INT64_T_MPI_TYPE, MPI_SUM, comm);
  int64_t local_nedges_out; /* = local permutation size */
  int64_t* local_perm;
  rand_sort_mpi(comm, &st, total_nedges, &local_nedges_out, &local_perm);
  *local_nedges_out_ptr = local_nedges_out;

  /* Gather permutation information and fast owner lookup cache (code in
   * apply_permutation_mpi.c). */
  int64_t* edge_displs = (int64_t*)xmalloc((size + 1) * sizeof(int64_t));
  int* edge_owner_table;
  int64_t* edge_owner_cutoff;
  int lg_minedgecount;
  int64_t maxedgecount;
  gather_block_distribution_info(comm, local_nedges_in, total_nedges, edge_displs, &edge_owner_table, &edge_owner_cutoff, &lg_minedgecount, &maxedgecount);

  /* Originally from apply_permutation_mpi.c */
#define LOOKUP_EDGE_OWNER(v) \
  (edge_owner_table[(v) >> lg_minedgecount] + \
   ((v) >= edge_owner_cutoff[(v) >> lg_minedgecount]))

  /* Apply permutation.  Output distribution is same as distribution of
   * generated edge permutation. */

  /* Count number of requests to send to each destination. */
  int* send_counts = (int*)xcalloc(size, sizeof(int)); /* Uses zero-init */
  int64_t i;
  for (i = 0; i < local_nedges_out; ++i) {
    ++send_counts[LOOKUP_EDGE_OWNER(local_perm[i])];
  }

  /* Prefix sum to get displacements. */
  int* send_displs = (int*)xmalloc((size + 1) * sizeof(int));
  send_displs[0] = 0;
  for (i = 0; i < size; ++i) {
    send_displs[i + 1] = send_displs[i] + send_counts[i];
  }
  assert (send_displs[size] == local_nedges_out);

  /* Put edges into buffer by destination; also keep around index values for
   * where to write the result. */
  int64_t* sendbuf = (int64_t*)xmalloc(local_nedges_out * sizeof(int64_t));
  int64_t* reply_loc_buf = (int64_t*)xmalloc(local_nedges_out * sizeof(int64_t));
  int* send_offsets = (int*)xmalloc((size + 1) * sizeof(int));
  memcpy(send_offsets, send_displs, (size + 1) * sizeof(int));
  for (i = 0; i < local_nedges_out; ++i) {
    int write_index = send_offsets[LOOKUP_EDGE_OWNER(local_perm[i])];
    sendbuf[write_index] = local_perm[i];
    reply_loc_buf[write_index] = i;
    ++send_offsets[LOOKUP_EDGE_OWNER(local_perm[i])];
  }
  for (i = 0; i < size; ++i) assert (send_offsets[i] == send_displs[i + 1]);
  free(send_offsets); send_offsets = NULL;
  free(local_perm); local_perm = NULL;
#undef LOOKUP_EDGE_OWNER
  free(edge_owner_table); edge_owner_table = NULL;
  free(edge_owner_cutoff); edge_owner_cutoff = NULL;

  /* Find out how many requests I will be receiving. */
  int* recv_counts = (int*)xmalloc(size * sizeof(int));
  MPI_Alltoall(send_counts, 1, MPI_INT,
               recv_counts, 1, MPI_INT,
               comm);

  /* Compute their displacements. */
  int* recv_displs = (int*)xmalloc((size + 1) * sizeof(int));
  recv_displs[0] = 0;
  for (i = 0; i < size; ++i) {
    recv_displs[i + 1] = recv_displs[i] + recv_counts[i];
  }

  /* Make receive and reply buffers. */
  int64_t* recvbuf = (int64_t*)xmalloc(recv_displs[size] * sizeof(int64_t));
  int64_t* replybuf = (int64_t*)xmalloc(recv_displs[size] * 2 * sizeof(int64_t));

  /* Move requests for edges into receive buffer. */
  MPI_Alltoallv(sendbuf, send_counts, send_displs, INT64_T_MPI_TYPE,
                recvbuf, recv_counts, recv_displs, INT64_T_MPI_TYPE,
                comm);
  free(sendbuf); sendbuf = NULL;

  /* Put requested edges into response buffer. */
  int64_t my_edge_offset = edge_displs[rank];
  for (i = 0; i < recv_displs[size]; ++i) {
    replybuf[i * 2 + 0] = local_edges_in[(recvbuf[i] - my_edge_offset) * 2 + 0];
    replybuf[i * 2 + 1] = local_edges_in[(recvbuf[i] - my_edge_offset) * 2 + 1];
  }
  free(recvbuf); recvbuf = NULL;
  free(edge_displs); edge_displs = NULL;

  /* Send replies back. */
  int64_t* reply_edges = (int64_t*)xmalloc(local_nedges_out * 2 * sizeof(int64_t));
  for (i = 0; i < size; ++i) { /* Sending back two values for each request */
    recv_counts[i] *= 2;
    recv_displs[i] *= 2;
    send_counts[i] *= 2;
    send_displs[i] *= 2;
  }
  MPI_Alltoallv(replybuf, recv_counts, recv_displs, INT64_T_MPI_TYPE,
                reply_edges, send_counts, send_displs, INT64_T_MPI_TYPE,
                comm);
  free(replybuf); replybuf = NULL;
  free(recv_counts); recv_counts = NULL;
  free(recv_displs); recv_displs = NULL;
  free(send_counts); send_counts = NULL;
  free(send_displs); send_displs = NULL;

  /* Make output array of edges. */
  int64_t* local_edges_out = (int64_t*)xmalloc(local_nedges_out * 2 * sizeof(int64_t));
  *local_edges_out_ptr = local_edges_out;

  /* Put edges into output array. */
  for (i = 0; i < local_nedges_out; ++i) {
    local_edges_out[reply_loc_buf[i] * 2 + 0] = reply_edges[2 * i + 0];
    local_edges_out[reply_loc_buf[i] * 2 + 1] = reply_edges[2 * i + 1];
  }
  free(reply_loc_buf); reply_loc_buf = NULL;
  free(reply_edges); reply_edges = NULL;
}
Beispiel #4
0
int main(int argc, char** argv)
{
    struct options options;
    if (process_options(argc, argv, true, &options) != 0)
        return 0;

    if (options.rmat.a + options.rmat.b + options.rmat.c >= 1) {
        printf("Error: The sum of probabilities must equal 1\n");
        return 0;
    }
    double d = 1 - (options.rmat.a + options.rmat.b + options.rmat.c);
    xscale_node     = options.rmat.xscale_node;
    xscale_interval = options.rmat.xscale_interval;
    uint_fast32_t seed[5];
    make_mrg_seed(options.rng.userseed1, options.rng.userseed2, seed);
    mrg_state state;
    mrg_seed(&state, seed);
    //mrg_skip(&new_state, 50, 7, 0); // Do an initial skip?

    edge_t total_edges = options.rmat.edges;
    if((total_edges % options.rmat.xscale_interval) > options.rmat.xscale_node) {
        total_edges /= options.rmat.xscale_interval;
        total_edges++;
    }
    else {
        total_edges /= options.rmat.xscale_interval;
    }

    if (options.global.symmetric) {
        total_edges *= 2;
    }

    printf("Generator type: R-MAT\n");
    printf("Scale: %d (%" PRIu64 " vertices)\n", options.rmat.scale, ((uint64_t)1 << options.rmat.scale));
    printf("Edges: %" PRIet "\n", total_edges);
    printf("Probabilities: A=%4.2f, B=%4.2f, C=%4.2f, D=%4.2f\n", options.rmat.a, options.rmat.b, options.rmat.c, d);

    double start = get_time();

    // io thread
    size_t buffer_size = calculate_buffer_size(options.global.buffer_size);
    buffer_queue flushq;
    buffer_manager manager(&flushq, options.global.buffers_per_thread, buffer_size);
    io_thread_func io_func(options.global.graphname.c_str(), total_edges, &flushq, &manager, buffer_size);
    boost::thread io_thread(boost::ref(io_func));

    // worker threads
    int nthreads = options.global.nthreads;
    edge_t edges_per_thread = options.rmat.edges / nthreads;
    threadid_t* workers[nthreads];
    boost::thread* worker_threads[nthreads];
    for (int i = 0; i < nthreads; i++) {
        workers[i] = new threadid_t(i);
        thread_buffer* buffer = manager.register_thread(*workers[i]);
        // last thread gets the remainder (if any)
        edge_t start = i * edges_per_thread;
        edge_t end = (i == nthreads-1) ? (options.rmat.edges) : ((i+1) * edges_per_thread);
        worker_threads[i] = new boost::thread(generate, buffer,
                                              state, options.rmat.scale, start, end,
                                              options.rmat.a, options.rmat.b, options.rmat.c, /*d,*/
                                              options.global.symmetric);
    }

    // Wait until work completes
    for (int i = 0; i < nthreads; i++) {
        worker_threads[i]->join();
    }
    io_func.stop();
    io_thread.join();

    // cleanup
    for (int i = 0; i < nthreads; i++) {
        manager.unregister_thread(*workers[i]);
        delete worker_threads[i];
        delete workers[i];
    }

    double elapsed = get_time() - start;
    printf("Generation time: %fs\n", elapsed);

    make_ini_file(options.global.graphname.c_str(), (uint64_t)1 << options.rmat.scale, total_edges);

    return 0;
}
Beispiel #5
0
void make_graph(int log_numverts, int64_t desired_nedges, uint64_t userseed1, uint64_t userseed2, const double initiator[4], int64_t* nedges_ptr, int64_t** result_ptr) {
  int64_t N, M;
/* Spread the two 64-bit numbers into five nonzero values in the correct
   * range. */
  uint_fast32_t seed[5];
  #ifdef GRAPHGEN_KEEP_MULTIPLICITIES
  generated_edge* edges;
#else
  int64_t* edges;
#endif
  int64_t nedges;
  int64_t* vertex_perm;
  int64_t* result;
  int64_t i;
  mrg_state state;
  int64_t v1;
  int64_t v2;
  N = (int64_t)pow(GRAPHGEN_INITIATOR_SIZE, log_numverts);
  M = desired_nedges;


  make_mrg_seed(userseed1, userseed2, seed);

  nedges = compute_edge_array_size(0, 1, M);
  *nedges_ptr = nedges;
#ifdef GRAPHGEN_KEEP_MULTIPLICITIES
  edges = (generated_edge*)xcalloc(nedges, sizeof(generated_edge)); /* multiplicity set to 0 for unused edges */
#else
  edges = (int64_t*)xmalloc(2 * nedges * sizeof(int64_t));
#endif

  generate_kronecker(0, 1, seed, log_numverts, M, initiator, edges);

  vertex_perm = (int64_t*)xmalloc(N * sizeof(int64_t));
  /* result; AL: this is a needless warning about unused code. */
#ifdef GRAPHGEN_KEEP_MULTIPLICITIES
  result = (int64_t*)xmalloc(2 * nedges * sizeof(int64_t));
#else
  result = edges;
#endif
  *result_ptr = result;


  mrg_seed(&state, seed);
  rand_sort_shared(&state, N, vertex_perm);

  /* Apply vertex permutation to graph, optionally copying into user's result
   * array. */
#ifdef GRAPHGEN_KEEP_MULTIPLICITIES
  for (i = 0; i < nedges; ++i) {
    if (edges[i].multiplicity != 0) {
      v1 = vertex_perm[edges[i].src];
      v2 = vertex_perm[edges[i].tgt];
      /* Sort these since otherwise the directions of the permuted edges would
       * give away the unscrambled vertex order. */
      result[i * 2] = (v1 < v2) ? v1 : v2;
      result[i * 2 + 1] = (v1 < v2) ? v2 : v1;
    } else {
      result[i * 2] = result[i * 2 + 1] = (int64_t)(-1);
    }
  }
  free(edges);
#else
  for (i = 0; i < 2 * nedges; i += 2) {
    if (edges[i] != (int64_t)(-1)) {
      v1 = vertex_perm[edges[i]];
      v2 = vertex_perm[edges[i + 1]];
      /* Sort these since otherwise the directions of the permuted edges would
       * give away the unscrambled vertex order. */
      edges[i] = (v1 < v2) ? v1 : v2;
      edges[i + 1] = (v1 < v2) ? v2 : v1;
    }
  }
#endif

  free(vertex_perm);

  /* Randomly mix up the order of the edges. */
  scramble_edges_shared(userseed1, userseed2, nedges, edges);
}
Beispiel #6
0
void make_graph(int log_numverts, int64_t desired_nedges, uint64_t userseed1, uint64_t userseed2, const double initiator[4], int64_t* nedges_ptr, int64_t** result_ptr) {
  int64_t N, M;
  int rank, size;

  N = (int64_t)pow(GRAPHGEN_INITIATOR_SIZE, log_numverts);
  M = desired_nedges;

  /* Spread the two 64-bit numbers into five nonzero values in the correct
   * range. */
  uint_fast32_t seed[5];
  make_mrg_seed(userseed1, userseed2, seed);

  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &size);

  int64_t nedges = compute_edge_array_size(rank, size, M);
#ifdef GRAPHGEN_KEEP_MULTIPLICITIES
  generated_edge* local_edges = (generated_edge*)xmalloc(nedges * sizeof(generated_edge));
#else
  int64_t* local_edges = (int64_t*)xmalloc(2 * nedges * sizeof(int64_t));
#endif

  double start = MPI_Wtime();
  generate_kronecker(rank, size, seed, log_numverts, M, initiator, local_edges);
  double gen_time = MPI_Wtime() - start;

  int64_t* local_vertex_perm = NULL;

  mrg_state state;
  mrg_seed(&state, seed);
  start = MPI_Wtime();
  int64_t perm_local_size;
  rand_sort_mpi(MPI_COMM_WORLD, &state, N, &perm_local_size, &local_vertex_perm);
  double perm_gen_time = MPI_Wtime() - start;

  /* Copy the edge endpoints into the result array if necessary. */
  int64_t* result;
#ifdef GRAPHGEN_KEEP_MULTIPLICITIES
  result = (int64_t*)xmalloc(2 * nedges * sizeof(int64_t));
  for (i = 0; i < nedges; ++i) {
    if (local_edges[i].multiplicity != 0) {
      result[i * 2] = local_edges[i].src;
      result[i * 2 + 1] = local_edges[i].tgt;
    } else {
      result[i * 2] = result[i * 2 + 1] = (int64_t)(-1);
    }
  }
  free(local_edges); local_edges = NULL;
#else
  result = local_edges;
  *result_ptr = result;
  local_edges = NULL; /* Freed by caller */
#endif

  /* Apply vertex permutation to graph. */
  start = MPI_Wtime();
  apply_permutation_mpi(MPI_COMM_WORLD, perm_local_size, local_vertex_perm, N, nedges, result);
  double perm_apply_time = MPI_Wtime() - start;

  free(local_vertex_perm); local_vertex_perm = NULL;

  /* Randomly mix up the order of the edges. */
  start = MPI_Wtime();
  int64_t* new_result;
  int64_t nedges_out;
  scramble_edges_mpi(MPI_COMM_WORLD, userseed1, userseed2, nedges, result, &nedges_out, &new_result);
  double edge_scramble_time = MPI_Wtime() - start;

  free(result); result = NULL;

  *result_ptr = new_result;
  *nedges_ptr = nedges_out;

  if (rank == 0) {
    fprintf(stdout, "unpermuted_graph_generation:    %f s\n", gen_time);
    fprintf(stdout, "vertex_permutation_generation:  %f s\n", perm_gen_time);
    fprintf(stdout, "vertex_permutation_application: %f s\n", perm_apply_time);
    fprintf(stdout, "edge_scrambling:                %f s\n", edge_scramble_time);
  }
}
Beispiel #7
0
void make_graph(int log_numverts, int64_t desired_nedges, uint64_t userseed1, uint64_t userseed2, const double initiator[4], int64_t* nedges_ptr, int64_t** result_ptr) {
  int64_t N, M;

  N = (int64_t)pow(GRAPHGEN_INITIATOR_SIZE, log_numverts);
  M = (int64_t)desired_nedges;

  /* Spread the two 64-bit numbers into five nonzero values in the correct
   * range. */
  uint_fast32_t seed[5];
  make_mrg_seed(userseed1, userseed2, seed);

  int64_t nedges = compute_edge_array_size(0, 1, M);
  *nedges_ptr = nedges;
#ifdef GRAPHGEN_KEEP_MULTIPLICITIES
  generated_edge* edges = (generated_edge*)xcalloc(nedges, sizeof(generated_edge)); /* multiplicity set to 0 for unused edges */
#else
  int64_t* edges = (int64_t*)xmalloc(2 * nedges * sizeof(int64_t));
#endif

  int rank, size;
  /* The "for all streams" here is in compiler versions >= 6.4 */
#pragma mta use 100 streams
#pragma mta for all streams rank of size
  {
    double my_initiator[GRAPHGEN_INITIATOR_SIZE * GRAPHGEN_INITIATOR_SIZE]; /* Local copy */
    int i;
    for (i = 0; i < GRAPHGEN_INITIATOR_SIZE * GRAPHGEN_INITIATOR_SIZE; ++i) {
      my_initiator[i] = initiator[i];
    }
    generate_kronecker(rank, size, seed, log_numverts, M, my_initiator, edges);
  }

  int64_t* vertex_perm = (int64_t*)xmalloc(N * sizeof(int64_t));
  int64_t* result;

#ifdef GRAPHGEN_KEEP_MULTIPLICITIES
  result = (int64_t*)xmalloc(2 * nedges * sizeof(int64_t));
#else
  result = edges;
#endif
  *result_ptr = result;

  mrg_state state;
  mrg_seed(&state, seed);
  rand_sort_shared(&state, N, vertex_perm);
  int64_t i;
  /* Apply vertex permutation to graph, optionally copying into user's result
   * array. */
#ifdef GRAPHGEN_KEEP_MULTIPLICITIES
#pragma mta assert parallel
#pragma mta block schedule
  for (i = 0; i < nedges; ++i) {
    if (edges[i].multiplicity != 0) {
      int64_t v1 = vertex_perm[edges[i].src];
      int64_t v2 = vertex_perm[edges[i].tgt];
      /* Sort these since otherwise the directions of the permuted edges would
       * give away the unscrambled vertex order. */
      result[i * 2] = MTA_INT_MIN(v1, v2);
      result[i * 2 + 1] = MTA_INT_MAX(v1, v2);
    } else {
      result[i * 2] = result[i * 2 + 1] = (int64_t)(-1);
    }
  }
  free(edges);
#else
#pragma mta assert parallel
#pragma mta block schedule
  for (i = 0; i < 2 * nedges; i += 2) {
    if (edges[i] != (int64_t)(-1)) {
      int64_t v1 = vertex_perm[edges[i]];
      int64_t v2 = vertex_perm[edges[i + 1]];
      /* Sort these since otherwise the directions of the permuted edges would
       * give away the unscrambled vertex order. */
      edges[i] = MTA_INT_MIN(v1, v2);
      edges[i + 1] = MTA_INT_MAX(v1, v2);
    }
  }
#endif

  free(vertex_perm);

  /* Randomly mix up the order of the edges. */
  scramble_edges_shared(userseed1, userseed2, nedges, edges);
}