static void sf_c2_MigrationOWBG_Proto4_1DLinear2DNonLinear
  (SFc2_MigrationOWBG_Proto4_1DLinear2DNonLinearInstanceStruct *chartInstance)
{
  real_T c2_hoistedGlobal;
  real_T c2_b_hoistedGlobal;
  real_T c2_x;
  real_T c2_y;
  uint32_T c2_debug_family_var_map[5];
  real_T c2_nargin = 2.0;
  real_T c2_nargout = 1.0;
  real_T c2_z;
  real_T c2_b_x;
  real_T c2_c_x;
  real_T *c2_d_x;
  real_T *c2_b_y;
  real_T *c2_b_z;
  c2_b_z = (real_T *)ssGetOutputPortSignal(chartInstance->S, 1);
  c2_b_y = (real_T *)ssGetInputPortSignal(chartInstance->S, 1);
  c2_d_x = (real_T *)ssGetInputPortSignal(chartInstance->S, 0);
  _sfTime_ = (real_T)ssGetT(chartInstance->S);
  _SFD_CC_CALL(CHART_ENTER_SFUNCTION_TAG, 0U, chartInstance->c2_sfEvent);
  _SFD_DATA_RANGE_CHECK(*c2_d_x, 0U);
  _SFD_DATA_RANGE_CHECK(*c2_b_y, 1U);
  _SFD_DATA_RANGE_CHECK(*c2_b_z, 2U);
  chartInstance->c2_sfEvent = CALL_EVENT;
  _SFD_CC_CALL(CHART_ENTER_DURING_FUNCTION_TAG, 0U, chartInstance->c2_sfEvent);
  c2_hoistedGlobal = *c2_d_x;
  c2_b_hoistedGlobal = *c2_b_y;
  c2_x = c2_hoistedGlobal;
  c2_y = c2_b_hoistedGlobal;
  _SFD_SYMBOL_SCOPE_PUSH_EML(0U, 5U, 5U, c2_debug_family_names,
    c2_debug_family_var_map);
  _SFD_SYMBOL_SCOPE_ADD_EML_IMPORTABLE(&c2_nargin, 0U, c2_sf_marshallOut,
    c2_sf_marshallIn);
  _SFD_SYMBOL_SCOPE_ADD_EML_IMPORTABLE(&c2_nargout, 1U, c2_sf_marshallOut,
    c2_sf_marshallIn);
  _SFD_SYMBOL_SCOPE_ADD_EML(&c2_x, 2U, c2_sf_marshallOut);
  _SFD_SYMBOL_SCOPE_ADD_EML(&c2_y, 3U, c2_sf_marshallOut);
  _SFD_SYMBOL_SCOPE_ADD_EML_IMPORTABLE(&c2_z, 4U, c2_sf_marshallOut,
    c2_sf_marshallIn);
  CV_EML_FCN(0, 0);
  _SFD_EML_CALL(0U, chartInstance->c2_sfEvent, 3);
  c2_b_x = (45.96 - c2_mpower(chartInstance, c2_y)) - c2_mpower(chartInstance,
    c2_x);
  c2_z = c2_b_x;
  if (c2_z < 0.0) {
    c2_eml_error(chartInstance);
  }

  c2_c_x = c2_z;
  c2_z = c2_c_x;
  c2_z = muDoubleScalarSqrt(c2_z);
  _SFD_EML_CALL(0U, chartInstance->c2_sfEvent, -3);
  _SFD_SYMBOL_SCOPE_POP();
  *c2_b_z = c2_z;
  _SFD_CC_CALL(EXIT_OUT_OF_FUNCTION_TAG, 0U, chartInstance->c2_sfEvent);
  _SFD_CHECK_FOR_STATE_INCONSISTENCY
    (_MigrationOWBG_Proto4_1DLinear2DNonLinearMachineNumber_,
     chartInstance->chartNumber, chartInstance->instanceNumber);
}
Beispiel #2
0
static real_T c3_norm(SFc3_ErdMondInstanceStruct *chartInstance, real_T c3_x[2])
{
  real_T c3_y;
  real_T c3_scale;
  int32_T c3_k;
  int32_T c3_b_k;
  real_T c3_b_x;
  real_T c3_c_x;
  real_T c3_absxk;
  real_T c3_t;
  c3_y = 0.0;
  c3_scale = 2.2250738585072014E-308;
  c3_eml_int_forloop_overflow_check(chartInstance);
  for (c3_k = 1; c3_k < 3; c3_k++) {
    c3_b_k = c3_k;
    c3_b_x = c3_x[_SFD_EML_ARRAY_BOUNDS_CHECK("", (int32_T)_SFD_INTEGER_CHECK("",
      (real_T)c3_b_k), 1, 2, 1, 0) - 1];
    c3_c_x = c3_b_x;
    c3_absxk = muDoubleScalarAbs(c3_c_x);
    if (c3_absxk > c3_scale) {
      c3_t = c3_scale / c3_absxk;
      c3_y = 1.0 + c3_y * c3_t * c3_t;
      c3_scale = c3_absxk;
    } else {
      c3_t = c3_absxk / c3_scale;
      c3_y += c3_t * c3_t;
    }
  }

  return c3_scale * muDoubleScalarSqrt(c3_y);
}
Beispiel #3
0
void c_sqrt(const emlrtStack *sp, real_T *x)
{
  emlrtStack st;
  st.prev = sp;
  st.tls = sp->tls;
  if (*x < 0.0) {
    st.site = &f_emlrtRSI;
    eml_error(&st);
  }

  *x = muDoubleScalarSqrt(*x);
}
Beispiel #4
0
void b_sqrt(real_T x[1000000])
{
  int32_T k;
  for (k = 0; k < 1000000; k++) {
    if (x[k] < 0.0) {
      emlrtPushRtStackR2012b(&y_emlrtRSI, emlrtRootTLSGlobal);
      eml_error();
      emlrtPopRtStackR2012b(&y_emlrtRSI, emlrtRootTLSGlobal);
    }
  }

  for (k = 0; k < 1000000; k++) {
    x[k] = muDoubleScalarSqrt(x[k]);
  }
}
void c_sqrt(const emlrtStack *sp, emxArray_real_T *x)
{
  boolean_T p;
  int32_T nx;
  int32_T k;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  p = false;
  nx = x->size[0] * x->size[1];
  for (k = 0; k < nx; k++) {
    if (p || (x->data[k] < 0.0)) {
      p = true;
    } else {
      p = false;
    }
  }

  if (p) {
    st.site = &h_emlrtRSI;
    error(&st);
  }

  st.site = &i_emlrtRSI;
  nx = x->size[0] * x->size[1];
  b_st.site = &j_emlrtRSI;
  if ((!(1 > nx)) && (nx > 2147483646)) {
    c_st.site = &k_emlrtRSI;
    check_forloop_overflow_error(&c_st);
  }

  for (k = 0; k + 1 <= nx; k++) {
    x->data[k] = muDoubleScalarSqrt(x->data[k]);
  }
}
Beispiel #6
0
/* Function Definitions */
real_T norm(const real_T x[3])
{
  real_T y;
  real_T scale;
  int32_T k;
  real_T absxk;
  real_T t;
  y = 0.0;
  scale = 3.3121686421112381E-170;
  for (k = 0; k < 3; k++) {
    absxk = muDoubleScalarAbs(x[k]);
    if (absxk > scale) {
      t = scale / absxk;
      y = 1.0 + y * t * t;
      scale = absxk;
    } else {
      t = absxk / scale;
      y += t * t;
    }
  }

  return scale * muDoubleScalarSqrt(y);
}
Beispiel #7
0
/* Function Definitions */
real_T norm(const real_T x[4])
{
  real_T y;
  real_T scale;
  int32_T k;
  real_T absxk;
  real_T t;
  y = 0.0;
  scale = 2.2250738585072014E-308;
  for (k = 0; k < 4; k++) {
    absxk = muDoubleScalarAbs(x[k]);
    if (absxk > scale) {
      t = scale / absxk;
      y = 1.0 + y * t * t;
      scale = absxk;
    } else {
      t = absxk / scale;
      y += t * t;
    }
  }

  return scale * muDoubleScalarSqrt(y);
}
Beispiel #8
0
/* Function Definitions */
void MechanicalPointForce(const emlrtStack *sp, const emxArray_real_T
  *particlePosition, const emxArray_real_T *pointSourcePosition, real_T
  forceDirection, real_T forceMagnitude, real_T cutoff, emxArray_real_T *force)
{
  uint32_T sz[2];
  int32_T ix;
  emxArray_real_T *forceTemp;
  int32_T loop_ub;
  emxArray_real_T *forceMag;
  int32_T vlen;
  int32_T sIdx;
  emxArray_real_T *forceDir;
  emxArray_real_T *distToSource;
  emxArray_int32_T *r0;
  emxArray_boolean_T *r1;
  emxArray_int32_T *r2;
  emxArray_real_T *x;
  emxArray_real_T *b_x;
  emxArray_real_T *r3;
  emxArray_real_T *r4;
  emxArray_real_T *b_pointSourcePosition;
  emxArray_real_T *b_forceDir;
  emxArray_real_T *c_forceDir;
  int32_T k;
  int32_T vstride;
  int32_T iy;
  int32_T ixstart;
  boolean_T overflow;
  real_T s;
  boolean_T b0;
  uint32_T varargin_2[2];
  boolean_T p;
  boolean_T exitg1;
  int32_T iv0[1];
  int32_T iv1[2];
  int32_T b_force[2];
  int32_T iv2[1];
  int32_T b_iy;
  int32_T c_iy;
  int32_T b_forceTemp[2];
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  emlrtStack e_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  e_st.prev = &d_st;
  e_st.tls = d_st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);

  /*  apply mechanical (push or pull) force on particles */
  /*  mechanicalForce is a logical flag  */
  /*  particlPosition is a N by 3 vector of particle position */
  /*  pointSourcePosition is the position of force sources  */
  /*  forceDirection is either  -1 for 'in' or 1 for 'out' */
  /*  forceMagnitude is a positive number between 0 and 1 */
  /*  cutoff is the maximal direction the force operates on particle relative */
  /*  to the pointSourcePosition  */
  /*  the output is a vector of N by 3 of delta position to th */
  for (ix = 0; ix < 2; ix++) {
    sz[ix] = (uint32_T)particlePosition->size[ix];
  }

  emxInit_real_T(sp, &forceTemp, 2, &c_emlrtRTEI, true);
  ix = forceTemp->size[0] * forceTemp->size[1];
  forceTemp->size[0] = (int32_T)sz[0];
  emxEnsureCapacity(sp, (emxArray__common *)forceTemp, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  ix = forceTemp->size[0] * forceTemp->size[1];
  forceTemp->size[1] = (int32_T)sz[1];
  emxEnsureCapacity(sp, (emxArray__common *)forceTemp, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  loop_ub = (int32_T)sz[0] * (int32_T)sz[1];
  for (ix = 0; ix < loop_ub; ix++) {
    forceTemp->data[ix] = 0.0;
  }

  for (ix = 0; ix < 2; ix++) {
    sz[ix] = (uint32_T)particlePosition->size[ix];
  }

  ix = force->size[0] * force->size[1];
  force->size[0] = (int32_T)sz[0];
  emxEnsureCapacity(sp, (emxArray__common *)force, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  ix = force->size[0] * force->size[1];
  force->size[1] = (int32_T)sz[1];
  emxEnsureCapacity(sp, (emxArray__common *)force, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  loop_ub = (int32_T)sz[0] * (int32_T)sz[1];
  for (ix = 0; ix < loop_ub; ix++) {
    force->data[ix] = 0.0;
  }

  emxInit_real_T(sp, &forceMag, 2, &d_emlrtRTEI, true);
  vlen = particlePosition->size[0];
  ix = forceMag->size[0] * forceMag->size[1];
  forceMag->size[0] = vlen;
  emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  vlen = particlePosition->size[0];
  ix = forceMag->size[0] * forceMag->size[1];
  forceMag->size[1] = vlen;
  emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  loop_ub = particlePosition->size[0] * particlePosition->size[0];
  for (ix = 0; ix < loop_ub; ix++) {
    forceMag->data[ix] = 0.0;
  }

  sIdx = 0;
  emxInit_real_T(sp, &forceDir, 2, &e_emlrtRTEI, true);
  b_emxInit_real_T(sp, &distToSource, 1, &f_emlrtRTEI, true);
  emxInit_int32_T(sp, &r0, 1, &emlrtRTEI, true);
  emxInit_boolean_T(sp, &r1, 2, &emlrtRTEI, true);
  emxInit_int32_T(sp, &r2, 1, &emlrtRTEI, true);
  emxInit_real_T(sp, &x, 2, &emlrtRTEI, true);
  b_emxInit_real_T(sp, &b_x, 1, &emlrtRTEI, true);
  b_emxInit_real_T(sp, &r3, 1, &emlrtRTEI, true);
  b_emxInit_real_T(sp, &r4, 1, &emlrtRTEI, true);
  emxInit_real_T(sp, &b_pointSourcePosition, 2, &emlrtRTEI, true);
  b_emxInit_real_T(sp, &b_forceDir, 1, &emlrtRTEI, true);
  emxInit_real_T(sp, &c_forceDir, 2, &emlrtRTEI, true);
  while (sIdx <= pointSourcePosition->size[0] - 1) {
    loop_ub = pointSourcePosition->size[1];
    ix = pointSourcePosition->size[0];
    if ((sIdx + 1 >= 1) && (sIdx + 1 < ix)) {
      vlen = sIdx + 1;
    } else {
      vlen = emlrtDynamicBoundsCheckR2012b(sIdx + 1, 1, ix, (emlrtBCInfo *)
        &e_emlrtBCI, sp);
    }

    ix = b_pointSourcePosition->size[0] * b_pointSourcePosition->size[1];
    b_pointSourcePosition->size[0] = 1;
    b_pointSourcePosition->size[1] = loop_ub;
    emxEnsureCapacity(sp, (emxArray__common *)b_pointSourcePosition, ix,
                      (int32_T)sizeof(real_T), &emlrtRTEI);
    for (ix = 0; ix < loop_ub; ix++) {
      b_pointSourcePosition->data[b_pointSourcePosition->size[0] * ix] =
        pointSourcePosition->data[(vlen + pointSourcePosition->size[0] * ix) - 1];
    }

    st.site = &emlrtRSI;
    bsxfun(&st, particlePosition, b_pointSourcePosition, forceDir);

    /*  Find the distance between the particles and the source */
    st.site = &b_emlrtRSI;
    b_st.site = &h_emlrtRSI;
    c_st.site = &i_emlrtRSI;
    d_st.site = &j_emlrtRSI;
    for (ix = 0; ix < 2; ix++) {
      sz[ix] = (uint32_T)forceDir->size[ix];
    }

    ix = x->size[0] * x->size[1];
    x->size[0] = (int32_T)sz[0];
    x->size[1] = (int32_T)sz[1];
    emxEnsureCapacity(&d_st, (emxArray__common *)x, ix, (int32_T)sizeof(real_T),
                      &b_emlrtRTEI);
    if (dimagree(x, forceDir)) {
    } else {
      emlrtErrorWithMessageIdR2012b(&d_st, &b_emlrtRTEI, "MATLAB:dimagree", 0);
    }

    ix = (int32_T)sz[0] * (int32_T)sz[1];
    for (k = 0; k < ix; k++) {
      x->data[k] = forceDir->data[k] * forceDir->data[k];
    }

    st.site = &b_emlrtRSI;
    b_st.site = &k_emlrtRSI;
    c_st.site = &l_emlrtRSI;
    for (ix = 0; ix < 2; ix++) {
      sz[ix] = (uint32_T)x->size[ix];
    }

    ix = b_x->size[0];
    b_x->size[0] = (int32_T)sz[0];
    emxEnsureCapacity(&c_st, (emxArray__common *)b_x, ix, (int32_T)sizeof(real_T),
                      &emlrtRTEI);
    if ((x->size[0] == 0) || (x->size[1] == 0)) {
      ix = b_x->size[0];
      b_x->size[0] = (int32_T)sz[0];
      emxEnsureCapacity(&c_st, (emxArray__common *)b_x, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      loop_ub = (int32_T)sz[0];
      for (ix = 0; ix < loop_ub; ix++) {
        b_x->data[ix] = 0.0;
      }
    } else {
      vlen = x->size[1];
      vstride = x->size[0];
      iy = -1;
      ixstart = -1;
      d_st.site = &m_emlrtRSI;
      overflow = (x->size[0] > 2147483646);
      if (overflow) {
        e_st.site = &g_emlrtRSI;
        check_forloop_overflow_error(&e_st);
      }

      for (loop_ub = 1; loop_ub <= vstride; loop_ub++) {
        ixstart++;
        ix = ixstart;
        s = x->data[ixstart];
        d_st.site = &n_emlrtRSI;
        if (2 > vlen) {
          b0 = false;
        } else {
          b0 = (vlen > 2147483646);
        }

        if (b0) {
          e_st.site = &g_emlrtRSI;
          check_forloop_overflow_error(&e_st);
        }

        for (k = 2; k <= vlen; k++) {
          ix += vstride;
          s += x->data[ix];
        }

        iy++;
        b_x->data[iy] = s;
      }
    }

    st.site = &b_emlrtRSI;
    ix = distToSource->size[0];
    distToSource->size[0] = b_x->size[0];
    emxEnsureCapacity(&st, (emxArray__common *)distToSource, ix, (int32_T)sizeof
                      (real_T), &emlrtRTEI);
    loop_ub = b_x->size[0];
    for (ix = 0; ix < loop_ub; ix++) {
      distToSource->data[ix] = b_x->data[ix];
    }

    for (k = 0; k < b_x->size[0]; k++) {
      if (b_x->data[k] < 0.0) {
        b_st.site = &o_emlrtRSI;
        eml_error(&b_st);
      }
    }

    for (k = 0; k < b_x->size[0]; k++) {
      distToSource->data[k] = muDoubleScalarSqrt(distToSource->data[k]);
    }

    /*  Normalize the forceDirection */
    iy = 0;
    while (iy < 3) {
      loop_ub = forceDir->size[0];
      ix = r2->size[0];
      r2->size[0] = loop_ub;
      emxEnsureCapacity(sp, (emxArray__common *)r2, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < loop_ub; ix++) {
        r2->data[ix] = ix;
      }

      ix = forceDir->size[1];
      ixstart = 1 + iy;
      emlrtDynamicBoundsCheckR2012b(ixstart, 1, ix, (emlrtBCInfo *)&c_emlrtBCI,
        sp);
      st.site = &c_emlrtRSI;
      ix = forceDir->size[1];
      ixstart = 1 + iy;
      emlrtDynamicBoundsCheckR2012b(ixstart, 1, ix, (emlrtBCInfo *)&d_emlrtBCI,
        &st);
      ix = forceDir->size[0];
      sz[0] = (uint32_T)ix;
      sz[1] = 1U;
      varargin_2[0] = (uint32_T)distToSource->size[0];
      varargin_2[1] = 1U;
      overflow = false;
      p = true;
      k = 0;
      exitg1 = false;
      while ((!exitg1) && (k < 2)) {
        if (!((int32_T)sz[k] == (int32_T)varargin_2[k])) {
          p = false;
          exitg1 = true;
        } else {
          k++;
        }
      }

      if (!p) {
      } else {
        overflow = true;
      }

      if (overflow) {
      } else {
        emlrtErrorWithMessageIdR2012b(&st, &l_emlrtRTEI, "MATLAB:dimagree", 0);
      }

      loop_ub = forceDir->size[0];
      ix = b_x->size[0];
      b_x->size[0] = loop_ub;
      emxEnsureCapacity(&st, (emxArray__common *)b_x, ix, (int32_T)sizeof(real_T),
                        &emlrtRTEI);
      for (ix = 0; ix < loop_ub; ix++) {
        b_x->data[ix] = forceDir->data[ix + forceDir->size[0] * iy] /
          distToSource->data[ix];
      }

      iv0[0] = r2->size[0];
      emlrtSubAssignSizeCheckR2012b(iv0, 1, *(int32_T (*)[1])b_x->size, 1,
        (emlrtECInfo *)&d_emlrtECI, sp);
      loop_ub = b_x->size[0];
      for (ix = 0; ix < loop_ub; ix++) {
        forceDir->data[r2->data[ix] + forceDir->size[0] * iy] = b_x->data[ix];
      }

      /*  bsxfun(@rdivide,forceDir,distToSource); */
      iy++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }

    /*  Multiply the */
    if (forceDirection == -1.0) {
      ix = r4->size[0];
      r4->size[0] = distToSource->size[0];
      emxEnsureCapacity(sp, (emxArray__common *)r4, ix, (int32_T)sizeof(real_T),
                        &emlrtRTEI);
      loop_ub = distToSource->size[0];
      for (ix = 0; ix < loop_ub; ix++) {
        r4->data[ix] = 1.0 + distToSource->data[ix];
      }

      rdivide(sp, forceMagnitude, r4, b_x);
      vlen = b_x->size[0];
      ix = forceMag->size[0] * forceMag->size[1];
      forceMag->size[0] = vlen;
      emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      ix = forceMag->size[0] * forceMag->size[1];
      forceMag->size[1] = 1;
      emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      loop_ub = b_x->size[0];
      for (ix = 0; ix < loop_ub; ix++) {
        forceMag->data[ix] = 1.0 - b_x->data[ix];
      }
    } else {
      if (forceDirection == 1.0) {
        ix = r3->size[0];
        r3->size[0] = distToSource->size[0];
        emxEnsureCapacity(sp, (emxArray__common *)r3, ix, (int32_T)sizeof(real_T),
                          &emlrtRTEI);
        loop_ub = distToSource->size[0];
        for (ix = 0; ix < loop_ub; ix++) {
          r3->data[ix] = 1.0 + distToSource->data[ix];
        }

        rdivide(sp, forceMagnitude, r3, b_x);
        vlen = b_x->size[0];
        ix = forceMag->size[0] * forceMag->size[1];
        forceMag->size[0] = vlen;
        emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof
                          (real_T), &emlrtRTEI);
        ix = forceMag->size[0] * forceMag->size[1];
        forceMag->size[1] = 1;
        emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof
                          (real_T), &emlrtRTEI);
        loop_ub = b_x->size[0];
        for (ix = 0; ix < loop_ub; ix++) {
          forceMag->data[ix] = b_x->data[ix];
        }
      }
    }

    iy = 0;
    while (iy < 3) {
      ix = forceDir->size[1];
      ixstart = 1 + iy;
      emlrtDynamicBoundsCheckR2012b(ixstart, 1, ix, (emlrtBCInfo *)&b_emlrtBCI,
        sp);
      ix = forceDir->size[0];
      iv1[0] = ix;
      iv1[1] = 1;
      for (ix = 0; ix < 2; ix++) {
        b_force[ix] = forceMag->size[ix];
      }

      if ((iv1[0] != b_force[0]) || (1 != b_force[1])) {
        emlrtSizeEqCheckNDR2012b(iv1, b_force, (emlrtECInfo *)&c_emlrtECI, sp);
      }

      loop_ub = forceTemp->size[0];
      ix = r2->size[0];
      r2->size[0] = loop_ub;
      emxEnsureCapacity(sp, (emxArray__common *)r2, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < loop_ub; ix++) {
        r2->data[ix] = ix;
      }

      ix = forceTemp->size[1];
      ixstart = 1 + iy;
      emlrtDynamicBoundsCheckR2012b(ixstart, 1, ix, (emlrtBCInfo *)&emlrtBCI, sp);
      loop_ub = forceDir->size[0];
      vlen = forceDir->size[0];
      vstride = forceDir->size[0];
      ix = b_forceDir->size[0];
      b_forceDir->size[0] = vstride;
      emxEnsureCapacity(sp, (emxArray__common *)b_forceDir, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < vstride; ix++) {
        b_forceDir->data[ix] = forceDir->data[ix + forceDir->size[0] * iy];
      }

      ix = c_forceDir->size[0] * c_forceDir->size[1];
      c_forceDir->size[0] = loop_ub;
      c_forceDir->size[1] = 1;
      emxEnsureCapacity(sp, (emxArray__common *)c_forceDir, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < loop_ub; ix++) {
        c_forceDir->data[ix] = b_forceDir->data[ix];
      }

      ix = b_x->size[0];
      b_x->size[0] = vlen;
      emxEnsureCapacity(sp, (emxArray__common *)b_x, ix, (int32_T)sizeof(real_T),
                        &emlrtRTEI);
      for (ix = 0; ix < vlen; ix++) {
        b_x->data[ix] = c_forceDir->data[ix] * forceMag->data[ix];
      }

      iv2[0] = r2->size[0];
      emlrtSubAssignSizeCheckR2012b(iv2, 1, *(int32_T (*)[1])b_x->size, 1,
        (emlrtECInfo *)&b_emlrtECI, sp);
      loop_ub = b_x->size[0];
      for (ix = 0; ix < loop_ub; ix++) {
        forceTemp->data[r2->data[ix] + forceTemp->size[0] * iy] = b_x->data[ix];
      }

      /*  bsxfun(@times,forceDir,forceTemp); */
      iy++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }

    iy = distToSource->size[0] - 1;
    vlen = 0;
    for (vstride = 0; vstride <= iy; vstride++) {
      if (distToSource->data[vstride] > cutoff) {
        vlen++;
      }
    }

    ix = r2->size[0];
    r2->size[0] = vlen;
    emxEnsureCapacity(sp, (emxArray__common *)r2, ix, (int32_T)sizeof(int32_T),
                      &emlrtRTEI);
    vlen = 0;
    for (vstride = 0; vstride <= iy; vstride++) {
      if (distToSource->data[vstride] > cutoff) {
        r2->data[vlen] = vstride + 1;
        vlen++;
      }
    }

    loop_ub = forceTemp->size[1];
    vstride = forceTemp->size[0];
    vlen = r2->size[0];
    for (ix = 0; ix < loop_ub; ix++) {
      for (ixstart = 0; ixstart < vlen; ixstart++) {
        iy = r2->data[ixstart];
        if ((iy >= 1) && (iy < vstride)) {
          b_iy = iy;
        } else {
          b_iy = emlrtDynamicBoundsCheckR2012b(iy, 1, vstride, (emlrtBCInfo *)
            &f_emlrtBCI, sp);
        }

        forceTemp->data[(b_iy + forceTemp->size[0] * ix) - 1] = 0.0;
      }
    }

    ix = r1->size[0] * r1->size[1];
    r1->size[0] = forceTemp->size[0];
    r1->size[1] = forceTemp->size[1];
    emxEnsureCapacity(sp, (emxArray__common *)r1, ix, (int32_T)sizeof(boolean_T),
                      &emlrtRTEI);
    loop_ub = forceTemp->size[0] * forceTemp->size[1];
    for (ix = 0; ix < loop_ub; ix++) {
      r1->data[ix] = muDoubleScalarIsNaN(forceTemp->data[ix]);
    }

    iy = r1->size[0] * r1->size[1] - 1;
    vlen = 0;
    for (vstride = 0; vstride <= iy; vstride++) {
      if (r1->data[vstride]) {
        vlen++;
      }
    }

    ix = r0->size[0];
    r0->size[0] = vlen;
    emxEnsureCapacity(sp, (emxArray__common *)r0, ix, (int32_T)sizeof(int32_T),
                      &emlrtRTEI);
    vlen = 0;
    for (vstride = 0; vstride <= iy; vstride++) {
      if (r1->data[vstride]) {
        r0->data[vlen] = vstride + 1;
        vlen++;
      }
    }

    vstride = forceTemp->size[0];
    vlen = forceTemp->size[1];
    loop_ub = r0->size[0];
    for (ix = 0; ix < loop_ub; ix++) {
      ixstart = vstride * vlen;
      iy = r0->data[ix];
      if ((iy >= 1) && (iy < ixstart)) {
        c_iy = iy;
      } else {
        c_iy = emlrtDynamicBoundsCheckR2012b(iy, 1, ixstart, (emlrtBCInfo *)
          &g_emlrtBCI, sp);
      }

      forceTemp->data[c_iy - 1] = 0.0;
    }

    for (ix = 0; ix < 2; ix++) {
      b_force[ix] = force->size[ix];
    }

    for (ix = 0; ix < 2; ix++) {
      b_forceTemp[ix] = forceTemp->size[ix];
    }

    if ((b_force[0] != b_forceTemp[0]) || (b_force[1] != b_forceTemp[1])) {
      emlrtSizeEqCheckNDR2012b(b_force, b_forceTemp, (emlrtECInfo *)&emlrtECI,
        sp);
    }

    ix = force->size[0] * force->size[1];
    emxEnsureCapacity(sp, (emxArray__common *)force, ix, (int32_T)sizeof(real_T),
                      &emlrtRTEI);
    vlen = force->size[0];
    vstride = force->size[1];
    loop_ub = vlen * vstride;
    for (ix = 0; ix < loop_ub; ix++) {
      force->data[ix] += forceTemp->data[ix];
    }

    sIdx++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_real_T(&c_forceDir);
  emxFree_real_T(&b_forceDir);
  emxFree_real_T(&b_pointSourcePosition);
  emxFree_real_T(&r4);
  emxFree_real_T(&r3);
  emxFree_real_T(&b_x);
  emxFree_real_T(&x);
  emxFree_int32_T(&r2);
  emxFree_boolean_T(&r1);
  emxFree_int32_T(&r0);
  emxFree_real_T(&distToSource);
  emxFree_real_T(&forceDir);
  emxFree_real_T(&forceMag);
  emxFree_real_T(&forceTemp);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
static void sf_c7_adcs_v15_integral_Power(void)
{
  int32_T c7_i3;
  int32_T c7_i4;
  int32_T c7_previousEvent;
  int32_T c7_i5;
  real_T c7_x[7];
  real_T c7_nargout = 1.0;
  real_T c7_nargin = 1.0;
  real_T c7_q[4];
  real_T c7_xN[7];
  int32_T c7_i6;
  int32_T c7_i7;
  real_T c7_A[4];
  int32_T c7_i8;
  real_T c7_a[4];
  int32_T c7_i9;
  real_T c7_b[4];
  int32_T c7_i10;
  real_T c7_b_a[4];
  int32_T c7_i11;
  real_T c7_b_b[4];
  int32_T c7_i12;
  real_T c7_b_x[4];
  int32_T c7_i13;
  real_T c7_y[4];
  int32_T c7_i14;
  real_T c7_c_x[4];
  int32_T c7_i15;
  real_T c7_b_y[4];
  int32_T c7_i16;
  real_T c7_d_x[4];
  int32_T c7_i17;
  real_T c7_c_y[4];
  int32_T c7_i18;
  real_T c7_e_x[4];
  int32_T c7_i19;
  real_T c7_d_y[4];
  real_T c7_f_x;
  real_T c7_B;
  real_T c7_g_x;
  int32_T c7_i20;
  real_T c7_h_x[4];
  real_T c7_e_y;
  int32_T c7_i21;
  real_T c7_i_x[4];
  real_T c7_f_y;
  int32_T c7_i22;
  real_T c7_j_x[4];
  real_T c7_g_y;
  int32_T c7_i23;
  int32_T c7_i24;
  int32_T c7_i25;
  int32_T c7_i26;
  real_T (*c7_b_xN)[7];
  real_T (*c7_k_x)[7];
  c7_b_xN = (real_T (*)[7])ssGetOutputPortSignal(chartInstance.S, 1);
  c7_k_x = (real_T (*)[7])ssGetInputPortSignal(chartInstance.S, 0);
  _sfTime_ = (real_T)ssGetT(chartInstance.S);
  _SFD_CC_CALL(CHART_ENTER_SFUNCTION_TAG,5);
  for (c7_i3 = 0; c7_i3 < 7; c7_i3 = c7_i3 + 1) {
    _SFD_DATA_RANGE_CHECK((*c7_k_x)[c7_i3], 0U);
  }

  for (c7_i4 = 0; c7_i4 < 7; c7_i4 = c7_i4 + 1) {
    _SFD_DATA_RANGE_CHECK((*c7_b_xN)[c7_i4], 1U);
  }

  c7_previousEvent = _sfEvent_;
  _sfEvent_ = CALL_EVENT;
  _SFD_CC_CALL(CHART_ENTER_DURING_FUNCTION_TAG,5);
  for (c7_i5 = 0; c7_i5 < 7; c7_i5 = c7_i5 + 1) {
    c7_x[c7_i5] = (*c7_k_x)[c7_i5];
  }

  sf_debug_symbol_scope_push(5U, 0U);
  sf_debug_symbol_scope_add("nargout", &c7_nargout, c7_c_sf_marshall);
  sf_debug_symbol_scope_add("nargin", &c7_nargin, c7_c_sf_marshall);
  sf_debug_symbol_scope_add("q", &c7_q, c7_b_sf_marshall);
  sf_debug_symbol_scope_add("xN", &c7_xN, c7_sf_marshall);
  sf_debug_symbol_scope_add("x", &c7_x, c7_sf_marshall);
  CV_EML_FCN(0, 0);

  /*  This block gives DCM for converting from ECI to ORBIT frames */
  /*  inputs: state vector in ECI */
  /*  output: DCM */
  _SFD_EML_CALL(0,6);
  for (c7_i6 = 0; c7_i6 < 4; c7_i6 = c7_i6 + 1) {
    c7_q[c7_i6] = c7_x[c7_i6];
  }

  _SFD_EML_CALL(0,7);
  for (c7_i7 = 0; c7_i7 < 4; c7_i7 = c7_i7 + 1) {
    c7_A[c7_i7] = c7_q[c7_i7];
  }

  for (c7_i8 = 0; c7_i8 < 4; c7_i8 = c7_i8 + 1) {
    c7_a[c7_i8] = c7_q[c7_i8];
  }

  for (c7_i9 = 0; c7_i9 < 4; c7_i9 = c7_i9 + 1) {
    c7_b[c7_i9] = c7_q[c7_i9];
  }

  c7_eml_scalar_eg();
  for (c7_i10 = 0; c7_i10 < 4; c7_i10 = c7_i10 + 1) {
    c7_b_a[c7_i10] = c7_a[c7_i10];
  }

  for (c7_i11 = 0; c7_i11 < 4; c7_i11 = c7_i11 + 1) {
    c7_b_b[c7_i11] = c7_b[c7_i11];
  }

  for (c7_i12 = 0; c7_i12 < 4; c7_i12 = c7_i12 + 1) {
    c7_b_x[c7_i12] = c7_b_a[c7_i12];
  }

  for (c7_i13 = 0; c7_i13 < 4; c7_i13 = c7_i13 + 1) {
    c7_y[c7_i13] = c7_b_b[c7_i13];
  }

  for (c7_i14 = 0; c7_i14 < 4; c7_i14 = c7_i14 + 1) {
    c7_c_x[c7_i14] = c7_b_x[c7_i14];
  }

  for (c7_i15 = 0; c7_i15 < 4; c7_i15 = c7_i15 + 1) {
    c7_b_y[c7_i15] = c7_y[c7_i15];
  }

  for (c7_i16 = 0; c7_i16 < 4; c7_i16 = c7_i16 + 1) {
    c7_d_x[c7_i16] = c7_c_x[c7_i16];
  }

  for (c7_i17 = 0; c7_i17 < 4; c7_i17 = c7_i17 + 1) {
    c7_c_y[c7_i17] = c7_b_y[c7_i17];
  }

  for (c7_i18 = 0; c7_i18 < 4; c7_i18 = c7_i18 + 1) {
    c7_e_x[c7_i18] = c7_d_x[c7_i18];
  }

  for (c7_i19 = 0; c7_i19 < 4; c7_i19 = c7_i19 + 1) {
    c7_d_y[c7_i19] = c7_c_y[c7_i19];
  }

  c7_f_x = c7_ceval_xdot(4, c7_e_x, 1, 1, c7_d_y, 1, 1);
  c7_B = c7_f_x;
  if (c7_B < 0.0) {
    c7_eml_error();
  }

  c7_g_x = c7_B;
  c7_B = c7_g_x;
  c7_B = muDoubleScalarSqrt(c7_B);
  for (c7_i20 = 0; c7_i20 < 4; c7_i20 = c7_i20 + 1) {
    c7_h_x[c7_i20] = c7_A[c7_i20];
  }

  c7_e_y = c7_B;
  if (c7_e_y == 0.0) {
    c7_eml_warning();
  }

  for (c7_i21 = 0; c7_i21 < 4; c7_i21 = c7_i21 + 1) {
    c7_i_x[c7_i21] = c7_h_x[c7_i21];
  }

  c7_f_y = c7_e_y;
  for (c7_i22 = 0; c7_i22 < 4; c7_i22 = c7_i22 + 1) {
    c7_j_x[c7_i22] = c7_i_x[c7_i22];
  }

  c7_g_y = c7_f_y;
  for (c7_i23 = 0; c7_i23 < 4; c7_i23 = c7_i23 + 1) {
    c7_q[c7_i23] = c7_j_x[c7_i23] / c7_g_y;
  }

  _SFD_EML_CALL(0,8);
  for (c7_i24 = 0; c7_i24 < 4; c7_i24 = c7_i24 + 1) {
    c7_xN[c7_i24] = c7_q[c7_i24];
  }

  for (c7_i25 = 0; c7_i25 < 3; c7_i25 = c7_i25 + 1) {
    c7_xN[c7_i25 + 4] = c7_x[c7_i25 + 4];
  }

  _SFD_EML_CALL(0,-8);
  sf_debug_symbol_scope_pop();
  for (c7_i26 = 0; c7_i26 < 7; c7_i26 = c7_i26 + 1) {
    (*c7_b_xN)[c7_i26] = c7_xN[c7_i26];
  }

  _SFD_CC_CALL(EXIT_OUT_OF_FUNCTION_TAG,5);
  _sfEvent_ = c7_previousEvent;
  sf_debug_check_for_state_inconsistency(_adcs_v15_integral_PowerMachineNumber_,
    chartInstance.chartNumber, chartInstance.
    instanceNumber);
}
static void sf_c4_MigrationBGOW_Proto6_MultiSwarm
  (SFc4_MigrationBGOW_Proto6_MultiSwarmInstanceStruct *chartInstance)
{
  real_T c4_hoistedGlobal;
  real_T c4_b_hoistedGlobal;
  real_T c4_x;
  real_T c4_y;
  uint32_T c4_debug_family_var_map[5];
  real_T c4_nargin = 2.0;
  real_T c4_nargout = 1.0;
  real_T c4_z;
  real_T c4_b_x;
  real_T c4_c_x;
  real_T *c4_d_x;
  real_T *c4_b_y;
  real_T *c4_b_z;
  c4_b_z = (real_T *)ssGetOutputPortSignal(chartInstance->S, 1);
  c4_b_y = (real_T *)ssGetInputPortSignal(chartInstance->S, 1);
  c4_d_x = (real_T *)ssGetInputPortSignal(chartInstance->S, 0);
  _sfTime_ = (real_T)ssGetT(chartInstance->S);
  _SFD_CC_CALL(CHART_ENTER_SFUNCTION_TAG, 3U, chartInstance->c4_sfEvent);
  _SFD_DATA_RANGE_CHECK(*c4_d_x, 0U);
  _SFD_DATA_RANGE_CHECK(*c4_b_y, 1U);
  _SFD_DATA_RANGE_CHECK(*c4_b_z, 2U);
  chartInstance->c4_sfEvent = CALL_EVENT;
  _SFD_CC_CALL(CHART_ENTER_DURING_FUNCTION_TAG, 3U, chartInstance->c4_sfEvent);
  c4_hoistedGlobal = *c4_d_x;
  c4_b_hoistedGlobal = *c4_b_y;
  c4_x = c4_hoistedGlobal;
  c4_y = c4_b_hoistedGlobal;
  _SFD_SYMBOL_SCOPE_PUSH_EML(0U, 5U, 5U, c4_debug_family_names,
    c4_debug_family_var_map);
  _SFD_SYMBOL_SCOPE_ADD_EML_IMPORTABLE(&c4_nargin, 0U, c4_sf_marshallOut,
    c4_sf_marshallIn);
  _SFD_SYMBOL_SCOPE_ADD_EML_IMPORTABLE(&c4_nargout, 1U, c4_sf_marshallOut,
    c4_sf_marshallIn);
  _SFD_SYMBOL_SCOPE_ADD_EML(&c4_x, 2U, c4_sf_marshallOut);
  _SFD_SYMBOL_SCOPE_ADD_EML(&c4_y, 3U, c4_sf_marshallOut);
  _SFD_SYMBOL_SCOPE_ADD_EML_IMPORTABLE(&c4_z, 4U, c4_sf_marshallOut,
    c4_sf_marshallIn);
  CV_EML_FCN(0, 0);
  _SFD_EML_CALL(0U, chartInstance->c4_sfEvent, 3);
  c4_b_x = (26.4196 - c4_mpower(chartInstance, c4_x - 1.44)) - c4_mpower
    (chartInstance, c4_y - 0.3677);
  c4_z = c4_b_x;
  if (c4_z < 0.0) {
    c4_eml_error(chartInstance);
  }

  c4_c_x = c4_z;
  c4_z = c4_c_x;
  c4_z = muDoubleScalarSqrt(c4_z);
  _SFD_EML_CALL(0U, chartInstance->c4_sfEvent, 4);
  c4_z += 1.6;
  _SFD_EML_CALL(0U, chartInstance->c4_sfEvent, -4);
  _SFD_SYMBOL_SCOPE_POP();
  *c4_b_z = c4_z;
  _SFD_CC_CALL(EXIT_OUT_OF_FUNCTION_TAG, 3U, chartInstance->c4_sfEvent);
  _SFD_CHECK_FOR_STATE_INCONSISTENCY
    (_MigrationBGOW_Proto6_MultiSwarmMachineNumber_, chartInstance->chartNumber,
     chartInstance->instanceNumber);
}
Beispiel #11
0
static void sf_c1_my_demo_ref(SFc1_my_demo_refInstanceStruct *chartInstance)
{
  int32_T c1_i0;
  real_T c1_hoistedGlobal;
  real_T c1_b_hoistedGlobal;
  real_T c1_x;
  real_T c1_y;
  int32_T c1_i1;
  real_T c1_fpath[170];
  uint32_T c1_debug_family_var_map[13];
  real_T c1_dmin;
  real_T c1_xx[85];
  real_T c1_yy[85];
  real_T c1_d;
  real_T c1_nargin = 3.0;
  real_T c1_nargout = 3.0;
  real_T c1_x_g;
  real_T c1_y_g;
  real_T c1_stop;
  int32_T c1_i2;
  int32_T c1_i3;
  real_T c1_c_hoistedGlobal;
  real_T c1_d_hoistedGlobal;
  real_T c1_b_x;
  real_T c1_c_x;
  real_T *c1_b_x_g;
  real_T *c1_b_y_g;
  real_T *c1_d_x;
  real_T *c1_b_y;
  real_T *c1_b_stop;
  real_T (*c1_b_fpath)[170];
  boolean_T guard1 = FALSE;
  boolean_T guard2 = FALSE;
  c1_b_stop = (real_T *)ssGetOutputPortSignal(chartInstance->S, 3);
  c1_b_fpath = (real_T (*)[170])ssGetInputPortSignal(chartInstance->S, 2);
  c1_b_y = (real_T *)ssGetInputPortSignal(chartInstance->S, 1);
  c1_d_x = (real_T *)ssGetInputPortSignal(chartInstance->S, 0);
  c1_b_y_g = (real_T *)ssGetOutputPortSignal(chartInstance->S, 2);
  c1_b_x_g = (real_T *)ssGetOutputPortSignal(chartInstance->S, 1);
  _sfTime_ = (real_T)ssGetT(chartInstance->S);
  _SFD_CC_CALL(CHART_ENTER_SFUNCTION_TAG, 0U, chartInstance->c1_sfEvent);
  _SFD_DATA_RANGE_CHECK(*c1_b_x_g, 0U);
  _SFD_DATA_RANGE_CHECK(*c1_b_y_g, 1U);
  _SFD_DATA_RANGE_CHECK(*c1_d_x, 2U);
  _SFD_DATA_RANGE_CHECK(*c1_b_y, 3U);
  for (c1_i0 = 0; c1_i0 < 170; c1_i0++) {
    _SFD_DATA_RANGE_CHECK((*c1_b_fpath)[c1_i0], 4U);
  }

  _SFD_DATA_RANGE_CHECK(*c1_b_stop, 5U);
  chartInstance->c1_sfEvent = CALL_EVENT;
  _SFD_CC_CALL(CHART_ENTER_DURING_FUNCTION_TAG, 0U, chartInstance->c1_sfEvent);
  c1_hoistedGlobal = *c1_d_x;
  c1_b_hoistedGlobal = *c1_b_y;
  c1_x = c1_hoistedGlobal;
  c1_y = c1_b_hoistedGlobal;
  for (c1_i1 = 0; c1_i1 < 170; c1_i1++) {
    c1_fpath[c1_i1] = (*c1_b_fpath)[c1_i1];
  }

  sf_debug_symbol_scope_push_eml(0U, 13U, 13U, c1_debug_family_names,
    c1_debug_family_var_map);
  sf_debug_symbol_scope_add_eml_importable(&c1_dmin, 0U, c1_b_sf_marshallOut,
    c1_b_sf_marshallIn);
  sf_debug_symbol_scope_add_eml_importable(c1_xx, 1U, c1_d_sf_marshallOut,
    c1_c_sf_marshallIn);
  sf_debug_symbol_scope_add_eml_importable(c1_yy, 2U, c1_d_sf_marshallOut,
    c1_c_sf_marshallIn);
  sf_debug_symbol_scope_add_eml_importable(&c1_d, 3U, c1_b_sf_marshallOut,
    c1_b_sf_marshallIn);
  sf_debug_symbol_scope_add_eml_importable(&c1_nargin, 4U, c1_b_sf_marshallOut,
    c1_b_sf_marshallIn);
  sf_debug_symbol_scope_add_eml_importable(&c1_nargout, 5U, c1_b_sf_marshallOut,
    c1_b_sf_marshallIn);
  sf_debug_symbol_scope_add_eml(&c1_x, 6U, c1_b_sf_marshallOut);
  sf_debug_symbol_scope_add_eml(&c1_y, 7U, c1_b_sf_marshallOut);
  sf_debug_symbol_scope_add_eml(c1_fpath, 8U, c1_c_sf_marshallOut);
  sf_debug_symbol_scope_add_eml_importable(&c1_x_g, 9U, c1_b_sf_marshallOut,
    c1_b_sf_marshallIn);
  sf_debug_symbol_scope_add_eml_importable(&c1_y_g, 10U, c1_b_sf_marshallOut,
    c1_b_sf_marshallIn);
  sf_debug_symbol_scope_add_eml_importable(&c1_stop, 11U, c1_b_sf_marshallOut,
    c1_b_sf_marshallIn);
  sf_debug_symbol_scope_add_eml_importable(&chartInstance->c1_i, 12U,
    c1_sf_marshallOut, c1_sf_marshallIn);
  CV_EML_FCN(0, 0);
  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 6);
  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 7);
  if (CV_EML_IF(0, 1, 0, !chartInstance->c1_i_not_empty)) {
    _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 8);
    chartInstance->c1_i = 1.0;
    chartInstance->c1_i_not_empty = TRUE;
  }

  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 12);
  c1_stop = 0.0;
  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 13);
  c1_dmin = 0.1;
  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 26);
  for (c1_i2 = 0; c1_i2 < 85; c1_i2++) {
    c1_xx[c1_i2] = c1_fpath[c1_i2];
  }

  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 27);
  for (c1_i3 = 0; c1_i3 < 85; c1_i3++) {
    c1_yy[c1_i3] = c1_fpath[c1_i3 + 85];
  }

  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 29);
  c1_c_hoistedGlobal = chartInstance->c1_i;
  c1_d_hoistedGlobal = chartInstance->c1_i;
  c1_b_x = c1_mpower(chartInstance, c1_x - c1_xx[_SFD_EML_ARRAY_BOUNDS_CHECK(
    "xx", (int32_T)_SFD_INTEGER_CHECK("i", c1_c_hoistedGlobal), 1, 85, 1, 0) - 1])
    + c1_mpower(chartInstance, c1_y - c1_yy[_SFD_EML_ARRAY_BOUNDS_CHECK("yy",
    (int32_T)_SFD_INTEGER_CHECK("i", c1_d_hoistedGlobal), 1, 85, 1, 0) - 1]);
  c1_d = c1_b_x;
  if (c1_d < 0.0) {
    c1_eml_error(chartInstance);
  }

  c1_c_x = c1_d;
  c1_d = c1_c_x;
  c1_d = muDoubleScalarSqrt(c1_d);
  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 31);
  guard2 = FALSE;
  if (CV_EML_COND(0, 1, 0, c1_d < c1_dmin)) {
    if (CV_EML_COND(0, 1, 1, chartInstance->c1_i < 85.0)) {
      CV_EML_MCDC(0, 1, 0, TRUE);
      CV_EML_IF(0, 1, 1, TRUE);
      _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 32);
      chartInstance->c1_i++;
    } else {
      guard2 = TRUE;
    }
  } else {
    guard2 = TRUE;
  }

  if (guard2 == TRUE) {
    CV_EML_MCDC(0, 1, 0, FALSE);
    CV_EML_IF(0, 1, 1, FALSE);
  }

  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 36);
  c1_x_g = c1_xx[_SFD_EML_ARRAY_BOUNDS_CHECK("xx", (int32_T)_SFD_INTEGER_CHECK(
    "i", chartInstance->c1_i), 1, 85, 1, 0) - 1];
  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 37);
  c1_y_g = c1_yy[_SFD_EML_ARRAY_BOUNDS_CHECK("yy", (int32_T)_SFD_INTEGER_CHECK(
    "i", chartInstance->c1_i), 1, 85, 1, 0) - 1];
  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 40);
  guard1 = FALSE;
  if (CV_EML_COND(0, 1, 2, c1_d < c1_dmin)) {
    if (CV_EML_COND(0, 1, 3, chartInstance->c1_i == 85.0)) {
      CV_EML_MCDC(0, 1, 1, TRUE);
      CV_EML_IF(0, 1, 2, TRUE);
      _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, 41);
      c1_stop = 1.0;
    } else {
      guard1 = TRUE;
    }
  } else {
    guard1 = TRUE;
  }

  if (guard1 == TRUE) {
    CV_EML_MCDC(0, 1, 1, FALSE);
    CV_EML_IF(0, 1, 2, FALSE);
  }

  _SFD_EML_CALL(0U, chartInstance->c1_sfEvent, -41);
  sf_debug_symbol_scope_pop();
  *c1_b_x_g = c1_x_g;
  *c1_b_y_g = c1_y_g;
  *c1_b_stop = c1_stop;
  _SFD_CC_CALL(EXIT_OUT_OF_FUNCTION_TAG, 0U, chartInstance->c1_sfEvent);
  sf_debug_check_for_state_inconsistency(_my_demo_refMachineNumber_,
    chartInstance->chartNumber, chartInstance->instanceNumber);
}
Beispiel #12
0
void b_Acoeff(const emlrtStack *sp, real_T ksi, real_T j, const emxArray_real_T *
              x, real_T t, const emxArray_real_T *gridT, emxArray_real_T *vals)
{
  emxArray_real_T *b;
  emxArray_real_T *r8;
  int32_T b_x;
  int32_T i;
  emxArray_boolean_T *b_t;
  real_T c_x;
  emxArray_boolean_T *c_t;
  emxArray_real_T *z0;
  emxArray_real_T *d_x;
  emxArray_real_T *e_x;
  emxArray_real_T *r9;
  int32_T b_b[2];
  int32_T f_x[2];
  emxArray_real_T *g_x;
  emxArray_real_T *r10;
  const mxArray *y;
  static const int32_T iv16[2] = { 1, 45 };

  const mxArray *m6;
  char_T cv18[45];
  static const char_T cv19[45] = { 'C', 'o', 'd', 'e', 'r', ':', 't', 'o', 'o',
    'l', 'b', 'o', 'x', ':', 'm', 't', 'i', 'm', 'e', 's', '_', 'n', 'o', 'D',
    'y', 'n', 'a', 'm', 'i', 'c', 'S', 'c', 'a', 'l', 'a', 'r', 'E', 'x', 'p',
    'a', 'n', 's', 'i', 'o', 'n' };

  const mxArray *b_y;
  static const int32_T iv17[2] = { 1, 21 };

  char_T cv20[21];
  static const char_T cv21[21] = { 'C', 'o', 'd', 'e', 'r', ':', 'M', 'A', 'T',
    'L', 'A', 'B', ':', 'i', 'n', 'n', 'e', 'r', 'd', 'i', 'm' };

  emxArray_boolean_T *d_t;
  real_T h_x;
  emxArray_boolean_T *e_t;
  emxArray_real_T *i_x;
  emxArray_real_T *r11;
  emxArray_real_T *j_x;
  emxArray_real_T *r12;
  emxArray_real_T *z1;
  int32_T b_z0[2];
  emxArray_real_T *c_z0;
  emxArray_real_T *k_x;
  const mxArray *c_y;
  static const int32_T iv18[2] = { 1, 45 };

  const mxArray *d_y;
  static const int32_T iv19[2] = { 1, 21 };

  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &b_st;
  d_st.tls = b_st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);
  emxInit_real_T(sp, &b, 2, &bb_emlrtRTEI, true);
  emxInit_real_T(sp, &r8, 2, &bb_emlrtRTEI, true);

  /*  evaluate the coefficient A at the  boundary ksi=0 or ksi=1; */
  /*  for the index j which describes the time steps timePoints_j, at time t and space */
  /*  point x */
  /*  timePoints is a vector describing the time descritized domain */
  b_x = gridT->size[1];
  i = (int32_T)emlrtIntegerCheckFastR2012b(j, &emlrtDCI, sp);
  if (t <= gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &d_emlrtBCI,
       sp) - 1]) {
    b_x = vals->size[0] * vals->size[1];
    vals->size[0] = 1;
    vals->size[1] = 1;
    emxEnsureCapacity(sp, (emxArray__common *)vals, b_x, (int32_T)sizeof(real_T),
                      &bb_emlrtRTEI);
    vals->data[0] = 0.0;
  } else {
    emxInit_boolean_T(sp, &b_t, 2, &bb_emlrtRTEI, true);
    b_x = b_t->size[0] * b_t->size[1];
    b_t->size[0] = 1;
    b_t->size[1] = 2 + x->size[1];
    emxEnsureCapacity(sp, (emxArray__common *)b_t, b_x, (int32_T)sizeof
                      (boolean_T), &bb_emlrtRTEI);
    b_x = gridT->size[1];
    i = (int32_T)j;
    b_t->data[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x,
      &e_emlrtBCI, sp) - 1]);
    b_x = gridT->size[1];
    i = (int32_T)((uint32_T)j + 1U);
    b_t->data[b_t->size[0]] = (t <= gridT->
      data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &f_emlrtBCI, sp) - 1]);
    i = x->size[1];
    for (b_x = 0; b_x < i; b_x++) {
      b_t->data[b_t->size[0] * (b_x + 2)] = (x->data[x->size[0] * b_x] == ksi);
    }

    st.site = &pe_emlrtRSI;
    if (all(&st, b_t)) {
      b_x = gridT->size[1];
      i = (int32_T)j;
      emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &c_emlrtBCI, sp);
      c_x = (t - gridT->data[(int32_T)j - 1]) / 3.1415926535897931;
      st.site = &emlrtRSI;
      if (c_x < 0.0) {
        b_st.site = &f_emlrtRSI;
        eml_error(&b_st);
      }

      b_x = vals->size[0] * vals->size[1];
      vals->size[0] = 1;
      vals->size[1] = 1;
      emxEnsureCapacity(sp, (emxArray__common *)vals, b_x, (int32_T)sizeof
                        (real_T), &bb_emlrtRTEI);
      vals->data[0] = muDoubleScalarSqrt(c_x);
    } else {
      emxInit_boolean_T(sp, &c_t, 2, &bb_emlrtRTEI, true);
      b_x = c_t->size[0] * c_t->size[1];
      c_t->size[0] = 1;
      c_t->size[1] = 2 + x->size[1];
      emxEnsureCapacity(sp, (emxArray__common *)c_t, b_x, (int32_T)sizeof
                        (boolean_T), &bb_emlrtRTEI);
      b_x = gridT->size[1];
      i = (int32_T)j;
      c_t->data[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1,
        b_x, &g_emlrtBCI, sp) - 1]);
      b_x = gridT->size[1];
      i = (int32_T)((uint32_T)j + 1U);
      c_t->data[c_t->size[0]] = (t <= gridT->
        data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &h_emlrtBCI, sp) - 1]);
      i = x->size[1];
      for (b_x = 0; b_x < i; b_x++) {
        c_t->data[c_t->size[0] * (b_x + 2)] = (x->data[x->size[0] * b_x] != ksi);
      }

      emxInit_real_T(sp, &z0, 2, &cb_emlrtRTEI, true);
      emxInit_real_T(sp, &d_x, 2, &bb_emlrtRTEI, true);
      st.site = &qe_emlrtRSI;
      if (all(&st, c_t)) {
        st.site = &b_emlrtRSI;
        b_x = gridT->size[1];
        i = (int32_T)j;
        c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x,
          &m_emlrtBCI, &st) - 1];
        if (c_x < 0.0) {
          b_st.site = &f_emlrtRSI;
          eml_error(&b_st);
        }

        emxInit_real_T(&st, &e_x, 2, &bb_emlrtRTEI, true);
        b_x = e_x->size[0] * e_x->size[1];
        e_x->size[0] = 1;
        e_x->size[1] = x->size[1];
        emxEnsureCapacity(sp, (emxArray__common *)e_x, b_x, (int32_T)sizeof
                          (real_T), &bb_emlrtRTEI);
        i = x->size[0] * x->size[1];
        for (b_x = 0; b_x < i; b_x++) {
          e_x->data[b_x] = x->data[b_x] - ksi;
        }

        emxInit_real_T(sp, &r9, 2, &bb_emlrtRTEI, true);
        b_abs(sp, e_x, r9);
        b_x = r8->size[0] * r8->size[1];
        r8->size[0] = 1;
        r8->size[1] = r9->size[1];
        emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof
                          (real_T), &bb_emlrtRTEI);
        i = r9->size[0] * r9->size[1];
        emxFree_real_T(&e_x);
        for (b_x = 0; b_x < i; b_x++) {
          r8->data[b_x] = r9->data[b_x];
        }

        emxFree_real_T(&r9);
        rdivide(sp, r8, 2.0 * muDoubleScalarSqrt(c_x), z0);
        st.site = &re_emlrtRSI;
        mpower(&st, z0, d_x);
        b_x = d_x->size[0] * d_x->size[1];
        d_x->size[0] = 1;
        emxEnsureCapacity(sp, (emxArray__common *)d_x, b_x, (int32_T)sizeof
                          (real_T), &bb_emlrtRTEI);
        i = d_x->size[0];
        b_x = d_x->size[1];
        i *= b_x;
        for (b_x = 0; b_x < i; b_x++) {
          d_x->data[b_x] = -d_x->data[b_x];
        }

        b_x = b->size[0] * b->size[1];
        b->size[0] = 1;
        b->size[1] = d_x->size[1];
        emxEnsureCapacity(sp, (emxArray__common *)b, b_x, (int32_T)sizeof(real_T),
                          &bb_emlrtRTEI);
        i = d_x->size[0] * d_x->size[1];
        for (b_x = 0; b_x < i; b_x++) {
          b->data[b_x] = d_x->data[b_x];
        }

        for (i = 0; i < d_x->size[1]; i++) {
          b->data[i] = muDoubleScalarExp(b->data[i]);
        }

        st.site = &re_emlrtRSI;
        b_mrdivide(&st, b, z0);
        for (b_x = 0; b_x < 2; b_x++) {
          i = d_x->size[0] * d_x->size[1];
          d_x->size[b_x] = z0->size[b_x];
          emxEnsureCapacity(sp, (emxArray__common *)d_x, i, (int32_T)sizeof
                            (real_T), &ab_emlrtRTEI);
        }

        for (i = 0; i < z0->size[1]; i++) {
          d_x->data[i] = scalar_erf(z0->data[i]);
        }

        b_x = d_x->size[0] * d_x->size[1];
        d_x->size[0] = 1;
        emxEnsureCapacity(sp, (emxArray__common *)d_x, b_x, (int32_T)sizeof
                          (real_T), &bb_emlrtRTEI);
        i = d_x->size[0];
        b_x = d_x->size[1];
        i *= b_x;
        for (b_x = 0; b_x < i; b_x++) {
          d_x->data[b_x] *= 1.7724538509055159;
        }

        for (b_x = 0; b_x < 2; b_x++) {
          b_b[b_x] = b->size[b_x];
        }

        for (b_x = 0; b_x < 2; b_x++) {
          f_x[b_x] = d_x->size[b_x];
        }

        emxInit_real_T(sp, &g_x, 2, &bb_emlrtRTEI, true);
        emlrtSizeEqCheck2DFastR2012b(b_b, f_x, &o_emlrtECI, sp);
        b_x = g_x->size[0] * g_x->size[1];
        g_x->size[0] = 1;
        g_x->size[1] = x->size[1];
        emxEnsureCapacity(sp, (emxArray__common *)g_x, b_x, (int32_T)sizeof
                          (real_T), &bb_emlrtRTEI);
        i = x->size[0] * x->size[1];
        for (b_x = 0; b_x < i; b_x++) {
          g_x->data[b_x] = x->data[b_x] - ksi;
        }

        emxInit_real_T(sp, &r10, 2, &bb_emlrtRTEI, true);
        b_abs(sp, g_x, r10);
        b_x = r8->size[0] * r8->size[1];
        r8->size[0] = 1;
        r8->size[1] = r10->size[1];
        emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof
                          (real_T), &bb_emlrtRTEI);
        i = r10->size[0] * r10->size[1];
        emxFree_real_T(&g_x);
        for (b_x = 0; b_x < i; b_x++) {
          r8->data[b_x] = r10->data[b_x];
        }

        emxFree_real_T(&r10);
        rdivide(sp, r8, 3.5449077018110318, vals);
        st.site = &re_emlrtRSI;
        b_x = b->size[0] * b->size[1];
        b->size[0] = 1;
        emxEnsureCapacity(&st, (emxArray__common *)b, b_x, (int32_T)sizeof
                          (real_T), &bb_emlrtRTEI);
        i = b->size[0];
        b_x = b->size[1];
        i *= b_x;
        for (b_x = 0; b_x < i; b_x++) {
          b->data[b_x] -= d_x->data[b_x];
        }

        b_st.site = &he_emlrtRSI;
        if (!(vals->size[1] == 1)) {
          if ((vals->size[1] == 1) || (b->size[1] == 1)) {
            y = NULL;
            m6 = emlrtCreateCharArray(2, iv16);
            for (i = 0; i < 45; i++) {
              cv18[i] = cv19[i];
            }

            emlrtInitCharArrayR2013a(&b_st, 45, m6, cv18);
            emlrtAssign(&y, m6);
            c_st.site = &fh_emlrtRSI;
            d_st.site = &vg_emlrtRSI;
            b_error(&c_st, message(&d_st, y, &j_emlrtMCI), &k_emlrtMCI);
          } else {
            b_y = NULL;
            m6 = emlrtCreateCharArray(2, iv17);
            for (i = 0; i < 21; i++) {
              cv20[i] = cv21[i];
            }

            emlrtInitCharArrayR2013a(&b_st, 21, m6, cv20);
            emlrtAssign(&b_y, m6);
            c_st.site = &gh_emlrtRSI;
            d_st.site = &wg_emlrtRSI;
            b_error(&c_st, message(&d_st, b_y, &l_emlrtMCI), &m_emlrtMCI);
          }
        }

        c_x = vals->data[0];
        b_x = vals->size[0] * vals->size[1];
        vals->size[0] = 1;
        vals->size[1] = b->size[1];
        emxEnsureCapacity(&st, (emxArray__common *)vals, b_x, (int32_T)sizeof
                          (real_T), &bb_emlrtRTEI);
        i = b->size[1];
        for (b_x = 0; b_x < i; b_x++) {
          vals->data[vals->size[0] * b_x] = c_x * b->data[b->size[0] * b_x];
        }
      } else {
        emxInit_boolean_T(sp, &d_t, 2, &bb_emlrtRTEI, true);
        b_x = d_t->size[0] * d_t->size[1];
        d_t->size[0] = 1;
        d_t->size[1] = 1 + x->size[1];
        emxEnsureCapacity(sp, (emxArray__common *)d_t, b_x, (int32_T)sizeof
                          (boolean_T), &bb_emlrtRTEI);
        b_x = gridT->size[1];
        i = (int32_T)((uint32_T)j + 1U);
        d_t->data[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1,
          b_x, &i_emlrtBCI, sp) - 1]);
        i = x->size[1];
        for (b_x = 0; b_x < i; b_x++) {
          d_t->data[d_t->size[0] * (b_x + 1)] = (x->data[x->size[0] * b_x] ==
            ksi);
        }

        st.site = &se_emlrtRSI;
        if (all(&st, d_t)) {
          b_x = gridT->size[1];
          i = (int32_T)j;
          emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &b_emlrtBCI, sp);
          c_x = (t - gridT->data[(int32_T)j - 1]) / 3.1415926535897931;
          b_x = gridT->size[1];
          i = (int32_T)(j + 1.0);
          emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &emlrtBCI, sp);
          h_x = (t - gridT->data[(int32_T)(j + 1.0) - 1]) / 3.1415926535897931;
          st.site = &c_emlrtRSI;
          if (c_x < 0.0) {
            b_st.site = &f_emlrtRSI;
            eml_error(&b_st);
          }

          st.site = &c_emlrtRSI;
          if (h_x < 0.0) {
            b_st.site = &f_emlrtRSI;
            eml_error(&b_st);
          }

          b_x = vals->size[0] * vals->size[1];
          vals->size[0] = 1;
          vals->size[1] = 1;
          emxEnsureCapacity(sp, (emxArray__common *)vals, b_x, (int32_T)sizeof
                            (real_T), &bb_emlrtRTEI);
          vals->data[0] = muDoubleScalarSqrt(c_x) - muDoubleScalarSqrt(h_x);
        } else {
          emxInit_boolean_T(sp, &e_t, 2, &bb_emlrtRTEI, true);
          b_x = e_t->size[0] * e_t->size[1];
          e_t->size[0] = 1;
          e_t->size[1] = 1 + x->size[1];
          emxEnsureCapacity(sp, (emxArray__common *)e_t, b_x, (int32_T)sizeof
                            (boolean_T), &bb_emlrtRTEI);
          b_x = gridT->size[1];
          i = (int32_T)((uint32_T)j + 1U);
          e_t->data[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1,
            b_x, &j_emlrtBCI, sp) - 1]);
          i = x->size[1];
          for (b_x = 0; b_x < i; b_x++) {
            e_t->data[e_t->size[0] * (b_x + 1)] = (x->data[x->size[0] * b_x] !=
              ksi);
          }

          st.site = &te_emlrtRSI;
          if (all(&st, e_t)) {
            st.site = &d_emlrtRSI;
            b_x = gridT->size[1];
            i = (int32_T)j;
            c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x,
              &k_emlrtBCI, &st) - 1];
            if (c_x < 0.0) {
              b_st.site = &f_emlrtRSI;
              eml_error(&b_st);
            }

            emxInit_real_T(&st, &i_x, 2, &bb_emlrtRTEI, true);
            b_x = i_x->size[0] * i_x->size[1];
            i_x->size[0] = 1;
            i_x->size[1] = x->size[1];
            emxEnsureCapacity(sp, (emxArray__common *)i_x, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = x->size[0] * x->size[1];
            for (b_x = 0; b_x < i; b_x++) {
              i_x->data[b_x] = x->data[b_x] - ksi;
            }

            emxInit_real_T(sp, &r11, 2, &bb_emlrtRTEI, true);
            b_abs(sp, i_x, r11);
            b_x = r8->size[0] * r8->size[1];
            r8->size[0] = 1;
            r8->size[1] = r11->size[1];
            emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = r11->size[0] * r11->size[1];
            emxFree_real_T(&i_x);
            for (b_x = 0; b_x < i; b_x++) {
              r8->data[b_x] = r11->data[b_x];
            }

            emxFree_real_T(&r11);
            rdivide(sp, r8, 2.0 * muDoubleScalarSqrt(c_x), z0);
            st.site = &e_emlrtRSI;
            b_x = gridT->size[1];
            i = (int32_T)((uint32_T)j + 1U);
            c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x,
              &l_emlrtBCI, &st) - 1];
            if (c_x < 0.0) {
              b_st.site = &f_emlrtRSI;
              eml_error(&b_st);
            }

            emxInit_real_T(&st, &j_x, 2, &bb_emlrtRTEI, true);
            b_x = j_x->size[0] * j_x->size[1];
            j_x->size[0] = 1;
            j_x->size[1] = x->size[1];
            emxEnsureCapacity(sp, (emxArray__common *)j_x, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = x->size[0] * x->size[1];
            for (b_x = 0; b_x < i; b_x++) {
              j_x->data[b_x] = x->data[b_x] - ksi;
            }

            emxInit_real_T(sp, &r12, 2, &bb_emlrtRTEI, true);
            b_abs(sp, j_x, r12);
            b_x = r8->size[0] * r8->size[1];
            r8->size[0] = 1;
            r8->size[1] = r12->size[1];
            emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = r12->size[0] * r12->size[1];
            emxFree_real_T(&j_x);
            for (b_x = 0; b_x < i; b_x++) {
              r8->data[b_x] = r12->data[b_x];
            }

            emxFree_real_T(&r12);
            emxInit_real_T(sp, &z1, 2, &db_emlrtRTEI, true);
            rdivide(sp, r8, 2.0 * muDoubleScalarSqrt(c_x), z1);
            st.site = &ue_emlrtRSI;
            mpower(&st, z0, d_x);
            b_x = d_x->size[0] * d_x->size[1];
            d_x->size[0] = 1;
            emxEnsureCapacity(sp, (emxArray__common *)d_x, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = d_x->size[0];
            b_x = d_x->size[1];
            i *= b_x;
            for (b_x = 0; b_x < i; b_x++) {
              d_x->data[b_x] = -d_x->data[b_x];
            }

            b_x = b->size[0] * b->size[1];
            b->size[0] = 1;
            b->size[1] = d_x->size[1];
            emxEnsureCapacity(sp, (emxArray__common *)b, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = d_x->size[0] * d_x->size[1];
            for (b_x = 0; b_x < i; b_x++) {
              b->data[b_x] = d_x->data[b_x];
            }

            for (i = 0; i < d_x->size[1]; i++) {
              b->data[i] = muDoubleScalarExp(b->data[i]);
            }

            st.site = &ue_emlrtRSI;
            b_mrdivide(&st, b, z0);
            st.site = &ue_emlrtRSI;
            mpower(&st, z1, d_x);
            b_x = d_x->size[0] * d_x->size[1];
            d_x->size[0] = 1;
            emxEnsureCapacity(sp, (emxArray__common *)d_x, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = d_x->size[0];
            b_x = d_x->size[1];
            i *= b_x;
            for (b_x = 0; b_x < i; b_x++) {
              d_x->data[b_x] = -d_x->data[b_x];
            }

            b_x = r8->size[0] * r8->size[1];
            r8->size[0] = 1;
            r8->size[1] = d_x->size[1];
            emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = d_x->size[0] * d_x->size[1];
            for (b_x = 0; b_x < i; b_x++) {
              r8->data[b_x] = d_x->data[b_x];
            }

            for (i = 0; i < d_x->size[1]; i++) {
              r8->data[i] = muDoubleScalarExp(r8->data[i]);
            }

            st.site = &ue_emlrtRSI;
            b_mrdivide(&st, r8, z1);
            for (b_x = 0; b_x < 2; b_x++) {
              b_b[b_x] = b->size[b_x];
            }

            for (b_x = 0; b_x < 2; b_x++) {
              b_z0[b_x] = r8->size[b_x];
            }

            emxInit_real_T(sp, &c_z0, 2, &bb_emlrtRTEI, true);
            emlrtSizeEqCheck2DFastR2012b(b_b, b_z0, &m_emlrtECI, sp);
            b_x = c_z0->size[0] * c_z0->size[1];
            c_z0->size[0] = 1;
            c_z0->size[1] = z0->size[1];
            emxEnsureCapacity(sp, (emxArray__common *)c_z0, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = z0->size[0] * z0->size[1];
            for (b_x = 0; b_x < i; b_x++) {
              c_z0->data[b_x] = z0->data[b_x];
            }

            b_erf(sp, c_z0, z0);
            b_erf(sp, z1, d_x);
            emxFree_real_T(&c_z0);
            emxFree_real_T(&z1);
            for (b_x = 0; b_x < 2; b_x++) {
              b_z0[b_x] = z0->size[b_x];
            }

            for (b_x = 0; b_x < 2; b_x++) {
              f_x[b_x] = d_x->size[b_x];
            }

            emlrtSizeEqCheck2DFastR2012b(b_z0, f_x, &n_emlrtECI, sp);
            b_x = z0->size[0] * z0->size[1];
            z0->size[0] = 1;
            emxEnsureCapacity(sp, (emxArray__common *)z0, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = z0->size[0];
            b_x = z0->size[1];
            i *= b_x;
            for (b_x = 0; b_x < i; b_x++) {
              z0->data[b_x] = 1.7724538509055159 * (z0->data[b_x] - d_x->
                data[b_x]);
            }

            for (b_x = 0; b_x < 2; b_x++) {
              b_b[b_x] = b->size[b_x];
            }

            for (b_x = 0; b_x < 2; b_x++) {
              b_z0[b_x] = z0->size[b_x];
            }

            emxInit_real_T(sp, &k_x, 2, &bb_emlrtRTEI, true);
            emlrtSizeEqCheck2DFastR2012b(b_b, b_z0, &m_emlrtECI, sp);
            b_x = k_x->size[0] * k_x->size[1];
            k_x->size[0] = 1;
            k_x->size[1] = x->size[1];
            emxEnsureCapacity(sp, (emxArray__common *)k_x, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = x->size[0] * x->size[1];
            for (b_x = 0; b_x < i; b_x++) {
              k_x->data[b_x] = x->data[b_x] - ksi;
            }

            b_abs(sp, k_x, d_x);
            rdivide(sp, d_x, 3.5449077018110318, vals);
            st.site = &ue_emlrtRSI;
            b_x = b->size[0] * b->size[1];
            b->size[0] = 1;
            emxEnsureCapacity(&st, (emxArray__common *)b, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            i = b->size[0];
            b_x = b->size[1];
            i *= b_x;
            emxFree_real_T(&k_x);
            for (b_x = 0; b_x < i; b_x++) {
              b->data[b_x] = (b->data[b_x] - r8->data[b_x]) + z0->data[b_x];
            }

            b_st.site = &he_emlrtRSI;
            if (!(vals->size[1] == 1)) {
              if ((vals->size[1] == 1) || (b->size[1] == 1)) {
                c_y = NULL;
                m6 = emlrtCreateCharArray(2, iv18);
                for (i = 0; i < 45; i++) {
                  cv18[i] = cv19[i];
                }

                emlrtInitCharArrayR2013a(&b_st, 45, m6, cv18);
                emlrtAssign(&c_y, m6);
                c_st.site = &fh_emlrtRSI;
                d_st.site = &vg_emlrtRSI;
                b_error(&c_st, message(&d_st, c_y, &j_emlrtMCI), &k_emlrtMCI);
              } else {
                d_y = NULL;
                m6 = emlrtCreateCharArray(2, iv19);
                for (i = 0; i < 21; i++) {
                  cv20[i] = cv21[i];
                }

                emlrtInitCharArrayR2013a(&b_st, 21, m6, cv20);
                emlrtAssign(&d_y, m6);
                c_st.site = &gh_emlrtRSI;
                d_st.site = &wg_emlrtRSI;
                b_error(&c_st, message(&d_st, d_y, &l_emlrtMCI), &m_emlrtMCI);
              }
            }

            c_x = vals->data[0];
            b_x = vals->size[0] * vals->size[1];
            vals->size[0] = 1;
            vals->size[1] = b->size[1];
            emxEnsureCapacity(&st, (emxArray__common *)vals, b_x, (int32_T)
                              sizeof(real_T), &bb_emlrtRTEI);
            i = b->size[1];
            for (b_x = 0; b_x < i; b_x++) {
              vals->data[vals->size[0] * b_x] = c_x * b->data[b->size[0] * b_x];
            }
          } else {
            b_x = vals->size[0] * vals->size[1];
            vals->size[0] = 1;
            vals->size[1] = 1;
            emxEnsureCapacity(sp, (emxArray__common *)vals, b_x, (int32_T)sizeof
                              (real_T), &bb_emlrtRTEI);
            vals->data[0] = 0.0;
          }

          emxFree_boolean_T(&e_t);
        }

        emxFree_boolean_T(&d_t);
      }

      emxFree_boolean_T(&c_t);
      emxFree_real_T(&d_x);
      emxFree_real_T(&z0);
    }

    emxFree_boolean_T(&b_t);
  }

  emxFree_real_T(&r8);
  emxFree_real_T(&b);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
Beispiel #13
0
/* Function Definitions */
real_T Bcoeff(const emlrtStack *sp, real_T ksi, real_T j, real_T x, real_T t,
              const emxArray_real_T *gridT)
{
  real_T vals;
  int32_T k;
  int32_T i1;
  boolean_T b_x[3];
  boolean_T y;
  boolean_T exitg2;
  boolean_T exitg1;
  real_T c_x;
  real_T d_x;
  emlrtStack st;
  emlrtStack b_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;

  /*  evaluate the coefficient B at the  boundary ksi=0 or ksi=1; */
  /*  for the index j which describes the time steps timePoints_j, at time t and space */
  /*  point x */
  /*  timePoints is a vector describing the time descritized domain */
  k = gridT->size[1];
  i1 = (int32_T)emlrtIntegerCheckFastR2012b(j, &b_emlrtDCI, sp);
  if (t <= gridT->data[emlrtDynamicBoundsCheckFastR2012b(i1, 1, k, &n_emlrtBCI,
       sp) - 1]) {
    vals = 0.0;
  } else {
    k = gridT->size[1];
    i1 = (int32_T)j;
    b_x[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i1, 1, k,
               &o_emlrtBCI, sp) - 1]);
    k = gridT->size[1];
    i1 = (int32_T)((uint32_T)j + 1U);
    b_x[1] = (t <= gridT->data[emlrtDynamicBoundsCheckFastR2012b(i1, 1, k,
               &p_emlrtBCI, sp) - 1]);
    b_x[2] = (x == ksi);
    y = true;
    k = 0;
    exitg2 = false;
    while ((!exitg2) && (k < 3)) {
      if (b_x[k] == 0) {
        y = false;
        exitg2 = true;
      } else {
        k++;
      }
    }

    if (y) {
      vals = 0.0;
    } else {
      k = gridT->size[1];
      i1 = (int32_T)j;
      b_x[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i1, 1, k,
                 &q_emlrtBCI, sp) - 1]);
      k = gridT->size[1];
      i1 = (int32_T)((uint32_T)j + 1U);
      b_x[1] = (t <= gridT->data[emlrtDynamicBoundsCheckFastR2012b(i1, 1, k,
                 &r_emlrtBCI, sp) - 1]);
      b_x[2] = (x != ksi);
      y = true;
      k = 0;
      exitg1 = false;
      while ((!exitg1) && (k < 3)) {
        if (b_x[k] == 0) {
          y = false;
          exitg1 = true;
        } else {
          k++;
        }
      }

      if (y) {
        st.site = &g_emlrtRSI;
        k = gridT->size[1];
        i1 = (int32_T)j;
        c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i1, 1, k,
          &v_emlrtBCI, &st) - 1];
        if (c_x < 0.0) {
          b_st.site = &f_emlrtRSI;
          eml_error(&b_st);
        }

        vals = -scalar_erf(muDoubleScalarAbs(x - ksi) / (2.0 *
          muDoubleScalarSqrt(c_x))) / 2.0;
      } else {
        k = gridT->size[1];
        i1 = (int32_T)((uint32_T)j + 1U);
        if (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i1, 1, k,
             &s_emlrtBCI, sp) - 1]) {
          st.site = &h_emlrtRSI;
          k = gridT->size[1];
          i1 = (int32_T)j;
          c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i1, 1, k,
            &t_emlrtBCI, &st) - 1];
          if (c_x < 0.0) {
            b_st.site = &f_emlrtRSI;
            eml_error(&b_st);
          }

          st.site = &i_emlrtRSI;
          k = gridT->size[1];
          i1 = (int32_T)((uint32_T)j + 1U);
          d_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i1, 1, k,
            &u_emlrtBCI, &st) - 1];
          if (d_x < 0.0) {
            b_st.site = &f_emlrtRSI;
            eml_error(&b_st);
          }

          vals = (b_scalar_erf(muDoubleScalarAbs(x - ksi) / (2.0 *
                    muDoubleScalarSqrt(c_x))) - b_scalar_erf(muDoubleScalarAbs(x
                    - ksi) / (2.0 * muDoubleScalarSqrt(d_x)))) / 2.0;
        } else {
          vals = 0.0;
        }
      }
    }
  }

  return vals;
}
Beispiel #14
0
/* Function Definitions */
void clcPMP_olyHyb_tmp(const emlrtStack *sp, real_T engKinPre, real_T engKinAct,
  real_T gea, real_T slp, real_T batEng, real_T psiBatEng, real_T psiTim, real_T
  batPwrAux, real_T batEngStp, real_T wayStp, const struct0_T *par, real_T
  *cosHamMin, real_T *batFrcOut, real_T *fulFrcOut)
{
  real_T mtmp;
  real_T vehVel;
  real_T b_engKinPre[2];
  real_T crsSpdVec[2];
  int32_T i18;
  int32_T k;
  boolean_T y;
  boolean_T exitg3;
  boolean_T exitg2;
  real_T crsSpd;
  real_T whlTrq;
  real_T crsTrq;
  real_T iceTrqMax;
  real_T iceTrqMin;
  real_T b_par[100];
  real_T emoTrqMaxPos;
  real_T emoTrqMinPos;
  real_T emoTrqMax;
  real_T emoTrqMin;
  real_T batPwrMax;
  real_T batPwrMin;
  real_T batOcv;
  real_T batEngDltMin;
  real_T batEngDltMax;
  real_T batEngDltMinInx;
  real_T batEngDltMaxInx;
  real_T batEngDlt;
  real_T fulFrc;
  real_T batFrc;
  real_T b_batFrc;
  real_T batPwr;
  real_T emoTrq;
  real_T iceTrq;
  real_T fulPwr;
  int32_T ixstart;
  int32_T itmp;
  int32_T ix;
  boolean_T exitg1;
  emlrtStack st;
  emlrtStack b_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;

  /* CLCPMP Minimizing Hamiltonian: Co-States for soc and time */
  /*  Erstellungsdatum der ersten Version 19.08.2015 - Stephan Uebel */
  /*  */
  /*  Batterieleistungsgrenzen hinzugefügt am 13.12.2015 */
  /*  ^^added battery power limit */
  /*  */
  /*  Massenaufschlag durch Trägheitsmoment herausgenommen */
  /*  ^^Mass increment removed by inertia */
  /*  */
  /* % Inputdefinition */
  /*  */
  /*  engKinPre     - Double(1,1)  - kinetische Energie am Intervallanfang in J */
  /*                                 ^^ kinetic energy at start of interval (J) */
  /*  engKinAct     - Double(1,1)  - kinetische Energie am Intervallende in J */
  /*                                 ^^ kinetic energe at end of interval (J) */
  /*  gea           - Double(1,1)  - Gang */
  /*                                 ^^ gear */
  /*  slp           - Double(1,1)  - Steigung in rad */
  /*                                 ^^ slope in radians */
  /*  iceFlg        - Boolean(1,1) - Flag für Motorzustand */
  /*                                 ^^ flag for motor condition */
  /*  batEng        - Double(1,1)  - Batterieenergie in J */
  /*                                 ^^ battery energy (J) */
  /*  psibatEng     - Double(1,1)  - Costate für Batterieenergie ohne Einheit */
  /*                                 ^^ costate for battery energy w/o unity */
  /*  psiTim        - Double(1,1)  - Costate für die Zeit ohne Einheit */
  /*                                 ^^ costate for time without unity */
  /*  batPwrAux     - Double(1,1)  - elektr. Nebenverbraucherleistung in W */
  /*                                 ^^ electric auxiliary power consumed (W) */
  /*  batEngStp     - Double(1,1)  - Drehmomentschritt */
  /*                                 ^^ torque step <- no, it's a battery step */
  /*  wayStp        - Double(1,1)  - Intervallschrittweite in m */
  /*                                 ^^ interval step distance (m) */
  /*  par           - Struct(1,1)  - Modelldaten */
  /*                                 ^^ model data */
  /* % Initialisieren der Ausgabe der Funktion */
  /*    initializing function output */
  /*  Ausgabewert des Minimums der Hamiltonfunktion */
  /*    output for minimizing the hamiltonian */
  *cosHamMin = rtInf;

  /*  Batterieladungsänderung im Wegschritt beir minimaler Hamiltonfunktion */
  /*    battery change in path_idx step with the minial hamiltonian */
  *batFrcOut = rtInf;

  /*  Kraftstoffkraftänderung im Wegschritt bei minimaler Hamiltonfunktion */
  /*    fuel change in path_idx step with the minimal hamiltonian */
  *fulFrcOut = 0.0;

  /* % Initialisieren der persistent Größen */
  /*    initialize the persistance variables */
  /*  Diese werden die nur einmal für die Funktion berechnet */
  /*    only calculated once for the function */
  if (!crsSpdHybMax_not_empty) {
    /*  maximale Drehzahl Elektrommotor */
    /*    maximum electric motor rotational speed */
    /*  maximale Drehzahl der Kurbelwelle */
    /*    maximum crankshaft rotational speed */
    crsSpdHybMax = muDoubleScalarMin(par->iceSpdMgd[14850], par->emoSpdMgd[14850]);
    crsSpdHybMax_not_empty = true;

    /*  minimale Drehzahl der Kurbelwelle */
    /*    minimum crankshaft rotational speed */
    crsSpdHybMin = par->iceSpdMgd[0];
  }

  /* % Initialisieren der allgemein benötigten Kenngrößen */
  /*    initializing the commonly required parameters */
  /*  mittlere kinetische Energie im Wegschritt berechnen */
  /*    define the average kinetic energy at path_idx step - is just previous KE */
  /*  mittlere Geschwindigkeit im Wegschritt berechnen */
  /*    define the average speed at path_idx step */
  mtmp = 2.0 * engKinPre / par->vehMas;
  st.site = &g_emlrtRSI;
  if (mtmp < 0.0) {
    b_st.site = &h_emlrtRSI;
    eml_error(&b_st);
  }

  vehVel = muDoubleScalarSqrt(mtmp);

  /* % vorzeitiger Funktionsabbruch? */
  /*    premature function termination? */
  /*  Drehzahl der Kurbelwelle und Grenzen */
  /*    crankshaft speed and limits */
  /*  Aus den kinetischen Energien des Fahrzeugs wird über die Raddrehzahl */
  /*  und die übersetzung vom Getriebe die Kurbelwellendrehzahl berechnet. */
  /*  Zeilenrichtung entspricht den Gängen. (Zeilenvektor) */
  /*    from the vehicle's kinetic energy, the crankshaft speed is calculated */
  /*    by the speed and gearbox translation. Line direction corresponding to */
  /*    the aisles (row rector). EQUATION 1 */
  b_engKinPre[0] = engKinPre;
  b_engKinPre[1] = engKinAct;
  for (i18 = 0; i18 < 2; i18++) {
    crsSpdVec[i18] = 2.0 * b_engKinPre[i18] / par->vehMas;
  }

  st.site = &f_emlrtRSI;
  for (k = 0; k < 2; k++) {
    if (crsSpdVec[k] < 0.0) {
      b_st.site = &h_emlrtRSI;
      eml_error(&b_st);
    }
  }

  for (k = 0; k < 2; k++) {
    crsSpdVec[k] = muDoubleScalarSqrt(crsSpdVec[k]);
  }

  i18 = par->geaRat->size[1];
  k = (int32_T)gea;
  emlrtDynamicBoundsCheckR2012b(k, 1, i18, &mb_emlrtBCI, sp);
  mtmp = par->geaRat->data[(int32_T)gea - 1];
  for (i18 = 0; i18 < 2; i18++) {
    crsSpdVec[i18] = mtmp * crsSpdVec[i18] / par->whlDrr;
  }

  /*  Abbruch, wenn die Drehzahlen der Kurbelwelle zu hoch im hybridischen */
  /*  Modus */
  /*    stop if the crankshaft rotatoinal speed is too high in hybrid mode */
  y = false;
  k = 0;
  exitg3 = false;
  while ((!exitg3) && (k < 2)) {
    if (!!(crsSpdVec[k] > crsSpdHybMax)) {
      y = true;
      exitg3 = true;
    } else {
      k++;
    }
  }

  if (y) {
  } else {
    /*  Falls die Drehzahl des Verbrennungsmotors niedriger als die */
    /*  Leerlaufdrehzahl ist, */
    /*    stop if crankhaft rotional speed is lower than the idling speed */
    y = false;
    k = 0;
    exitg2 = false;
    while ((!exitg2) && (k < 2)) {
      if (!!(crsSpdVec[k] < crsSpdHybMin)) {
        y = true;
        exitg2 = true;
      } else {
        k++;
      }
    }

    if (y) {
    } else {
      /*  Prüfen, ob die Drehzahlgrenze des Elektromotors eingehalten wird */
      /*    check if electric motor speed limit is maintained */
      /*  mittlere Kurbelwellendrehzahlen berechnen */
      /*    calculate average crankshaft rotational speed */
      /*    - really just selecting the previous path_idx KE crankshaft speed */
      crsSpd = crsSpdVec[0];

      /* % Längsdynamik berechnen */
      /*    calculate longitundinal dynamics */
      /*  Es wird eine konstante Beschleunigung angenommen, die im Wegschritt */
      /*  wayStp das Fahrzeug von velPre auf velAct beschleunigt. */
      /*    constant acceleration assumed when transitioning from velPre to velAct */
      /*    for the selected wayStp path_idx step distance */
      /*  Berechnen der konstanten Beschleunigung */
      /*    calculate the constant acceleration */
      /*  Aus der mittleren kinetischen Energie im Intervall, der mittleren */
      /*  Steigung und dem Gang lässt sich über die Fahrwiderstandsgleichung */
      /*  die nötige Fahrwiderstandskraft berechnen, die aufgebracht werden */
      /*  muss, um diese zu realisieren. */
      /*    from the (avg) kinetic energy in the interval, the (avg) slope and */
      /*    transition can calculate the necessary traction force on the driving */
      /*    resistance equation (PART OF EQUATION 5) */
      /*  Steigungskraft aus der mittleren Steigung berechnen (Skalar) */
      /*    gradiant force from the calculated (average) gradient */
      /*  Rollreibungskraft berechnen (Skalar) */
      /*    calculated rolling friction force - not included in EQ 5??? */
      /*  Luftwiderstandskraft berechnen (2*c_a/m * E_kin) (Skalar)  */
      /*    calculated air resistance force  */
      /* % Berechnung der minimalen kosten der Hamiltonfunktion */
      /*    Calculating the minimum cost of the Hamiltonian */
      /* % Berechnen der Kraft am Rad für Antriebsstrangmodus */
      /*    calculate the force on the wheel for the drivetrain mode */
      /*  % dynamische Fahrzeugmasse bei Fahrzeugmotor an berechnen. Das */
      /*  % heißt es werden Trägheitsmoment von Verbrennungsmotor, */
      /*  % Elektromotor und Rädern mit einbezogen. */
      /*    calculate dynamic vehicle mass with the vehicle engine (with the moment */
      /*    of intertia of the ICE, electric motor, and wheels) */
      /*  vehMasDyn = (par.iceMoi_geaRat(gea) +... */
      /*      par.emoGeaMoi_geaRat(gea) + par.whlMoi)/par.whlDrr^2 ... */
      /*      + par.vehMas; */
      /*  Radkraft berechnen (Beschleunigungskraft + Steigungskraft + */
      /*  Rollwiderstandskraft + Luftwiderstandskraft) */
      /*    caluclating wheel forces (accerlation force + gradient force + rolling */
      /*    resistance + air resistance)    EQUATION 5 */
      /* % Getriebeübersetzung und -verlust */
      /*    gear ratio and loss */
      /*  Das Drehmoment des Rades ergibt sich über den Radhalbmesser aus */
      /*  der Fahrwiderstandskraft. */
      /*    the weel torque is obtained from the wheel radius of the rolling */
      /*    resistance force (torque = force * distance (in this case, radius) */
      whlTrq = ((((engKinAct - engKinPre) / (par->vehMas * wayStp) * par->vehMas
                  + par->vehMas * 9.81 * muDoubleScalarSin(slp)) +
                 par->whlRolResCof * par->vehMas * 9.81 * muDoubleScalarCos(slp))
                + 2.0 * par->drgCof / par->vehMas * engKinPre) * par->whlDrr;

      /*  Berechnung des Kurbelwellenmoments */
      /*  Hier muss unterschieden werden, ob das Radmoment positiv oder */
      /*  negativ ist, da nur ein einfacher Wirkungsgrad für das Getriebe */
      /*  genutzt wird */
      /*    it's important to determine sign of crankshaft torque (positive or */
      /*    negative), since only a simple efficiency is used for the transmission */
      /*    PART OF EQ4  <- perhaps reversed? not too sure */
      if (whlTrq < 0.0) {
        i18 = par->geaRat->size[1];
        k = (int32_T)gea;
        emlrtDynamicBoundsCheckR2012b(k, 1, i18, &nb_emlrtBCI, sp);
        crsTrq = whlTrq / par->geaRat->data[(int32_T)gea - 1] * par->geaEfy;
      } else {
        i18 = par->geaRat->size[1];
        k = (int32_T)gea;
        emlrtDynamicBoundsCheckR2012b(k, 1, i18, &ob_emlrtBCI, sp);
        crsTrq = whlTrq / par->geaRat->data[(int32_T)gea - 1] / par->geaEfy;
      }

      /* % Verbrennungsmotor */
      /*    internal combustion engine */
      /*  maximales Moment des Verbrennungsmotors berechnen */
      /*    calculate max torque of the engine (quadratic based on rotation speed) */
      iceTrqMax = (par->iceTrqMaxCof[0] * (crsSpdVec[0] * crsSpdVec[0]) +
                   par->iceTrqMaxCof[1] * crsSpdVec[0]) + par->iceTrqMaxCof[2];

      /*  minimales Moment des Verbrennungsmotors berechnen */
      /*    calculating mimimum ICE moment */
      iceTrqMin = (par->iceTrqMinCof[0] * (crsSpdVec[0] * crsSpdVec[0]) +
                   par->iceTrqMinCof[1] * crsSpdVec[0]) + par->iceTrqMinCof[2];

      /* % Elektromotor */
      /*    electric motor */
      /*  maximales Moment, dass die E-Maschine liefern kann */
      /*    max torque that the electric motor can provide - from interpolation */
      /*  emoTrqMaxPos = ... */
      /*      lininterp1(par.emoSpdMgd(1,:)',par.emoTrqMax_emoSpd,crsSpd); */
      for (i18 = 0; i18 < 100; i18++) {
        b_par[i18] = par->emoSpdMgd[150 * i18];
      }

      emoTrqMaxPos = interp1q(b_par, par->emoTrqMax_emoSpd, crsSpdVec[0]);

      /*  Die gültigen Kurbelwellenmomente müssen kleiner sein als das */
      /*  Gesamtmoment von E-Motor und Verbrennungsmotor */
      /*    The valid crankshaft moments must be less than the total moment of the */
      /*    electric motor and the ICE.Otherwise, leave the function */
      if (crsTrq > iceTrqMax + emoTrqMaxPos) {
      } else {
        /* % %% Optimaler Momentensplit - Minimierung der Hamiltonfunktion */
        /*        optimum torque split - minimizing the Hamiltonian */
        /*  Die Vorgehensweise ist ähnlich wie bei der ECMS. Es wird ein Vektor der */
        /*  möglichen Batterieenergieänderungen aufgestellt. Aus diesen lässt sich  */
        /*  eine Batterieklemmleistung berechnen. Aus der über das */
        /*  Kurbelwellenmoment, ein Elektromotormoment berechnet werden kann. */
        /*  Über das geforderte Kurbelwellenmoment, kann für jedes Moment des  */
        /*  Elektromotors ein Moment des Verbrennungsmotors gefunden werden. Für  */
        /*  jedes Momentenpaar kann die Hamiltonfunktion berechnet werden. */
        /*  Ausgegeben wird der minimale Wert der Hamiltonfunktion und die */
        /*  durch das dabei verwendete Elektromotormoment verursachte */
        /*  Batterieladungsänderung. */
        /*    The procedure is similar to ECMS. It's based on a vector of possible */
        /*    battery energy changes, from which a battery terminal power can be */
        /*    calculated. */
        /*    From the crankshaft torque, an electric motor torque can be */
        /*    calculated, and an engine torque can be found for every electric motor */
        /*    moment.  */
        /*    For every moment-pair the Hamiltonian can be calculated. It */
        /*    outputs the minimum Hamilotnian value and the battery charge change */
        /*    caused by the electric motor torque used. */
        /* % Elektromotor - Aufstellen des Batterienergievektors */
        /*    electric motor - positioning the battery energy vectors */
        if (batEngStp > 0.0) {
          /* Skalar - änderung der minimalen Batterieenergieänderung */
          /*  Skalar - änderung der maximalen Batterieenergieänderung */
          /*  FUNCTION CALL */
          /*       Skalar - Wegschrittweite */
          /*       Skalar - mittlere Geschwindigkeit im Intervall */
          /*    Skalar - Nebenverbraucherlast */
          /*       Skalar - Batterieenergie */
          /*          struct - Fahrzeugparameter */
          /*       Skalar - crankshaft rotational speed */
          /*       Skalar - crankshaft torque */
          /*    Skalar - min ICE torque allowed */
          /*    Skalar - max ICE torque allowed */
          /*  Skalar - max EM torque possible */
          st.site = &e_emlrtRSI;

          /* Skalar - änderung der minimalen Batterieenergieänderung */
          /*  Skalar - änderung der maximalen Batterieenergieänderung */
          /*       Skalar - Wegschrittweite */
          /*          Skalar - Geschwindigkeit im Intervall */
          /*    Skalar - Nebenverbraucherlast */
          /*    Skalar - Batterieenergie */
          /*          struct - Fahrzeugparameter */
          /*       Skalar - crankshaft rotational speed */
          /*       Skalar - crankshaft torque */
          /*    Skalar - min ICE torque allowed */
          /*    Skalar - max ICE torque */
          /*  Skalar - max EM torque possible */
          /* BatEngDltClc Calculates the change in battery energy */
          /*  */
          /*  Erstellungsdatum der ersten Version 17.11.2015 - Stephan Uebel */
          /*    Berechnung der Verluste des Elektromotors bei voller rein elektrischer */
          /*    Fahrt (voller Lastpunktabsenkung) und bei voller Lastpunktanhebung */
          /*        Calculations of loss of electric motor at purely full electric */
          /*        Driving (full load point lowering) and at full load point raising */
          /*  */
          /*  Version vom 17.02.2016: Keine Einbeziehung von Rotationsmassen */
          /*                          ^^ No inclusion of rotational masses */
          /*  */
          /*  Version vom 25.05.2016: Zero-Order-Hold (keine mittlere Geschwindigkeit) */
          /*                          ^^ Zero-Order-Hold (no average velocities) */
          /* % Initialisieren der Ausgabe der Funktion */
          /*    initializing the function output (delta battery_energy min and max) */
          /* % Elektromotor */
          /*  minimales Moment, dass die E-Maschine liefern kann */
          /*    minimum moment that the EM can provide (max is an input to function) */
          /*  emoTrqMinPos = ... */
          /*      lininterp1(par.emoSpdMgd(1,:)',par.emoTrqMin_emoSpd,crsSpd); */
          for (i18 = 0; i18 < 100; i18++) {
            b_par[i18] = par->emoSpdMgd[150 * i18];
          }

          emoTrqMinPos = interp1q(b_par, par->emoTrqMin_emoSpd, crsSpdVec[0]);

          /* % Verbrennungsmotor berechnen */
          /*  Durch EM zu lieferndes Kurbelwellenmoment */
          /*    crankshaft torque to be delivered by the electric motor (min and max) */
          emoTrqMax = crsTrq - iceTrqMin;
          emoTrqMin = crsTrq - iceTrqMax;

          /* % Elektromotor berechnen */
          /*    calculate the electric motor */
          if (emoTrqMaxPos < emoTrqMax) {
            /*  Moment des Elektromotors bei maximaler Entladung der Batterie */
            /*    EM torque at max battery discharge */
            emoTrqMax = emoTrqMaxPos;
          }

          if (emoTrqMaxPos < emoTrqMin) {
            /*  Moment des Elektromotors bei minimaler Entladung der Batterie */
            /*    EM torque at min battery discharge */
            emoTrqMin = emoTrqMaxPos;
          }

          emoTrqMax = muDoubleScalarMax(emoTrqMinPos, emoTrqMax);
          emoTrqMin = muDoubleScalarMax(emoTrqMinPos, emoTrqMin);

          /* % Berechnung der änderung der Batterieladung */
          /*    calculating the change in battery charge */
          /*  Interpolation der benötigten Batterieklemmleistung für das */
          /*  EM-Moment. Stellen die nicht definiert sind, werden mit inf */
          /*  ausgegeben. Positive Werte entsprechen entladen der Batterie. */
          /*    interpolating the required battery terminal power for the EM torque. */
          /*    Assign undefined values to inf. Positive values coresspond with battery */
          /*    discharge. */
          /*  batPwrMax = lininterp2(par.emoSpdMgd(1,:),par.emoTrqMgd(:,1),... */
          /*      par.emoPwr_emoSpd_emoTrq',crsSpd,emoTrqMax) + batPwrAux; */
          /*   */
          /*  batPwrMin = lininterp2(par.emoSpdMgd(1,:),par.emoTrqMgd(:,1),... */
          /*      par.emoPwr_emoSpd_emoTrq',crsSpd,emoTrqMin) + batPwrAux; */
          b_st.site = &i_emlrtRSI;
          batPwrMax = codegen_interp2(&b_st, par->emoSpdMgd, par->emoTrqMgd,
            par->emoPwr_emoSpd_emoTrq, crsSpdVec[0], emoTrqMax) + batPwrAux;
          b_st.site = &j_emlrtRSI;
          batPwrMin = codegen_interp2(&b_st, par->emoSpdMgd, par->emoTrqMgd,
            par->emoPwr_emoSpd_emoTrq, crsSpdVec[0], emoTrqMin) + batPwrAux;

          /*  überprüfen, ob Batterieleistung möglich */
          /*    make sure that current battery max power is not above bat max bounds */
          if (batPwrMax > par->batPwrMax) {
            batPwrMax = par->batPwrMax;
          }

          /*  überprüfen, ob Batterieleistung möglich */
          /*    make sure that current battery min power is not below bat min bounds */
          if (batPwrMin > par->batPwrMax) {
            batPwrMin = par->batPwrMax;
          }

          /*  Es kann vorkommen, dass mehr Leistung gespeist werden soll, als */
          /*  möglich ist. */
          /*    double check that the max and min still remain within the other bounds */
          if (batPwrMax < par->batPwrMin) {
            batPwrMax = par->batPwrMin;
          }

          if (batPwrMin < par->batPwrMin) {
            batPwrMin = par->batPwrMin;
          }

          /*  Batteriespannung aus Kennkurve berechnen */
          /*    calculating battery voltage of characteristic curve - eq?-------------- */
          batOcv = batEng * par->batOcvCof_batEng[0] + par->batOcvCof_batEng[1];

          /*  FUNCTION CALL - min delta bat.energy */
          /*            Skalar - Batterieklemmleistung */
          /*                  Skalar - mittlere Geschwindigkeit im Intervall */
          /*        Skalar - Entladewiderstand */
          /*        Skalar - Ladewiderstand */
          /*                Skalar - battery open-circuit voltage */
          batEngDltMin = batFrcClc_tmp(batPwrMax, vehVel, par->batRstDch,
            par->batRstChr, batOcv) * wayStp;

          /*  <-multiply by delta_S */
          /*  FUNCTION CALL - max delta bat.energy */
          /*            Skalar - Batterieklemmleistung */
          /*                  Skalar - mittlere Geschwindigkeit im Intervall */
          /*        Skalar - Entladewiderstand */
          /*        Skalar - Ladewiderstand */
          /*                Skalar - battery open-circuit voltage */
          batEngDltMax = batFrcClc_tmp(batPwrMin, vehVel, par->batRstDch,
            par->batRstChr, batOcv) * wayStp;

          /*  Es werden 2 Fälle unterschieden: */
          /*    there are 2 different cases */
          if ((batEngDltMin > 0.0) && (batEngDltMax > 0.0)) {
            /*         %% konventionelles Bremsen + Rekuperieren */
            /*    conventional brakes + recuperation */
            /*  */
            /*  set change in energy to discretized integer values w/ ceil and */
            /*  floor. This also helps for easy looping */
            /*  Konventionelles Bremsen wird ebenfalls untersucht. */
            /*  Hier liegt eventuell noch Beschleunigungspotential, da diese */
            /*  Zustandswechsel u.U. ausgeschlossen werden können. */
            /*  NOTE: u.U. = unter Ümständen = circumstances permitting */
            /*    convetional breaks also investigated. An accelerating potential */
            /*    is still possible, as these states can be excluded */
            /*    (circumstances permitting)  <- ??? not sure what above means */
            /*  */
            /*    so if both min and max changes in battery energy are */
            /*    increasing, then set the delta min to zero */
            batEngDltMinInx = 0.0;
            batEngDltMaxInx = muDoubleScalarFloor(batEngDltMax / batEngStp);
          } else {
            batEngDltMinInx = muDoubleScalarCeil(batEngDltMin / batEngStp);
            batEngDltMaxInx = muDoubleScalarFloor(batEngDltMax / batEngStp);
          }
        } else {
          batEngDltMinInx = 0.0;
          batEngDltMaxInx = 0.0;
        }

        /*  you got a larger min chnage and a max change, you're out of bounds. Leave */
        /*  the function */
        if (batEngDltMaxInx < batEngDltMinInx) {
        } else {
          /* % Schleife über alle Elektromotormomente */
          /*    now loop through all the electric-motor torques */
          i18 = (int32_T)(batEngDltMaxInx + (1.0 - batEngDltMinInx));
          emlrtForLoopVectorCheckR2012b(batEngDltMinInx, 1.0, batEngDltMaxInx,
            mxDOUBLE_CLASS, i18, &o_emlrtRTEI, sp);
          k = 0;
          while (k <= i18 - 1) {
            batEngDlt = (batEngDltMinInx + (real_T)k) * batEngStp;

            /*  open circuit voltage over each iteration */
            batOcv = (batEng + batEngDlt) * par->batOcvCof_batEng[0] +
              par->batOcvCof_batEng[1];

            /*           Skalar für die Batterieleistung in W */
            /*           Skalar Krafstoffkraft in N */
            /*             FUNCTION CALL */
            /*          Skalar für die Wegschrittweite in m, */
            /*           Skalar - vehicular velocity */
            /*        Nebenverbraucherlast */
            /*           Skalar - battery open circuit voltage */
            /*       Skalar - Batterieenergie�nderung, */
            /*           Skalar - crankshaft speed at given path_idx */
            /*           Skalar - crankshaft torque at given path_idx */
            /*        Skalar - min ICE torque allowed */
            /*        Skalar - max ICE torque */
            /*               struct der Fahrzeugparameter */
            st.site = &d_emlrtRSI;

            /*   Skalar für die Batterieleistung */
            /*       Skalar Kraftstoffkraft */
            /*      Skalar für die Wegschrittweite in m */
            /*          vehicular velocity */
            /*    Nebenverbraucherlast */
            /*       Skalar - battery open circuit voltage */
            /*   Skalar - Batterieenergieänderung */
            /*       Skalar - crankshaft speed at given path_idx */
            /*       Skalar - crankshaft torque at given path_idx */
            /*    Skalar - min ICE torque allowed */
            /*    Skalar - max ICE torque */
            /*           struct der Fahrzeugparameter */
            /*  */
            /* FULENGCLC Calculating fuel consumption */
            /*  Erstellungsdatum der ersten Version 04.09.2015 - Stephan Uebel */
            /*  */
            /*  Diese Funktion berechnet den Kraftstoffverbrauch für einen gegebenen */
            /*  Wegschritt der kinetischen Energie, der Batterieenergie und des */
            /*  Antriebsstrangzustands über dem Weg. */
            /*    this function calculates fuel consumption for a given route step of */
            /*    KE, the battery energy, and drivetrain state of the current path_idx */
            /*  */
            /*  Version vom 17.02.2016 : Rotationsmassen vernachlässigt */
            /*                            ^^ neglected rotatary masses */
            /*  */
            /*  Version vom 25.05.2016: Zero-Order-Hold (keine mittlere Geschwindigkeit) */
            /*  */
            /*  version from 1.06.2016 - removed crsTrq calulations - they are already */
            /*  done in parent function (clcPMP_olHyb_tmp) and do not change w/ each */
            /*  iteration, making the caluclation here unnecessary */
            /* % Initialisieren der Ausgabe der Funktion */
            /*    initializing function output */
            /*    Skalar - electric battery power (W) */
            fulFrc = rtInf;

            /*    Skalar - fuel force intialization (N) */
            /* % Batterie */
            /*  Batterieenergieänderung über dem Weg (Batteriekraft) */
            /*    Change in battery energy over the path_idx way (ie battery power) */
            batFrc = batEngDlt / wayStp;

            /*  Fallunterscheidung, ob Batterie geladen oder entladen wird */
            /*    Case analysis - check if battery is charging or discharging. Set */
            /*    resistance accordingly */
            /*  elektrische Leistung des Elektromotors */
            /*    electric power from electric motor - DERIVATION? dunno */
            /*  innere Batterieleistung / internal batt power */
            /* dissipat. Leist. / dissipated */
            if (batFrc < 0.0) {
              b_batFrc = par->batRstDch;
            } else {
              b_batFrc = par->batRstChr;
            }

            batPwr = (-batFrc * vehVel - batFrc * batFrc * (vehVel * vehVel) /
                      (batOcv * batOcv) * b_batFrc) - batPwrAux;

            /*           Nebenverbrauchlast / auxiliary power */
            /* % Elektromotor */
            /*  Ermitteln des Kurbelwellenmoments durch EM aus Batterieleistung */
            /*    determine crankshaft torque cauesd by EM's battery power */
            /*        switching out codegen_interp2 for lininterp2-just might work! */
            /*  */
            b_st.site = &k_emlrtRSI;
            emoTrq = codegen_interp2(&b_st, par->emoSpdMgd, par->emoPwrMgd,
              par->emoTrq_emoSpd_emoPwr, crsSpd, batPwr);

            /*  emoTrq = lininterp2(par.emoSpdMgd(1,:), par.emoPwrMgd(:,1),... */
            /*      par.emoTrq_emoSpd_emoPwr',crsSpd,emoPwrEle); */
            if (muDoubleScalarIsInf(emoTrq)) {
            } else {
              /*  Grenzen des Elektromotors müssen hier nicht überprüft werden, da die */
              /*  Ladungsdeltas schon so gewählt wurden, dass das maximale Motormoment */
              /*  nicht überstiegen wird. */
              /*    Electric motor limits need not be checked here, since the charge deltas */
              /*    have been chosen so that the max torque is not exceeded. */
              /* % Verbrennungsmotor */
              /*  Ermitteln des Kurbelwellenmoments durch den Verbrennungsmotor */
              /*    Determining the crankshaft moment from the ICE */
              iceTrq = crsTrq - emoTrq;

              /*  Wenn das Verbrennungsmotormoment kleiner als das minimale */
              /*  Moment ist, ist dieser in der Schubabschaltung. Das */
              /*  verbleibende Moment liefern die Bremsen */
              /*    If engine torque is less than the min torque, fuel is cut. The */
              /*    remaining torque is deliver the brakes. */
              if (iceTrq < iceTrqMin) {
                fulPwr = 0.0;
              } else if (iceTrq > iceTrqMax) {
                fulPwr = rtInf;
              } else {
                /*  replacing another coden_interp2 */
                b_st.site = &l_emlrtRSI;
                fulPwr = codegen_interp2(&b_st, par->iceSpdMgd, par->iceTrqMgd,
                  par->iceFulPwr_iceSpd_iceTrq, crsSpd, iceTrq);

                /*      fulPwr = lininterp2(par.iceSpdMgd(1,:), par.iceTrqMgd(:,1), ... */
                /*          par.iceFulPwr_iceSpd_iceTrq', crsSpd, iceTrq); */
              }

              /*  Berechnen der Kraftstoffkraft */
              /*    calculate fuel force */
              fulFrc = fulPwr / vehVel;

              /*  Berechnen der Kraftstoffvolumenänderung */
              /*  caluclate change in fuel volume - energy, no? */
              /* % Ende der Funktion */
            }

            /*       FUNCTION CALL */
            /*           Skalar - Batterieklemmleistung */
            /*           Skalar - mittlere Geschwindigkeit im Intervall */
            /*    Skalar - Entladewiderstand */
            /*    Skalar - Ladewiderstand */
            /*            Skalar - battery open circuit voltage */
            batFrc = batFrcClc_tmp(batPwr, vehVel, par->batRstDch,
              par->batRstChr, batOcv);

            /*     %% Hamiltonfunktion bestimmen */
            /*    determine the hamiltonian */
            /*  Eq (29b) */
            crsSpdVec[0] = (fulFrc + psiBatEng * batFrc) + psiTim / vehVel;
            ixstart = 1;
            mtmp = crsSpdVec[0];
            itmp = 1;
            if (muDoubleScalarIsNaN(crsSpdVec[0])) {
              ix = 2;
              exitg1 = false;
              while ((!exitg1) && (ix < 3)) {
                ixstart = 2;
                if (!muDoubleScalarIsNaN(*cosHamMin)) {
                  mtmp = *cosHamMin;
                  itmp = 2;
                  exitg1 = true;
                } else {
                  ix = 3;
                }
              }
            }

            if ((ixstart < 2) && (*cosHamMin < mtmp)) {
              mtmp = *cosHamMin;
              itmp = 2;
            }

            *cosHamMin = mtmp;

            /*  Wenn der aktuelle Punkt besser ist, als der in cosHamMin */
            /*  gespeicherte Wert, werden die Ausgabegrößen neu beschrieben. */
            /*    if the current point is better than the stored cosHamMin value, */
            /*    then the output values are rewritten (selected prev. value is = 2) */
            if (itmp == 1) {
              *batFrcOut = batFrc;
              *fulFrcOut = fulFrc;
            }

            k++;
            if (*emlrtBreakCheckR2012bFlagVar != 0) {
              emlrtBreakCheckR2012b(sp);
            }
          }
        }
      }
    }
  }

  /*  end of function */
}
/* Function Definitions */
void b_sqrt(real_T *x)
{
  *x = muDoubleScalarSqrt(*x);
}
Beispiel #16
0
static void c_eml_qrsolve(const emlrtStack *sp, const emxArray_real_T *A,
  emxArray_real_T *B, emxArray_real_T *Y)
{
  emxArray_real_T *b_A;
  emxArray_real_T *work;
  int32_T mn;
  int32_T i51;
  int32_T ix;
  emxArray_real_T *tau;
  emxArray_int32_T *jpvt;
  int32_T m;
  int32_T n;
  int32_T b_mn;
  emxArray_real_T *vn1;
  emxArray_real_T *vn2;
  int32_T k;
  boolean_T overflow;
  boolean_T b12;
  int32_T i;
  int32_T i_i;
  int32_T nmi;
  int32_T mmi;
  int32_T pvt;
  int32_T iy;
  boolean_T b13;
  real_T xnorm;
  int32_T i52;
  real_T atmp;
  real_T d16;
  boolean_T b14;
  boolean_T b_i;
  ptrdiff_t n_t;
  ptrdiff_t incx_t;
  double * xix0_t;
  boolean_T exitg1;
  const mxArray *y;
  static const int32_T iv78[2] = { 1, 8 };

  const mxArray *m14;
  char_T cv76[8];
  static const char_T cv77[8] = { '%', '%', '%', 'd', '.', '%', 'd', 'e' };

  char_T cv78[14];
  uint32_T unnamed_idx_0;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  emlrtStack e_st;
  emlrtStack f_st;
  emlrtStack g_st;
  emlrtStack h_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  e_st.prev = &d_st;
  e_st.tls = d_st.tls;
  f_st.prev = &e_st;
  f_st.tls = e_st.tls;
  g_st.prev = &f_st;
  g_st.tls = f_st.tls;
  h_st.prev = &g_st;
  h_st.tls = g_st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);
  emxInit_real_T(sp, &b_A, 2, &m_emlrtRTEI, true);
  b_emxInit_real_T(sp, &work, 1, &rb_emlrtRTEI, true);
  mn = (int32_T)muDoubleScalarMin(A->size[0], A->size[1]);
  st.site = &mc_emlrtRSI;
  b_st.site = &nc_emlrtRSI;
  c_st.site = &oc_emlrtRSI;
  i51 = b_A->size[0] * b_A->size[1];
  b_A->size[0] = A->size[0];
  b_A->size[1] = A->size[1];
  emxEnsureCapacity(&c_st, (emxArray__common *)b_A, i51, (int32_T)sizeof(real_T),
                    &m_emlrtRTEI);
  ix = A->size[0] * A->size[1];
  for (i51 = 0; i51 < ix; i51++) {
    b_A->data[i51] = A->data[i51];
  }

  b_emxInit_real_T(&c_st, &tau, 1, &m_emlrtRTEI, true);
  b_emxInit_int32_T(&c_st, &jpvt, 2, &m_emlrtRTEI, true);
  m = b_A->size[0];
  n = b_A->size[1];
  b_mn = muIntScalarMin_sint32(b_A->size[0], b_A->size[1]);
  i51 = tau->size[0];
  tau->size[0] = b_mn;
  emxEnsureCapacity(&c_st, (emxArray__common *)tau, i51, (int32_T)sizeof(real_T),
                    &n_emlrtRTEI);
  d_st.site = &mf_emlrtRSI;
  e_st.site = &rb_emlrtRSI;
  f_st.site = &sb_emlrtRSI;
  g_st.site = &tb_emlrtRSI;
  eml_signed_integer_colon(&g_st, b_A->size[1], jpvt);
  if ((b_A->size[0] == 0) || (b_A->size[1] == 0)) {
  } else {
    ix = b_A->size[1];
    i51 = work->size[0];
    work->size[0] = ix;
    emxEnsureCapacity(&c_st, (emxArray__common *)work, i51, (int32_T)sizeof
                      (real_T), &m_emlrtRTEI);
    for (i51 = 0; i51 < ix; i51++) {
      work->data[i51] = 0.0;
    }

    b_emxInit_real_T(&c_st, &vn1, 1, &pb_emlrtRTEI, true);
    b_emxInit_real_T(&c_st, &vn2, 1, &qb_emlrtRTEI, true);
    d_st.site = &tc_emlrtRSI;
    ix = b_A->size[1];
    i51 = vn1->size[0];
    vn1->size[0] = ix;
    emxEnsureCapacity(&c_st, (emxArray__common *)vn1, i51, (int32_T)sizeof
                      (real_T), &pb_emlrtRTEI);
    i51 = vn2->size[0];
    vn2->size[0] = ix;
    emxEnsureCapacity(&c_st, (emxArray__common *)vn2, i51, (int32_T)sizeof
                      (real_T), &qb_emlrtRTEI);
    k = 1;
    d_st.site = &nf_emlrtRSI;
    overflow = (b_A->size[1] > 2147483646);
    if (overflow) {
      e_st.site = &db_emlrtRSI;
      check_forloop_overflow_error(&e_st);
    }

    for (ix = 0; ix + 1 <= b_A->size[1]; ix++) {
      d_st.site = &sc_emlrtRSI;
      vn1->data[ix] = b_eml_xnrm2(&d_st, b_A->size[0], b_A, k);
      vn2->data[ix] = vn1->data[ix];
      k += b_A->size[0];
    }

    d_st.site = &rc_emlrtRSI;
    if (1 > b_mn) {
      b12 = false;
    } else {
      b12 = (b_mn > 2147483646);
    }

    if (b12) {
      e_st.site = &db_emlrtRSI;
      check_forloop_overflow_error(&e_st);
    }

    for (i = 1; i <= b_mn; i++) {
      i_i = (i + (i - 1) * m) - 1;
      nmi = n - i;
      mmi = m - i;
      d_st.site = &of_emlrtRSI;
      ix = eml_ixamax(&d_st, 1 + nmi, vn1, i);
      pvt = (i + ix) - 2;
      if (pvt + 1 != i) {
        d_st.site = &pf_emlrtRSI;
        e_st.site = &bc_emlrtRSI;
        f_st.site = &cc_emlrtRSI;
        ix = 1 + m * pvt;
        iy = 1 + m * (i - 1);
        g_st.site = &dc_emlrtRSI;
        if (1 > m) {
          b13 = false;
        } else {
          b13 = (m > 2147483646);
        }

        if (b13) {
          h_st.site = &db_emlrtRSI;
          check_forloop_overflow_error(&h_st);
        }

        for (k = 1; k <= m; k++) {
          i51 = b_A->size[0] * b_A->size[1];
          xnorm = b_A->data[emlrtDynamicBoundsCheckFastR2012b(ix, 1, i51,
            &le_emlrtBCI, &f_st) - 1];
          i51 = b_A->size[0] * b_A->size[1];
          i52 = b_A->size[0] * b_A->size[1];
          b_A->data[emlrtDynamicBoundsCheckFastR2012b(ix, 1, i51, &le_emlrtBCI,
            &f_st) - 1] = b_A->data[emlrtDynamicBoundsCheckFastR2012b(iy, 1, i52,
            &le_emlrtBCI, &f_st) - 1];
          i51 = b_A->size[0] * b_A->size[1];
          b_A->data[emlrtDynamicBoundsCheckFastR2012b(iy, 1, i51, &le_emlrtBCI,
            &f_st) - 1] = xnorm;
          ix++;
          iy++;
        }

        ix = jpvt->data[pvt];
        jpvt->data[pvt] = jpvt->data[i - 1];
        jpvt->data[i - 1] = ix;
        vn1->data[pvt] = vn1->data[i - 1];
        vn2->data[pvt] = vn2->data[i - 1];
      }

      if (i < m) {
        d_st.site = &qc_emlrtRSI;
        atmp = b_A->data[i_i];
        d16 = 0.0;
        if (1 + mmi <= 0) {
        } else {
          e_st.site = &wc_emlrtRSI;
          xnorm = b_eml_xnrm2(&e_st, mmi, b_A, i_i + 2);
          if (xnorm != 0.0) {
            xnorm = muDoubleScalarHypot(b_A->data[i_i], xnorm);
            if (b_A->data[i_i] >= 0.0) {
              xnorm = -xnorm;
            }

            if (muDoubleScalarAbs(xnorm) < 1.0020841800044864E-292) {
              ix = 0;
              do {
                ix++;
                e_st.site = &xc_emlrtRSI;
                b_eml_xscal(&e_st, mmi, 9.9792015476736E+291, b_A, i_i + 2);
                xnorm *= 9.9792015476736E+291;
                atmp *= 9.9792015476736E+291;
              } while (!(muDoubleScalarAbs(xnorm) >= 1.0020841800044864E-292));

              e_st.site = &yc_emlrtRSI;
              xnorm = b_eml_xnrm2(&e_st, mmi, b_A, i_i + 2);
              xnorm = muDoubleScalarHypot(atmp, xnorm);
              if (atmp >= 0.0) {
                xnorm = -xnorm;
              }

              d16 = (xnorm - atmp) / xnorm;
              e_st.site = &ad_emlrtRSI;
              b_eml_xscal(&e_st, mmi, 1.0 / (atmp - xnorm), b_A, i_i + 2);
              e_st.site = &bd_emlrtRSI;
              if (1 > ix) {
                b14 = false;
              } else {
                b14 = (ix > 2147483646);
              }

              if (b14) {
                f_st.site = &db_emlrtRSI;
                check_forloop_overflow_error(&f_st);
              }

              for (k = 1; k <= ix; k++) {
                xnorm *= 1.0020841800044864E-292;
              }

              atmp = xnorm;
            } else {
              d16 = (xnorm - b_A->data[i_i]) / xnorm;
              atmp = 1.0 / (b_A->data[i_i] - xnorm);
              e_st.site = &cd_emlrtRSI;
              b_eml_xscal(&e_st, mmi, atmp, b_A, i_i + 2);
              atmp = xnorm;
            }
          }
        }

        tau->data[i - 1] = d16;
      } else {
        atmp = b_A->data[i_i];
        d_st.site = &pc_emlrtRSI;
        tau->data[i - 1] = eml_matlab_zlarfg();
      }

      b_A->data[i_i] = atmp;
      if (i < n) {
        atmp = b_A->data[i_i];
        b_A->data[i_i] = 1.0;
        d_st.site = &qf_emlrtRSI;
        eml_matlab_zlarf(&d_st, mmi + 1, nmi, i_i + 1, tau->data[i - 1], b_A, i
                         + i * m, m, work);
        b_A->data[i_i] = atmp;
      }

      d_st.site = &rf_emlrtRSI;
      if (i + 1 > n) {
        b_i = false;
      } else {
        b_i = (n > 2147483646);
      }

      if (b_i) {
        e_st.site = &db_emlrtRSI;
        check_forloop_overflow_error(&e_st);
      }

      for (ix = i; ix + 1 <= n; ix++) {
        if (vn1->data[ix] != 0.0) {
          xnorm = muDoubleScalarAbs(b_A->data[(i + b_A->size[0] * ix) - 1]) /
            vn1->data[ix];
          xnorm = 1.0 - xnorm * xnorm;
          if (xnorm < 0.0) {
            xnorm = 0.0;
          }

          atmp = vn1->data[ix] / vn2->data[ix];
          atmp = xnorm * (atmp * atmp);
          if (atmp <= 1.4901161193847656E-8) {
            if (i < m) {
              d_st.site = &sf_emlrtRSI;
              e_st.site = &uc_emlrtRSI;
              if (mmi < 1) {
                xnorm = 0.0;
              } else {
                f_st.site = &vc_emlrtRSI;
                g_st.site = &vc_emlrtRSI;
                n_t = (ptrdiff_t)(mmi);
                g_st.site = &vc_emlrtRSI;
                incx_t = (ptrdiff_t)(1);
                i51 = b_A->size[0] * b_A->size[1];
                i52 = (i + m * ix) + 1;
                xix0_t = (double *)(&b_A->data[emlrtDynamicBoundsCheckFastR2012b
                                    (i52, 1, i51, &vb_emlrtBCI, &f_st) - 1]);
                xnorm = dnrm2(&n_t, xix0_t, &incx_t);
              }

              vn1->data[ix] = xnorm;
              vn2->data[ix] = vn1->data[ix];
            } else {
              vn1->data[ix] = 0.0;
              vn2->data[ix] = 0.0;
            }
          } else {
            d_st.site = &tf_emlrtRSI;
            vn1->data[ix] *= muDoubleScalarSqrt(xnorm);
          }
        }
      }
    }

    emxFree_real_T(&vn2);
    emxFree_real_T(&vn1);
  }

  atmp = 0.0;
  if (mn > 0) {
    xnorm = muDoubleScalarMax(A->size[0], A->size[1]) * muDoubleScalarAbs
      (b_A->data[0]) * 2.2204460492503131E-16;
    k = 0;
    exitg1 = false;
    while ((!exitg1) && (k <= mn - 1)) {
      if (muDoubleScalarAbs(b_A->data[k + b_A->size[0] * k]) <= xnorm) {
        st.site = &lc_emlrtRSI;
        y = NULL;
        m14 = emlrtCreateCharArray(2, iv78);
        for (i = 0; i < 8; i++) {
          cv76[i] = cv77[i];
        }

        emlrtInitCharArrayR2013a(&st, 8, m14, cv76);
        emlrtAssign(&y, m14);
        b_st.site = &tg_emlrtRSI;
        emlrt_marshallIn(&b_st, c_sprintf(&b_st, b_sprintf(&b_st, y,
          emlrt_marshallOut(14.0), emlrt_marshallOut(6.0), &o_emlrtMCI),
          emlrt_marshallOut(xnorm), &p_emlrtMCI), "sprintf", cv78);
        st.site = &kc_emlrtRSI;
        b_eml_warning(&st, atmp, cv78);
        exitg1 = true;
      } else {
        atmp++;
        k++;
      }
    }
  }

  unnamed_idx_0 = (uint32_T)A->size[1];
  i51 = Y->size[0];
  Y->size[0] = (int32_T)unnamed_idx_0;
  emxEnsureCapacity(sp, (emxArray__common *)Y, i51, (int32_T)sizeof(real_T),
                    &m_emlrtRTEI);
  ix = (int32_T)unnamed_idx_0;
  for (i51 = 0; i51 < ix; i51++) {
    Y->data[i51] = 0.0;
  }

  for (ix = 0; ix < mn; ix++) {
    if (tau->data[ix] != 0.0) {
      xnorm = B->data[ix];
      i51 = A->size[0] + (int32_T)(1.0 - ((1.0 + (real_T)ix) + 1.0));
      emlrtForLoopVectorCheckR2012b((1.0 + (real_T)ix) + 1.0, 1.0, A->size[0],
        mxDOUBLE_CLASS, i51, &ac_emlrtRTEI, sp);
      for (i = 0; i < i51; i++) {
        unnamed_idx_0 = ((uint32_T)ix + i) + 2U;
        xnorm += b_A->data[((int32_T)unnamed_idx_0 + b_A->size[0] * ix) - 1] *
          B->data[(int32_T)unnamed_idx_0 - 1];
      }

      xnorm *= tau->data[ix];
      if (xnorm != 0.0) {
        B->data[ix] -= xnorm;
        i51 = A->size[0] + (int32_T)(1.0 - ((1.0 + (real_T)ix) + 1.0));
        emlrtForLoopVectorCheckR2012b((1.0 + (real_T)ix) + 1.0, 1.0, A->size[0],
          mxDOUBLE_CLASS, i51, &yb_emlrtRTEI, sp);
        for (i = 0; i < i51; i++) {
          unnamed_idx_0 = ((uint32_T)ix + i) + 2U;
          B->data[(int32_T)unnamed_idx_0 - 1] -= b_A->data[((int32_T)
            unnamed_idx_0 + b_A->size[0] * ix) - 1] * xnorm;
        }
      }
    }
  }

  emxFree_real_T(&tau);
  emlrtForLoopVectorCheckR2012b(1.0, 1.0, atmp, mxDOUBLE_CLASS, (int32_T)atmp,
    &xb_emlrtRTEI, sp);
  for (i = 0; i < (int32_T)atmp; i++) {
    Y->data[jpvt->data[i] - 1] = B->data[i];
  }

  emlrtForLoopVectorCheckR2012b(atmp, -1.0, 1.0, mxDOUBLE_CLASS, (int32_T)-(1.0
    + (-1.0 - atmp)), &wb_emlrtRTEI, sp);
  for (ix = 0; ix < (int32_T)-(1.0 + (-1.0 - atmp)); ix++) {
    xnorm = atmp + -(real_T)ix;
    Y->data[jpvt->data[(int32_T)xnorm - 1] - 1] = eml_div(Y->data[jpvt->data
      [(int32_T)xnorm - 1] - 1], b_A->data[((int32_T)xnorm + b_A->size[0] *
      ((int32_T)xnorm - 1)) - 1]);
    for (i = 0; i < (int32_T)(xnorm - 1.0); i++) {
      Y->data[jpvt->data[i] - 1] -= Y->data[jpvt->data[(int32_T)xnorm - 1] - 1] *
        b_A->data[i + b_A->size[0] * ((int32_T)xnorm - 1)];
    }
  }

  emxFree_int32_T(&jpvt);
  emxFree_real_T(&work);
  emxFree_real_T(&b_A);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
Beispiel #17
0
/* Function Definitions */
void rsf2csf(const emxArray_real_T *Ur, const emxArray_real_T *Tr,
             emxArray_creal_T *U, emxArray_creal_T *T)
{
  int32_T y;
  int32_T loop_ub;
  int16_T varargin_1[2];
  int32_T mtmp;
  int32_T m;
  real_T c;
  real_T b;
  real_T temp;
  real_T p;
  real_T bcmax;
  real_T scale;
  real_T bb;
  real_T b_p;
  real_T cs;
  int32_T b_scale;
  real_T b_c;
  real_T mu1_re;
  emlrtPushRtStackR2012b(&bh_emlrtRSI, emlrtRootTLSGlobal);
  y = T->size[0] * T->size[1];
  T->size[0] = Tr->size[0];
  T->size[1] = Tr->size[1];
  emxEnsureCapacity((emxArray__common *)T, y, (int32_T)sizeof(creal_T),
                    &v_emlrtRTEI);
  loop_ub = Tr->size[0] * Tr->size[1];
  for (y = 0; y < loop_ub; y++) {
    T->data[y].re = Tr->data[y];
    T->data[y].im = 0.0;
  }

  y = U->size[0] * U->size[1];
  U->size[0] = Ur->size[0];
  U->size[1] = Ur->size[1];
  emxEnsureCapacity((emxArray__common *)U, y, (int32_T)sizeof(creal_T),
                    &v_emlrtRTEI);
  loop_ub = Ur->size[0] * Ur->size[1];
  for (y = 0; y < loop_ub; y++) {
    U->data[y].re = Ur->data[y];
    U->data[y].im = 0.0;
  }

  for (y = 0; y < 2; y++) {
    varargin_1[y] = (int16_T)Tr->size[y];
  }

  mtmp = varargin_1[0];
  if (varargin_1[1] < varargin_1[0]) {
    mtmp = varargin_1[1];
  }

  for (y = 0; y < 2; y++) {
    varargin_1[y] = (int16_T)Ur->size[y];
  }

  loop_ub = varargin_1[0];
  if (varargin_1[1] < varargin_1[0]) {
    loop_ub = varargin_1[1];
  }

  mtmp = (int32_T)muDoubleScalarMin(mtmp, loop_ub);
  if (mtmp == 0) {
  } else {
    for (m = mtmp - 1; m + 1 >= 2; m--) {
      if (Tr->data[m + Tr->size[0] * (m - 1)] != 0.0) {
        emlrtPushRtStackR2012b(&ch_emlrtRSI, emlrtRootTLSGlobal);
        c = Tr->data[m + Tr->size[0] * (m - 1)];
        b = Tr->data[(m + Tr->size[0] * m) - 1];
        temp = Tr->data[(m + Tr->size[0] * (m - 1)) - 1];
        if (Tr->data[m + Tr->size[0] * (m - 1)] == 0.0) {
        } else if (Tr->data[(m + Tr->size[0] * m) - 1] == 0.0) {
          temp = Tr->data[m + Tr->size[0] * m];
          b = -Tr->data[m + Tr->size[0] * (m - 1)];
          c = 0.0;
        } else if ((Tr->data[(m + Tr->size[0] * (m - 1)) - 1] - Tr->data[m +
                    Tr->size[0] * m] == 0.0) && ((Tr->data[(m + Tr->size[0] * m)
          - 1] < 0.0) != (Tr->data[m + Tr->size[0] * (m - 1)] < 0.0))) {
        } else {
          temp = Tr->data[(m + Tr->size[0] * (m - 1)) - 1] - Tr->data[m +
            Tr->size[0] * m];
          p = 0.5 * temp;
          bcmax = muDoubleScalarMax(muDoubleScalarAbs(Tr->data[(m + Tr->size[0] *
            m) - 1]), muDoubleScalarAbs(Tr->data[m + Tr->size[0] * (m - 1)]));
          if (!(Tr->data[(m + Tr->size[0] * m) - 1] < 0.0)) {
            loop_ub = 1;
          } else {
            loop_ub = -1;
          }

          if (!(Tr->data[m + Tr->size[0] * (m - 1)] < 0.0)) {
            y = 1;
          } else {
            y = -1;
          }

          scale = muDoubleScalarMax(muDoubleScalarAbs(p), bcmax);
          bcmax = p / scale * p + bcmax / scale * (muDoubleScalarMin
            (muDoubleScalarAbs(Tr->data[(m + Tr->size[0] * m) - 1]),
             muDoubleScalarAbs(Tr->data[m + Tr->size[0] * (m - 1)])) * (real_T)
            loop_ub * (real_T)y);
          if (bcmax >= 8.8817841970012523E-16) {
            emlrtPushRtStackR2012b(&gg_emlrtRSI, emlrtRootTLSGlobal);
            bb = muDoubleScalarSqrt(scale) * muDoubleScalarSqrt(bcmax);
            emlrtPopRtStackR2012b(&gg_emlrtRSI, emlrtRootTLSGlobal);
            if (!(p < 0.0)) {
              b_p = bb;
            } else {
              b_p = -bb;
            }

            temp = Tr->data[m + Tr->size[0] * m] + (p + b_p);
            b = Tr->data[(m + Tr->size[0] * m) - 1] - Tr->data[m + Tr->size[0] *
              (m - 1)];
            c = 0.0;
          } else {
            scale = Tr->data[(m + Tr->size[0] * m) - 1] + Tr->data[m + Tr->size
              [0] * (m - 1)];
            bcmax = muDoubleScalarHypot(scale, temp);
            emlrtPushRtStackR2012b(&hg_emlrtRSI, emlrtRootTLSGlobal);
            bb = 0.5 * (1.0 + muDoubleScalarAbs(scale) / bcmax);
            if (bb < 0.0) {
              emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal);
              eml_error();
              emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal);
            }

            cs = muDoubleScalarSqrt(bb);
            emlrtPopRtStackR2012b(&hg_emlrtRSI, emlrtRootTLSGlobal);
            if (!(scale < 0.0)) {
              b_scale = 1;
            } else {
              b_scale = -1;
            }

            bcmax = -(p / (bcmax * cs)) * (real_T)b_scale;
            scale = Tr->data[(m + Tr->size[0] * (m - 1)) - 1] * cs + Tr->data[(m
              + Tr->size[0] * m) - 1] * bcmax;
            bb = -Tr->data[(m + Tr->size[0] * (m - 1)) - 1] * bcmax + Tr->data
              [(m + Tr->size[0] * m) - 1] * cs;
            p = Tr->data[m + Tr->size[0] * (m - 1)] * cs + Tr->data[m + Tr->
              size[0] * m] * bcmax;
            temp = -Tr->data[m + Tr->size[0] * (m - 1)] * bcmax + Tr->data[m +
              Tr->size[0] * m] * cs;
            b = bb * cs + temp * bcmax;
            c = -scale * bcmax + p * cs;
            temp = 0.5 * ((scale * cs + p * bcmax) + (-bb * bcmax + temp * cs));
            if (c != 0.0) {
              if (b != 0.0) {
                if ((b < 0.0) == (c < 0.0)) {
                  emlrtPushRtStackR2012b(&ig_emlrtRSI, emlrtRootTLSGlobal);
                  emlrtPopRtStackR2012b(&ig_emlrtRSI, emlrtRootTLSGlobal);
                  emlrtPushRtStackR2012b(&jg_emlrtRSI, emlrtRootTLSGlobal);
                  emlrtPopRtStackR2012b(&jg_emlrtRSI, emlrtRootTLSGlobal);
                  bb = muDoubleScalarSqrt(muDoubleScalarAbs(b)) *
                    muDoubleScalarSqrt(muDoubleScalarAbs(c));
                  emlrtPushRtStackR2012b(&kg_emlrtRSI, emlrtRootTLSGlobal);
                  emlrtPopRtStackR2012b(&kg_emlrtRSI, emlrtRootTLSGlobal);
                  if (!(c < 0.0)) {
                    b_c = bb;
                  } else {
                    b_c = -bb;
                  }

                  temp += b_c;
                  b -= c;
                  c = 0.0;
                }
              } else {
                b = -c;
                c = 0.0;
              }
            }
          }
        }

        if (c == 0.0) {
          bcmax = 0.0;
        } else {
          emlrtPushRtStackR2012b(&lg_emlrtRSI, emlrtRootTLSGlobal);
          bcmax = muDoubleScalarSqrt(muDoubleScalarAbs(b)) * muDoubleScalarSqrt
            (muDoubleScalarAbs(c));
          emlrtPopRtStackR2012b(&lg_emlrtRSI, emlrtRootTLSGlobal);
        }

        emlrtPopRtStackR2012b(&ch_emlrtRSI, emlrtRootTLSGlobal);
        mu1_re = temp - Tr->data[m + Tr->size[0] * m];
        scale = muDoubleScalarHypot(muDoubleScalarHypot(mu1_re, bcmax), Tr->
          data[m + Tr->size[0] * (m - 1)]);
        if (bcmax == 0.0) {
          mu1_re /= scale;
          cs = 0.0;
        } else if (mu1_re == 0.0) {
          mu1_re = 0.0;
          cs = bcmax / scale;
        } else {
          mu1_re /= scale;
          cs = bcmax / scale;
        }

        c = Tr->data[m + Tr->size[0] * (m - 1)] / scale;
        emlrtPushRtStackR2012b(&dh_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&dh_emlrtRSI, emlrtRootTLSGlobal);
        for (loop_ub = m - 1; loop_ub + 1 <= mtmp; loop_ub++) {
          b = T->data[(m + T->size[0] * loop_ub) - 1].re;
          temp = T->data[(m + T->size[0] * loop_ub) - 1].im;
          bb = T->data[(m + T->size[0] * loop_ub) - 1].re;
          p = T->data[(m + T->size[0] * loop_ub) - 1].im;
          bcmax = T->data[(m + T->size[0] * loop_ub) - 1].im;
          scale = T->data[(m + T->size[0] * loop_ub) - 1].re;
          T->data[(m + T->size[0] * loop_ub) - 1].re = (mu1_re * bb + cs * p) +
            c * T->data[m + T->size[0] * loop_ub].re;
          T->data[(m + T->size[0] * loop_ub) - 1].im = (mu1_re * bcmax - cs *
            scale) + c * T->data[m + T->size[0] * loop_ub].im;
          bcmax = mu1_re * T->data[m + T->size[0] * loop_ub].re - cs * T->data[m
            + T->size[0] * loop_ub].im;
          scale = mu1_re * T->data[m + T->size[0] * loop_ub].im + cs * T->data[m
            + T->size[0] * loop_ub].re;
          T->data[m + T->size[0] * loop_ub].re = bcmax - c * b;
          T->data[m + T->size[0] * loop_ub].im = scale - c * temp;
        }

        emlrtPushRtStackR2012b(&eh_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&eh_emlrtRSI, emlrtRootTLSGlobal);
        for (loop_ub = 0; loop_ub + 1 <= m + 1; loop_ub++) {
          b = T->data[loop_ub + T->size[0] * (m - 1)].re;
          temp = T->data[loop_ub + T->size[0] * (m - 1)].im;
          bcmax = mu1_re * T->data[loop_ub + T->size[0] * (m - 1)].re - cs *
            T->data[loop_ub + T->size[0] * (m - 1)].im;
          scale = mu1_re * T->data[loop_ub + T->size[0] * (m - 1)].im + cs *
            T->data[loop_ub + T->size[0] * (m - 1)].re;
          bb = T->data[loop_ub + T->size[0] * m].re;
          p = T->data[loop_ub + T->size[0] * m].im;
          T->data[loop_ub + T->size[0] * (m - 1)].re = bcmax + c * bb;
          T->data[loop_ub + T->size[0] * (m - 1)].im = scale + c * p;
          bb = T->data[loop_ub + T->size[0] * m].re;
          p = T->data[loop_ub + T->size[0] * m].im;
          bcmax = T->data[loop_ub + T->size[0] * m].im;
          scale = T->data[loop_ub + T->size[0] * m].re;
          T->data[loop_ub + T->size[0] * m].re = (mu1_re * bb + cs * p) - c * b;
          T->data[loop_ub + T->size[0] * m].im = (mu1_re * bcmax - cs * scale) -
            c * temp;
        }

        emlrtPushRtStackR2012b(&fh_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&fh_emlrtRSI, emlrtRootTLSGlobal);
        for (loop_ub = 0; loop_ub + 1 <= mtmp; loop_ub++) {
          b = U->data[loop_ub + U->size[0] * (m - 1)].re;
          temp = U->data[loop_ub + U->size[0] * (m - 1)].im;
          bcmax = mu1_re * U->data[loop_ub + U->size[0] * (m - 1)].re - cs *
            U->data[loop_ub + U->size[0] * (m - 1)].im;
          scale = mu1_re * U->data[loop_ub + U->size[0] * (m - 1)].im + cs *
            U->data[loop_ub + U->size[0] * (m - 1)].re;
          bb = U->data[loop_ub + U->size[0] * m].re;
          p = U->data[loop_ub + U->size[0] * m].im;
          U->data[loop_ub + U->size[0] * (m - 1)].re = bcmax + c * bb;
          U->data[loop_ub + U->size[0] * (m - 1)].im = scale + c * p;
          bb = U->data[loop_ub + U->size[0] * m].re;
          p = U->data[loop_ub + U->size[0] * m].im;
          bcmax = U->data[loop_ub + U->size[0] * m].im;
          scale = U->data[loop_ub + U->size[0] * m].re;
          U->data[loop_ub + U->size[0] * m].re = (mu1_re * bb + cs * p) - c * b;
          U->data[loop_ub + U->size[0] * m].im = (mu1_re * bcmax - cs * scale) -
            c * temp;
        }

        T->data[m + T->size[0] * (m - 1)].re = 0.0;
        T->data[m + T->size[0] * (m - 1)].im = 0.0;
      }
    }
  }

  emlrtPopRtStackR2012b(&bh_emlrtRSI, emlrtRootTLSGlobal);
}
Beispiel #18
0
/* Function Definitions */
real_T batFrcClc_tmp(real_T batPwr, real_T vel, real_T batRstDch, real_T
                     batRstChr, real_T batOcv)
{
  real_T batFrc;
  real_T batRst;
  real_T batFrcCpl_re;
  real_T yr;
  real_T yi;
  real_T ar;
  real_T ai;
  real_T br;
  real_T batFrcCpl_im;

  /*    Skalar - Batteriekraft (E') */
  /*           Skalar - Batterieklemmleistung */
  /*              Skalar - mittlere Geschwindigkeit im Intervall */
  /*        Skalar - Entladewiderstand */
  /*        Skalar - Ladewiderstand */
  /*            Skalar - battery open-circuit voltage */
  /* BATFRCCLC Calculating losses in battery */
  /*    Batteriekraft (E') aus Verlusten in der Batterie berechnen */
  /*        Calucluate battery power losses (E') */
  /*  */
  /*  Version vom 25.05.2016: Zero-Order-Hold (keine mittlere Geschwindigkeit) */
  /*                            Zero-Order-Hold (average velocity is NOT used) */
  /* % Initialisieren der Ausgabe der Funktion */
  /*    initializing the function output */
  batFrc = rtInf;

  /* % Berechnung der Verluste in der Batterie */
  /*    calculating battery losses */
  /*  Berechnung der Batterieenergienderung im Wegschritt in externer Funktion */
  /*  Fallunterscheidung, ob Batterie geladen oder entladen wird */
  /*     */
  /*    calculate the change in battery energy along path_idx in exterior func,   */
  /*    distinguished whether battery is charging or discharging. */
  /*    Assining battery resistance value */
  if (batPwr > 0.0) {
    batRst = batRstDch;
  } else {
    batRst = batRstChr;
  }

  /*  Batterieenergieänderung über dem Weg berechnen. Herleitung der Formel */
  /*  kann zum Beispiel dem Paper mit Chalmers entnommen werden */
  /*    calculate battery power charge for path_idx. Formula derivation can be  */
  /*    found from other papers (for example, Chalmers paper) */
  batFrcCpl_re = 1.0 - 4.0 * batRst / (batOcv * batOcv) * batPwr;
  if (batFrcCpl_re < 0.0) {
    yr = 0.0;
    yi = muDoubleScalarSqrt(muDoubleScalarAbs(batFrcCpl_re));
  } else {
    yr = muDoubleScalarSqrt(batFrcCpl_re);
    yi = 0.0;
  }

  ar = batOcv * batOcv * (yr - 1.0);
  ai = batOcv * batOcv * yi;
  br = 2.0 * batRst * vel;
  if (ai == 0.0) {
    batFrcCpl_re = ar / br;
    batFrcCpl_im = 0.0;
  } else if (ar == 0.0) {
    batFrcCpl_re = 0.0;
    batFrcCpl_im = ai / br;
  } else {
    batFrcCpl_re = ar / br;
    batFrcCpl_im = ai / br;
  }

  /*  Sollte die physikalisch mögliche Batterieleistung überschritten werden, */
  /*  wird der Term unter der Wurzel negativ. In diesem Fall wird die Ausgabe */
  /*  ungültig geschrieben. */
  /*    check to make sure that the battery capacity is not exceeded (when the */
  /*    root becomes negative, the output is no longer valid) (Quadrants 3, 4) */
  if (batFrcCpl_im != 0.0) {
  } else {
    batFrc = batFrcCpl_re;
  }

  return batFrc;
}
static void sf_c3_car_model(SFc3_car_modelInstanceStruct *chartInstance)
{
  int32_T c3_i3;
  int32_T c3_i4;
  int32_T c3_i5;
  int32_T c3_previousEvent;
  int32_T c3_i6;
  real_T c3_hoistedGlobal[4];
  int32_T c3_i7;
  real_T c3_b_hoistedGlobal[3];
  int32_T c3_i8;
  real_T c3_X[4];
  int32_T c3_i9;
  real_T c3_u[3];
  uint32_T c3_debug_family_var_map[22];
  real_T c3_l_F;
  real_T c3_l_R;
  real_T c3_Vx;
  real_T c3_Vy;
  real_T c3_r;
  real_T c3_psi;
  real_T c3_f_Fx;
  real_T c3_f_Rx;
  real_T c3_delta;
  real_T c3_beta;
  real_T c3_V;
  real_T c3_s_Fy_num;
  real_T c3_s_Fy_denum;
  real_T c3_s_Fy;
  real_T c3_s_Ry_num;
  real_T c3_s_Ry_denum;
  real_T c3_s_Ry;
  real_T c3_nargin = 2.0;
  real_T c3_nargout = 1.0;
  real_T c3_s[2];
  real_T c3_A;
  real_T c3_B;
  real_T c3_x;
  real_T c3_y;
  real_T c3_b_x;
  real_T c3_b_y;
  real_T c3_c_x;
  real_T c3_c_y;
  real_T c3_d_y;
  real_T c3_d_x;
  real_T c3_e_x;
  real_T c3_f_x;
  real_T c3_g_x;
  real_T c3_h_x;
  real_T c3_i_x;
  real_T c3_j_x;
  real_T c3_a;
  real_T c3_b;
  real_T c3_e_y;
  real_T c3_b_a;
  real_T c3_f_y;
  real_T c3_k_x;
  real_T c3_l_x;
  real_T c3_m_x;
  real_T c3_c_a;
  real_T c3_b_b;
  real_T c3_g_y;
  real_T c3_n_x;
  real_T c3_o_x;
  real_T c3_p_x;
  real_T c3_d_a;
  real_T c3_c_b;
  real_T c3_h_y;
  real_T c3_e_a;
  real_T c3_i_y;
  real_T c3_q_x;
  real_T c3_r_x;
  real_T c3_s_x;
  real_T c3_f_a;
  real_T c3_d_b;
  real_T c3_j_y;
  real_T c3_b_A;
  real_T c3_b_B;
  real_T c3_t_x;
  real_T c3_k_y;
  real_T c3_u_x;
  real_T c3_l_y;
  real_T c3_v_x;
  real_T c3_m_y;
  real_T c3_w_x;
  real_T c3_x_x;
  real_T c3_y_x;
  real_T c3_g_a;
  real_T c3_e_b;
  real_T c3_n_y;
  real_T c3_h_a;
  real_T c3_o_y;
  real_T c3_ab_x;
  real_T c3_bb_x;
  real_T c3_cb_x;
  real_T c3_i_a;
  real_T c3_f_b;
  real_T c3_c_A;
  real_T c3_c_B;
  real_T c3_db_x;
  real_T c3_p_y;
  real_T c3_eb_x;
  real_T c3_q_y;
  real_T c3_fb_x;
  real_T c3_r_y;
  int32_T c3_i10;
  real_T (*c3_b_s)[2];
  real_T (*c3_b_u)[3];
  real_T (*c3_b_X)[4];
  c3_b_u = (real_T (*)[3])ssGetInputPortSignal(chartInstance->S, 1);
  c3_b_s = (real_T (*)[2])ssGetOutputPortSignal(chartInstance->S, 1);
  c3_b_X = (real_T (*)[4])ssGetInputPortSignal(chartInstance->S, 0);
  _sfTime_ = (real_T)ssGetT(chartInstance->S);
  _SFD_CC_CALL(CHART_ENTER_SFUNCTION_TAG,2);
  for (c3_i3 = 0; c3_i3 < 4; c3_i3 = c3_i3 + 1) {
    _SFD_DATA_RANGE_CHECK((*c3_b_X)[c3_i3], 0U);
  }

  for (c3_i4 = 0; c3_i4 < 2; c3_i4 = c3_i4 + 1) {
    _SFD_DATA_RANGE_CHECK((*c3_b_s)[c3_i4], 1U);
  }

  for (c3_i5 = 0; c3_i5 < 3; c3_i5 = c3_i5 + 1) {
    _SFD_DATA_RANGE_CHECK((*c3_b_u)[c3_i5], 2U);
  }

  c3_previousEvent = _sfEvent_;
  _sfEvent_ = CALL_EVENT;
  _SFD_CC_CALL(CHART_ENTER_DURING_FUNCTION_TAG,2);
  for (c3_i6 = 0; c3_i6 < 4; c3_i6 = c3_i6 + 1) {
    c3_hoistedGlobal[c3_i6] = (*c3_b_X)[c3_i6];
  }

  for (c3_i7 = 0; c3_i7 < 3; c3_i7 = c3_i7 + 1) {
    c3_b_hoistedGlobal[c3_i7] = (*c3_b_u)[c3_i7];
  }

  for (c3_i8 = 0; c3_i8 < 4; c3_i8 = c3_i8 + 1) {
    c3_X[c3_i8] = c3_hoistedGlobal[c3_i8];
  }

  for (c3_i9 = 0; c3_i9 < 3; c3_i9 = c3_i9 + 1) {
    c3_u[c3_i9] = c3_b_hoistedGlobal[c3_i9];
  }

  sf_debug_symbol_scope_push_eml(0U, 22U, 22U, c3_debug_family_names,
    c3_debug_family_var_map);
  sf_debug_symbol_scope_add_eml(&c3_l_F, c3_d_sf_marshall, 0U);
  sf_debug_symbol_scope_add_eml(&c3_l_R, c3_d_sf_marshall, 1U);
  sf_debug_symbol_scope_add_eml(&c3_Vx, c3_d_sf_marshall, 2U);
  sf_debug_symbol_scope_add_eml(&c3_Vy, c3_d_sf_marshall, 3U);
  sf_debug_symbol_scope_add_eml(&c3_r, c3_d_sf_marshall, 4U);
  sf_debug_symbol_scope_add_eml(&c3_psi, c3_d_sf_marshall, 5U);
  sf_debug_symbol_scope_add_eml(&c3_f_Fx, c3_d_sf_marshall, 6U);
  sf_debug_symbol_scope_add_eml(&c3_f_Rx, c3_d_sf_marshall, 7U);
  sf_debug_symbol_scope_add_eml(&c3_delta, c3_d_sf_marshall, 8U);
  sf_debug_symbol_scope_add_eml(&c3_beta, c3_d_sf_marshall, 9U);
  sf_debug_symbol_scope_add_eml(&c3_V, c3_d_sf_marshall, 10U);
  sf_debug_symbol_scope_add_eml(&c3_s_Fy_num, c3_d_sf_marshall, 11U);
  sf_debug_symbol_scope_add_eml(&c3_s_Fy_denum, c3_d_sf_marshall, 12U);
  sf_debug_symbol_scope_add_eml(&c3_s_Fy, c3_d_sf_marshall, 13U);
  sf_debug_symbol_scope_add_eml(&c3_s_Ry_num, c3_d_sf_marshall, 14U);
  sf_debug_symbol_scope_add_eml(&c3_s_Ry_denum, c3_d_sf_marshall, 15U);
  sf_debug_symbol_scope_add_eml(&c3_s_Ry, c3_d_sf_marshall, 16U);
  sf_debug_symbol_scope_add_eml(&c3_nargin, c3_d_sf_marshall, 17U);
  sf_debug_symbol_scope_add_eml(&c3_nargout, c3_d_sf_marshall, 18U);
  sf_debug_symbol_scope_add_eml(&c3_X, c3_c_sf_marshall, 19U);
  sf_debug_symbol_scope_add_eml(&c3_u, c3_b_sf_marshall, 20U);
  sf_debug_symbol_scope_add_eml(&c3_s, c3_sf_marshall, 21U);
  CV_EML_FCN(0, 0);

  /*  l_F = param.l_F; */
  /*  l_R = param.l_R; */
  _SFD_EML_CALL(0,7);
  c3_l_F = 1.1;
  _SFD_EML_CALL(0,8);
  c3_l_R = 1.6;
  _SFD_EML_CALL(0,10);
  c3_Vx = c3_X[0];
  _SFD_EML_CALL(0,11);
  c3_Vy = c3_X[1];
  _SFD_EML_CALL(0,12);
  c3_r = c3_X[2];
  _SFD_EML_CALL(0,13);
  c3_psi = c3_X[3];
  _SFD_EML_CALL(0,15);
  c3_f_Fx = c3_u[0];
  _SFD_EML_CALL(0,16);
  c3_f_Rx = c3_u[1];
  _SFD_EML_CALL(0,17);
  c3_delta = c3_u[2];
  _SFD_EML_CALL(0,20);
  if (CV_EML_COND(0, 0, c3_Vx == 0.0)) {
    if (CV_EML_COND(0, 1, c3_Vy == 0.0)) {
      CV_EML_MCDC(0, 0, TRUE);
      CV_EML_IF(0, 0, TRUE);
      _SFD_EML_CALL(0,21);
      c3_beta = 0.0;
      goto label_1;
    }
  }

  CV_EML_MCDC(0, 0, FALSE);
  CV_EML_IF(0, 0, FALSE);
  _SFD_EML_CALL(0,23);
  c3_A = c3_Vy;
  c3_B = c3_Vx;
  c3_x = c3_A;
  c3_y = c3_B;
  c3_b_x = c3_x;
  c3_b_y = c3_y;
  c3_c_x = c3_b_x;
  c3_c_y = c3_b_y;
  c3_d_y = c3_c_x / c3_c_y;
  c3_d_x = c3_d_y;
  c3_beta = c3_d_x;
  c3_e_x = c3_beta;
  c3_beta = c3_e_x;
  c3_beta = muDoubleScalarAtan(c3_beta);
 label_1:
  ;
  _SFD_EML_CALL(0,26);
  c3_f_x = c3_mpower(chartInstance, c3_Vx) + c3_mpower(chartInstance, c3_Vy);
  c3_V = c3_f_x;
  if (c3_V < 0.0) {
    c3_eml_error(chartInstance);
  }

  c3_g_x = c3_V;
  c3_V = c3_g_x;
  c3_V = muDoubleScalarSqrt(c3_V);
  _SFD_EML_CALL(0,28);
  c3_h_x = c3_beta - c3_delta;
  c3_i_x = c3_h_x;
  c3_j_x = c3_i_x;
  c3_i_x = c3_j_x;
  c3_i_x = muDoubleScalarSin(c3_i_x);
  c3_a = c3_V;
  c3_b = c3_i_x;
  c3_e_y = c3_a * c3_b;
  c3_b_a = c3_r;
  c3_f_y = c3_b_a * 1.1;
  c3_k_x = c3_delta;
  c3_l_x = c3_k_x;
  c3_m_x = c3_l_x;
  c3_l_x = c3_m_x;
  c3_l_x = muDoubleScalarCos(c3_l_x);
  c3_c_a = c3_f_y;
  c3_b_b = c3_l_x;
  c3_g_y = c3_c_a * c3_b_b;
  c3_s_Fy_num = c3_e_y + c3_g_y;
  _SFD_EML_CALL(0,29);
  c3_n_x = c3_beta - c3_delta;
  c3_o_x = c3_n_x;
  c3_p_x = c3_o_x;
  c3_o_x = c3_p_x;
  c3_o_x = muDoubleScalarCos(c3_o_x);
  c3_d_a = c3_V;
  c3_c_b = c3_o_x;
  c3_h_y = c3_d_a * c3_c_b;
  c3_e_a = c3_r;
  c3_i_y = c3_e_a * 1.1;
  c3_q_x = c3_delta;
  c3_r_x = c3_q_x;
  c3_s_x = c3_r_x;
  c3_r_x = c3_s_x;
  c3_r_x = muDoubleScalarSin(c3_r_x);
  c3_f_a = c3_i_y;
  c3_d_b = c3_r_x;
  c3_j_y = c3_f_a * c3_d_b;
  c3_s_Fy_denum = c3_h_y + c3_j_y;
  _SFD_EML_CALL(0,31);
  if (CV_EML_COND(0, 2, c3_s_Fy_num == 0.0)) {
    if (CV_EML_COND(0, 3, c3_s_Fy_denum == 0.0)) {
      CV_EML_MCDC(0, 1, TRUE);
      CV_EML_IF(0, 1, TRUE);
      _SFD_EML_CALL(0,32);
      c3_s_Fy = 0.0;
      goto label_2;
    }
  }

  CV_EML_MCDC(0, 1, FALSE);
  CV_EML_IF(0, 1, FALSE);
  _SFD_EML_CALL(0,34);
  c3_b_A = c3_s_Fy_num;
  c3_b_B = c3_s_Fy_denum;
  c3_t_x = c3_b_A;
  c3_k_y = c3_b_B;
  c3_u_x = c3_t_x;
  c3_l_y = c3_k_y;
  c3_v_x = c3_u_x;
  c3_m_y = c3_l_y;
  c3_s_Fy = c3_v_x / c3_m_y;
 label_2:
  ;
  _SFD_EML_CALL(0,37);
  c3_w_x = c3_beta;
  c3_x_x = c3_w_x;
  c3_y_x = c3_x_x;
  c3_x_x = c3_y_x;
  c3_x_x = muDoubleScalarSin(c3_x_x);
  c3_g_a = c3_V;
  c3_e_b = c3_x_x;
  c3_n_y = c3_g_a * c3_e_b;
  c3_h_a = c3_r;
  c3_o_y = c3_h_a * 1.6;
  c3_s_Ry_num = c3_n_y - c3_o_y;
  _SFD_EML_CALL(0,38);
  c3_ab_x = c3_beta;
  c3_bb_x = c3_ab_x;
  c3_cb_x = c3_bb_x;
  c3_bb_x = c3_cb_x;
  c3_bb_x = muDoubleScalarCos(c3_bb_x);
  c3_i_a = c3_V;
  c3_f_b = c3_bb_x;
  c3_s_Ry_denum = c3_i_a * c3_f_b;
  _SFD_EML_CALL(0,40);
  if (CV_EML_COND(0, 4, c3_s_Ry_num == 0.0)) {
    if (CV_EML_COND(0, 5, c3_s_Ry_denum == 0.0)) {
      CV_EML_MCDC(0, 2, TRUE);
      CV_EML_IF(0, 2, TRUE);
      _SFD_EML_CALL(0,41);
      c3_s_Ry = 0.0;
      goto label_3;
    }
  }

  CV_EML_MCDC(0, 2, FALSE);
  CV_EML_IF(0, 2, FALSE);
  _SFD_EML_CALL(0,43);
  c3_c_A = c3_s_Ry_num;
  c3_c_B = c3_s_Ry_denum;
  c3_db_x = c3_c_A;
  c3_p_y = c3_c_B;
  c3_eb_x = c3_db_x;
  c3_q_y = c3_p_y;
  c3_fb_x = c3_eb_x;
  c3_r_y = c3_q_y;
  c3_s_Ry = c3_fb_x / c3_r_y;
 label_3:
  ;
  _SFD_EML_CALL(0,46);
  c3_s[0] = c3_s_Fy;
  c3_s[1] = c3_s_Ry;
  _SFD_EML_CALL(0,-46);
  sf_debug_symbol_scope_pop();
  for (c3_i10 = 0; c3_i10 < 2; c3_i10 = c3_i10 + 1) {
    (*c3_b_s)[c3_i10] = c3_s[c3_i10];
  }

  _SFD_CC_CALL(EXIT_OUT_OF_FUNCTION_TAG,2);
  _sfEvent_ = c3_previousEvent;
  sf_debug_check_for_state_inconsistency(_car_modelMachineNumber_,
    chartInstance->chartNumber, chartInstance->instanceNumber);
}
Beispiel #20
0
/* Function Definitions */
real_T Acoeff(const emlrtStack *sp, real_T ksi, real_T j, real_T x, real_T t,
              const emxArray_real_T *gridT)
{
  real_T vals;
  int32_T k;
  int32_T i0;
  boolean_T b_x[3];
  boolean_T y;
  boolean_T exitg4;
  real_T c_x;
  boolean_T exitg3;
  real_T z0;
  boolean_T d_x[2];
  boolean_T exitg2;
  real_T z1;
  boolean_T exitg1;
  emlrtStack st;
  emlrtStack b_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;

  /*  evaluate the coefficient A at the  boundary ksi=0 or ksi=1; */
  /*  for the index j which describes the time steps timePoints_j, at time t and space */
  /*  point x */
  /*  timePoints is a vector describing the time descritized domain */
  k = gridT->size[1];
  i0 = (int32_T)emlrtIntegerCheckFastR2012b(j, &emlrtDCI, sp);
  if (t <= gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k, &d_emlrtBCI,
       sp) - 1]) {
    vals = 0.0;
  } else {
    k = gridT->size[1];
    i0 = (int32_T)j;
    b_x[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k,
               &e_emlrtBCI, sp) - 1]);
    k = gridT->size[1];
    i0 = (int32_T)((uint32_T)j + 1U);
    b_x[1] = (t <= gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k,
               &f_emlrtBCI, sp) - 1]);
    b_x[2] = (x == ksi);
    y = true;
    k = 0;
    exitg4 = false;
    while ((!exitg4) && (k < 3)) {
      if (b_x[k] == 0) {
        y = false;
        exitg4 = true;
      } else {
        k++;
      }
    }

    if (y) {
      k = gridT->size[1];
      i0 = (int32_T)j;
      emlrtDynamicBoundsCheckFastR2012b(i0, 1, k, &c_emlrtBCI, sp);
      c_x = (t - gridT->data[(int32_T)j - 1]) / 3.1415926535897931;
      st.site = &emlrtRSI;
      if (c_x < 0.0) {
        b_st.site = &f_emlrtRSI;
        eml_error(&b_st);
      }

      vals = muDoubleScalarSqrt(c_x);
    } else {
      k = gridT->size[1];
      i0 = (int32_T)j;
      b_x[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k,
                 &g_emlrtBCI, sp) - 1]);
      k = gridT->size[1];
      i0 = (int32_T)((uint32_T)j + 1U);
      b_x[1] = (t <= gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k,
                 &h_emlrtBCI, sp) - 1]);
      b_x[2] = (x != ksi);
      y = true;
      k = 0;
      exitg3 = false;
      while ((!exitg3) && (k < 3)) {
        if (b_x[k] == 0) {
          y = false;
          exitg3 = true;
        } else {
          k++;
        }
      }

      if (y) {
        st.site = &b_emlrtRSI;
        k = gridT->size[1];
        i0 = (int32_T)j;
        c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k,
          &m_emlrtBCI, &st) - 1];
        if (c_x < 0.0) {
          b_st.site = &f_emlrtRSI;
          eml_error(&b_st);
        }

        z0 = muDoubleScalarAbs(x - ksi) / (2.0 * muDoubleScalarSqrt(c_x));
        vals = muDoubleScalarAbs(x - ksi) / 3.5449077018110318 *
          (muDoubleScalarExp(-(z0 * z0)) / z0 - 1.7724538509055159 * scalar_erf
           (z0));
      } else {
        k = gridT->size[1];
        i0 = (int32_T)((uint32_T)j + 1U);
        d_x[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k,
                   &i_emlrtBCI, sp) - 1]);
        d_x[1] = (x == ksi);
        y = true;
        k = 0;
        exitg2 = false;
        while ((!exitg2) && (k < 2)) {
          if (d_x[k] == 0) {
            y = false;
            exitg2 = true;
          } else {
            k++;
          }
        }

        if (y) {
          k = gridT->size[1];
          i0 = (int32_T)j;
          emlrtDynamicBoundsCheckFastR2012b(i0, 1, k, &b_emlrtBCI, sp);
          c_x = (t - gridT->data[(int32_T)j - 1]) / 3.1415926535897931;
          k = gridT->size[1];
          i0 = (int32_T)(j + 1.0);
          emlrtDynamicBoundsCheckFastR2012b(i0, 1, k, &emlrtBCI, sp);
          z1 = (t - gridT->data[(int32_T)(j + 1.0) - 1]) / 3.1415926535897931;
          st.site = &c_emlrtRSI;
          if (c_x < 0.0) {
            b_st.site = &f_emlrtRSI;
            eml_error(&b_st);
          }

          st.site = &c_emlrtRSI;
          if (z1 < 0.0) {
            b_st.site = &f_emlrtRSI;
            eml_error(&b_st);
          }

          vals = muDoubleScalarSqrt(c_x) - muDoubleScalarSqrt(z1);
        } else {
          k = gridT->size[1];
          i0 = (int32_T)((uint32_T)j + 1U);
          d_x[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k,
                     &j_emlrtBCI, sp) - 1]);
          d_x[1] = (x != ksi);
          y = true;
          k = 0;
          exitg1 = false;
          while ((!exitg1) && (k < 2)) {
            if (d_x[k] == 0) {
              y = false;
              exitg1 = true;
            } else {
              k++;
            }
          }

          if (y) {
            st.site = &d_emlrtRSI;
            k = gridT->size[1];
            i0 = (int32_T)j;
            c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k,
              &k_emlrtBCI, &st) - 1];
            if (c_x < 0.0) {
              b_st.site = &f_emlrtRSI;
              eml_error(&b_st);
            }

            z0 = muDoubleScalarAbs(x - ksi) / (2.0 * muDoubleScalarSqrt(c_x));
            st.site = &e_emlrtRSI;
            k = gridT->size[1];
            i0 = (int32_T)((uint32_T)j + 1U);
            c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i0, 1, k,
              &l_emlrtBCI, &st) - 1];
            if (c_x < 0.0) {
              b_st.site = &f_emlrtRSI;
              eml_error(&b_st);
            }

            z1 = muDoubleScalarAbs(x - ksi) / (2.0 * muDoubleScalarSqrt(c_x));
            vals = muDoubleScalarAbs(x - ksi) / 3.5449077018110318 *
              ((muDoubleScalarExp(-(z0 * z0)) / z0 - muDoubleScalarExp(-(z1 * z1))
                / z1) + 1.7724538509055159 * (b_scalar_erf(z0) - b_scalar_erf(z1)));
          } else {
            vals = 0.0;
          }
        }
      }
    }
  }

  return vals;
}