void MapgenV7::carveRivers() { MapNode n_air(CONTENT_AIR), n_water_source(c_water_source); MapNode n_stone(c_stone); u32 index = 0; int river_depth = 4; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { float terrain_mod = noise_terrain_mod->result[index]; NoiseParams *np = noise_terrain_river->np; np.persist = noise_terrain_persist->result[index]; float terrain_river = NoisePerlin2DNoTxfm(np, x, z, seed); float height = terrain_river * (1 - abs(terrain_mod)) * noise_terrain_river->np.scale; height = log(height * height); //log(h^3) is pretty interesting for terrain s16 y = heightmap[index]; if (height < 1.0 && y > river_depth && y - river_depth >= node_min.Y && y <= node_max.Y) { for (s16 ry = y; ry != y - river_depth; ry--) { u32 vi = vm->m_area.index(x, ry, z); vm->m_data[vi] = n_air; } u32 vi = vm->m_area.index(x, y - river_depth, z); vm->m_data[vi] = n_water_source; } } }
s16 MapgenFractal::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_stone(c_stone); MapNode n_water(c_water_source); s16 stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) { for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { u32 vi = vm->m_area.index(node_min.X, y, z); for (s16 x = node_min.X; x <= node_max.X; x++, vi++, index2d++) { if (vm->m_data[vi].getContent() == CONTENT_IGNORE) { s16 seabed_height = noise_seabed->result[index2d]; if (y <= seabed_height || getFractalAtPoint(x, y, z)) { vm->m_data[vi] = n_stone; if (y > stone_surface_max_y) stone_surface_max_y = y; } else if (y <= water_level) { vm->m_data[vi] = n_water; } else { vm->m_data[vi] = n_air; } } } index2d -= ystride; } index2d += ystride; } return stone_surface_max_y; }
void MapgenV7::generateTerrain() { MapNode n_air(CONTENT_AIR), n_water_source(c_water_source); MapNode n_stone(c_stone); v3s16 em = vm->m_area.getExtent(); u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { s16 surface_y = heightmap[index]; Biome *biome = bmgr->biomes[biomemap[index]]; u32 i = vm->m_area.index(x, node_min.Y, z); for (s16 y = node_min.Y; y <= node_max.Y; y++) { if (vm->m_data[i].getContent() == CONTENT_IGNORE) { if (y <= surface_y) { vm->m_data[i] = (y > water_level + biome->filler_height) ? MapNode(biome->c_filler) : n_stone; } else if (y <= water_level) { vm->m_data[i] = n_water_source; } else { vm->m_data[i] = n_air; } } vm->m_area.add_y(em, i, 1); } } }
int MapgenV7::generateMountainTerrain(s16 ymax) { noise_mountain->perlinMap3D(node_min.X, node_min.Y - 1, node_min.Z); noise_mount_height->perlinMap2D(node_min.X, node_min.Z); MapNode n_stone(c_stone); u32 j = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { u32 vi = vm->m_area.index(node_min.X, y, z); for (s16 x = node_min.X; x <= node_max.X; x++) { int index = (z - node_min.Z) * csize.X + (x - node_min.X); content_t c = vm->m_data[vi].getContent(); if (getMountainTerrainFromMap(j, index, y) && (c == CONTENT_AIR || c == c_water_source)) { vm->m_data[vi] = n_stone; if (y > ymax) ymax = y; } vi++; j++; } } return ymax; }
int MapgenIndev::generateGround() { //TimeTaker timer1("Generating ground level"); MapNode n_air(CONTENT_AIR), n_water_source(c_water_source); MapNode n_stone(c_stone), n_desert_stone(c_desert_stone); MapNode n_ice(c_ice), n_dirt(c_dirt),n_sand(c_sand), n_gravel(c_gravel), n_lava_source(c_lava_source); int stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { // Surface height s16 surface_y = (s16)baseTerrainLevelFromMap(index); // Log it if (surface_y > stone_surface_max_y) stone_surface_max_y = surface_y; auto bt = getBiome(index, v3POS(x, surface_y, z)); s16 heat = m_emerge->env->m_use_weather ? m_emerge->env->getServerMap().updateBlockHeat(m_emerge->env, v3POS(x,node_max.Y,z), nullptr, &heat_cache) : 0; // Fill ground with stone v3POS em = vm->m_area.getExtent(); u32 i = vm->m_area.index(x, node_min.Y, z); for (s16 y = node_min.Y; y <= node_max.Y; y++) { if (!vm->m_data[i]) { if (y <= surface_y) { int index3 = (z - node_min.Z) * zstride + (y - node_min.Y) * ystride + (x - node_min.X) * xstride; if (cave_noise_threshold && noise_cave_indev->result[index3] > cave_noise_threshold) { vm->m_data[i] = n_air; } else { auto n = (y > water_level - surface_y && bt == BT_DESERT) ? n_desert_stone : layers_get(index3); bool protect = n.getContent() != CONTENT_AIR; if (cave_noise_threshold && noise_cave_indev->result[index3] > cave_noise_threshold - 50) { vm->m_data[i] = protect ? n_stone : n; //cave shell without layers protect = true; } else { vm->m_data[i] = n; } if (protect) vm->m_flags[i] |= VOXELFLAG_CHECKED2; // no cave liquid } } else if (y <= water_level) { vm->m_data[i] = (heat < 0 && y > heat/3) ? n_ice : n_water_source; if (liquid_pressure && y <= 0) vm->m_data[i].addLevel(m_emerge->ndef, water_level - y, 1); } else { vm->m_data[i] = n_air; } } vm->m_area.add_y(em, i, 1); } } return stone_surface_max_y; }
int MapgenV7P::generateTerrain() { MapNode n_stone(c_stone); MapNode n_bedrock(c_bedrock); MapNode n_water(c_water_source); MapNode n_air(CONTENT_AIR); //// Calculate noise for terrain generation noise_terrain_persist->perlinMap2D(node_min.X, node_min.Z); float *persistmap = noise_terrain_persist->result; noise_terrain_base ->perlinMap2D(node_min.X, node_min.Z, persistmap); noise_terrain_alt ->perlinMap2D(node_min.X, node_min.Z, persistmap); noise_height_select->perlinMap2D(node_min.X, node_min.Z); if (spflags & MGV7P_MOUNTAINS) { noise_mount_height->perlinMap2D(node_min.X, node_min.Z); noise_mountain ->perlinMap2D(node_min.X, node_min.Z); } //// Place nodes const v3s16 &em = vm->m_area.getExtent(); s16 stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index2d++) { s16 surface_y = baseTerrainLevelFromMap(index2d); if (spflags & MGV7P_MOUNTAINS) surface_y = MYMAX(mountainLevelFromMap(index2d), surface_y); if (surface_y > stone_surface_max_y) stone_surface_max_y = surface_y; u32 vi = vm->m_area.index(x, node_min.Y - 1, z); for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { if (vm->m_data[vi].getContent() == CONTENT_IGNORE) { if (y <= surface_y) { if (y <= bedrock_level) vm->m_data[vi] = n_bedrock; // Bedrock else vm->m_data[vi] = n_stone; // Base and mountain terrain } else if (y <= water_level) { vm->m_data[vi] = n_water; // Water } else { vm->m_data[vi] = n_air; // Air } } vm->m_area.add_y(em, vi, 1); } } return stone_surface_max_y; }
void MapgenV7::generateBaseTerrain(s16 *stone_surface_min_y, s16 *stone_surface_max_y) { MapNode n_air(CONTENT_AIR); MapNode n_stone(c_stone); MapNode n_water(c_water_source); MapNode n_ice(c_ice); v3s16 em = vm->m_area.getExtent(); s16 surface_min_y = MAX_MAP_GENERATION_LIMIT; s16 surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { float surface_height = baseTerrainLevelFromMap(index); s16 surface_y = (s16)surface_height; heightmap[index] = surface_y; ridge_heightmap[index] = surface_y; if (surface_y < surface_min_y) surface_min_y = surface_y; if (surface_y > surface_max_y) surface_max_y = surface_y; s16 heat = m_emerge->env->m_use_weather ? m_emerge->env->getServerMap().updateBlockHeat(m_emerge->env, v3POS(x,node_max.Y,z), nullptr, &heat_cache) : 0; u32 i = vm->m_area.index(x, node_min.Y - 1, z); for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { if (vm->m_data[i].getContent() == CONTENT_IGNORE) { if (y <= surface_y) { int index3 = (z - node_min.Z) * zstride + (y - node_min.Y + 1) * ystride + (x - node_min.X); vm->m_data[i] = layers_get(index3); } else if (y <= water_level) { vm->m_data[i] = (heat < 0 && y > heat/3) ? n_ice : n_water; if (liquid_pressure && y <= 0) vm->m_data[i].addLevel(m_emerge->ndef, water_level - y, 1); } else vm->m_data[i] = n_air; } vm->m_area.add_y(em, i, 1); } } *stone_surface_min_y = surface_min_y; *stone_surface_max_y = surface_max_y; }
s16 MapgenFlat::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); s16 stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 ni2d = 0; bool use_noise = (spflags & MGFLAT_LAKES) || (spflags & MGFLAT_HILLS); if (use_noise) noise_terrain->perlinMap2D(node_min.X, node_min.Z); for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, ni2d++) { s16 stone_level = ground_level; float n_terrain = use_noise ? noise_terrain->result[ni2d] : 0.0f; if ((spflags & MGFLAT_LAKES) && n_terrain < lake_threshold) { s16 depress = (lake_threshold - n_terrain) * lake_steepness; stone_level = ground_level - depress; } else if ((spflags & MGFLAT_HILLS) && n_terrain > hill_threshold) { s16 rise = (n_terrain - hill_threshold) * hill_steepness; stone_level = ground_level + rise; } u32 vi = vm->m_area.index(x, node_min.Y - 1, z); for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { if (vm->m_data[vi].getContent() == CONTENT_IGNORE) { if (y <= stone_level) { vm->m_data[vi] = n_stone; if (y > stone_surface_max_y) stone_surface_max_y = y; } else if (y <= water_level) { vm->m_data[vi] = n_water; } else { vm->m_data[vi] = n_air; } } vm->m_area.add_y(em, vi, 1); } } return stone_surface_max_y; }
int MapgenV6::generateGround() { //TimeTaker timer1("Generating ground level"); MapNode n_air(CONTENT_AIR), n_water_source(c_water_source); MapNode n_stone(c_stone), n_desert_stone(c_desert_stone); MapNode n_ice(c_ice); int stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { // Surface height s16 surface_y = (s16)baseTerrainLevelFromMap(index); // Log it if (surface_y > stone_surface_max_y) stone_surface_max_y = surface_y; BiomeV6Type bt = getBiome(v3POS(x, node_min.Y, z)); s16 heat = m_emerge->env->m_use_weather ? m_emerge->env->getServerMap().updateBlockHeat(m_emerge->env, v3POS(x,node_max.Y,z), nullptr, &heat_cache) : 0; // Fill ground with stone v3s16 em = vm->m_area.getExtent(); u32 i = vm->m_area.index(x, node_min.Y, z); for (s16 y = node_min.Y; y <= node_max.Y; y++) { if (vm->m_data[i].getContent() == CONTENT_IGNORE) { if (y <= surface_y) { vm->m_data[i] = (y >= MGV6_DESERT_STONE_BASE - surface_y && bt == BT_DESERT) ? n_desert_stone : n_stone; } else if (y <= water_level) { vm->m_data[i] = ((heat < 0 && y > heat/3) || (y >= MGV6_ICE_BASE && bt == BT_TUNDRA)) ? n_ice : n_water_source; if (liquid_pressure && y <= 0) vm->m_data[i].addLevel(m_emerge->ndef, water_level - y, 1); } else { vm->m_data[i] = n_air; } } vm->m_area.add_y(em, i, 1); } } return stone_surface_max_y; }
int MapgenV7::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); s16 stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index2d = 0; bool mountain_flag = spflags & MGV7_MOUNTAINS; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index2d++) { s16 surface_y = baseTerrainLevelFromMap(index2d); heightmap[index2d] = surface_y; // Create base terrain heightmap ridge_heightmap[index2d] = surface_y; if (surface_y > stone_surface_max_y) stone_surface_max_y = surface_y; u32 vi = vm->m_area.index(x, node_min.Y - 1, z); u32 index3d = (z - node_min.Z) * zstride_1u1d + (x - node_min.X); for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { if (vm->m_data[vi].getContent() == CONTENT_IGNORE) { if (y <= surface_y) { vm->m_data[vi] = n_stone; // Base terrain } else if (mountain_flag && getMountainTerrainFromMap(index3d, index2d, y)) { vm->m_data[vi] = n_stone; // Mountain terrain if (y > stone_surface_max_y) stone_surface_max_y = y; } else if (y <= water_level) { vm->m_data[vi] = n_water; } else { vm->m_data[vi] = n_air; } } vm->m_area.add_y(em, vi, 1); index3d += ystride; } } return stone_surface_max_y; }
int MapgenV6::generateGround() { //TimeTaker timer1("Generating ground level"); MapNode n_air(CONTENT_AIR), n_water_source(c_water_source); MapNode n_stone(c_stone), n_desert_stone(c_desert_stone); MapNode n_ice(c_ice); int stone_surface_max_y = -MAP_GENERATION_LIMIT; u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { // Surface height s16 surface_y = (s16)baseTerrainLevelFromMap(index); // Log it if (surface_y > stone_surface_max_y) stone_surface_max_y = surface_y; BiomeV6Type bt = getBiome(v2s16(x, z)); // Fill ground with stone v3s16 em = vm->m_area.getExtent(); u32 i = vm->m_area.index(x, node_min.Y, z); for (s16 y = node_min.Y; y <= node_max.Y; y++) { if (vm->m_data[i].getContent() == CONTENT_IGNORE) { if (y <= surface_y) { vm->m_data[i] = (y >= DESERT_STONE_BASE && bt == BT_DESERT) ? n_desert_stone : n_stone; } else if (y <= water_level) { vm->m_data[i] = (y >= ICE_BASE && bt == BT_TUNDRA) ? n_ice : n_water_source; } else { vm->m_data[i] = n_air; } } vm->m_area.add_y(em, i, 1); } } return stone_surface_max_y; }
void MapgenV7::generateBaseTerrain(s16 *stone_surface_min_y, s16 *stone_surface_max_y) { MapNode n_air(CONTENT_AIR); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); s16 surface_min_y = MAX_MAP_GENERATION_LIMIT; s16 surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { float surface_height = baseTerrainLevelFromMap(index); s16 surface_y = (s16)surface_height; heightmap[index] = surface_y; ridge_heightmap[index] = surface_y; if (surface_y < surface_min_y) surface_min_y = surface_y; if (surface_y > surface_max_y) surface_max_y = surface_y; u32 i = vm->m_area.index(x, node_min.Y - 1, z); for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { if (vm->m_data[i].getContent() == CONTENT_IGNORE) { if (y <= surface_y) vm->m_data[i] = n_stone; else if (y <= water_level) vm->m_data[i] = n_water; else vm->m_data[i] = n_air; } vm->m_area.add_y(em, i, 1); } } *stone_surface_min_y = surface_min_y; *stone_surface_max_y = surface_max_y; }
void MapgenV7::generateMountainTerrain() { if (node_max.Y <= water_level) return; MapNode n_stone(c_stone); u32 j = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 y = node_min.Y; y <= node_max.Y; y++) { u32 vi = vm->m_area.index(node_min.X, y, z); for (s16 x = node_min.X; x <= node_max.X; x++) { int index = (z - node_min.Z) * csize.X + (x - node_min.X); if (getMountainTerrainFromMap(j, index, y)) vm->m_data[vi] = n_stone; vi++; j++; } } }
int MapgenV6::generateGround() { //TimeTaker timer1("Generating ground level"); MapNode n_air(CONTENT_AIR), n_water_source(c_water_source); MapNode n_stone(c_stone), n_desert_stone(c_desert_stone); MapNode n_ice(c_ice); int stone_surface_max_y = -MAP_GENERATION_LIMIT; u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { // Surface height s16 surface_y = (s16)baseTerrainLevelFromMap(index); // Log it if (surface_y > stone_surface_max_y) stone_surface_max_y = surface_y; BiomeType bt = getBiome(index, v2s16(x, z)); // Fill ground with stone v3s16 em = vm->m_area.getExtent(); u32 i = vm->m_area.index(x, node_min.Y, z); for (s16 y = node_min.Y; y <= node_max.Y; y++) { if (vm->m_data[i].getContent() == CONTENT_IGNORE) { if (y <= surface_y) { vm->m_data[i] = (y > water_level - surface_y && bt == BT_DESERT) ? n_desert_stone : n_stone; } else if (y <= water_level) { s16 heat = emerge->env->m_use_weather ? emerge->env->getServerMap().updateBlockHeat(emerge->env, v3s16(x,y,z)) : 0; vm->m_data[i] = (heat < 0 && y > heat/3) ? n_ice : n_water_source; } else { vm->m_data[i] = n_air; } } vm->m_area.add_y(em, i, 1); } } return stone_surface_max_y; }
int MapgenV7::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_stone(c_stone); MapNode n_water(c_water_source); //// Calculate noise for terrain generation noise_terrain_persist->perlinMap2D(node_min.X, node_min.Z); float *persistmap = noise_terrain_persist->result; noise_terrain_base->perlinMap2D(node_min.X, node_min.Z, persistmap); noise_terrain_alt->perlinMap2D(node_min.X, node_min.Z, persistmap); noise_height_select->perlinMap2D(node_min.X, node_min.Z); if ((spflags & MGV7_MOUNTAINS) || (spflags & MGV7_FLOATLANDS)) { noise_mountain->perlinMap3D(node_min.X, node_min.Y - 1, node_min.Z); } if (spflags & MGV7_MOUNTAINS) { noise_mount_height->perlinMap2D(node_min.X, node_min.Z); } if (spflags & MGV7_FLOATLANDS) { noise_floatland_base->perlinMap2D(node_min.X, node_min.Z); noise_float_base_height->perlinMap2D(node_min.X, node_min.Z); } //// Place nodes v3s16 em = vm->m_area.getExtent(); s16 stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index2d++) { s16 surface_y = baseTerrainLevelFromMap(index2d); if (surface_y > stone_surface_max_y) stone_surface_max_y = surface_y; // Get extent of floatland base terrain // '+1' to avoid a layer of stone at y = MAX_MAP_GENERATION_LIMIT s16 float_base_min = MAX_MAP_GENERATION_LIMIT + 1; s16 float_base_max = MAX_MAP_GENERATION_LIMIT; if (spflags & MGV7_FLOATLANDS) floatBaseExtentFromMap(&float_base_min, &float_base_max, index2d); u32 vi = vm->m_area.index(x, node_min.Y - 1, z); u32 index3d = (z - node_min.Z) * zstride_1u1d + (x - node_min.X); for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { if (vm->m_data[vi].getContent() == CONTENT_IGNORE) { if (y <= surface_y) { vm->m_data[vi] = n_stone; // Base terrain } else if ((spflags & MGV7_MOUNTAINS) && getMountainTerrainFromMap(index3d, index2d, y)) { vm->m_data[vi] = n_stone; // Mountain terrain if (y > stone_surface_max_y) stone_surface_max_y = y; } else if ((spflags & MGV7_FLOATLANDS) && ((y >= float_base_min && y <= float_base_max) || getFloatlandMountainFromMap(index3d, index2d, y))) { vm->m_data[vi] = n_stone; // Floatland terrain stone_surface_max_y = node_max.Y; } else if (y <= water_level) { vm->m_data[vi] = n_water; // Ground level water } else if ((spflags & MGV7_FLOATLANDS) && (y >= float_base_max && y <= floatland_level)) { vm->m_data[vi] = n_water; // Floatland water } else { vm->m_data[vi] = n_air; } } vm->m_area.add_y(em, vi, 1); index3d += ystride; } } return stone_surface_max_y; }
int MapgenValleys::generateTerrain() { // Raising this reduces the rate of evaporation. static const float evaporation = 300.f; // from the lua static const float humidity_dropoff = 4.f; // constant to convert altitude chill (compatible with lua) to heat static const float alt_to_heat = 20.f; // humidity reduction by altitude static const float alt_to_humid = 10.f; MapNode n_air(CONTENT_AIR); MapNode n_river_water(c_river_water_source); MapNode n_sand(c_sand); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); s16 surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index_2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index_2d++) { float river_y = noise_rivers->result[index_2d]; float surface_y = noise_terrain_height->result[index_2d]; float slope = noise_inter_valley_slope->result[index_2d]; float t_heat = m_bgen->heatmap[index_2d]; heightmap[index_2d] = -MAX_MAP_GENERATION_LIMIT; if (surface_y > surface_max_y) surface_max_y = ceil(surface_y); if (humid_rivers) { // Derive heat from (base) altitude. This will be most correct // at rivers, since other surface heights may vary below. if (use_altitude_chill && (surface_y > 0.f || river_y > 0.f)) t_heat -= alt_to_heat * MYMAX(surface_y, river_y) / altitude_chill; // If humidity is low or heat is high, lower the water table. float delta = m_bgen->humidmap[index_2d] - 50.f; if (delta < 0.f) { float t_evap = (t_heat - 32.f) / evaporation; river_y += delta * MYMAX(t_evap, 0.08f); } } u32 index_3d = (z - node_min.Z) * zstride_1u1d + (x - node_min.X); u32 index_data = vm->m_area.index(x, node_min.Y - 1, z); // Mapgens concern themselves with stone and water. for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { if (vm->m_data[index_data].getContent() == CONTENT_IGNORE) { float fill = noise_inter_valley_fill->result[index_3d]; float surface_delta = (float)y - surface_y; bool river = y + 1 < river_y; if (fabs(surface_delta) <= 0.5f && y > water_level && river) { // river bottom vm->m_data[index_data] = n_sand; } else if (slope * fill > surface_delta) { // ground vm->m_data[index_data] = n_stone; if (y > heightmap[index_2d]) heightmap[index_2d] = y; if (y > surface_max_y) surface_max_y = y; } else if (y <= water_level) { // sea vm->m_data[index_data] = n_water; } else if (river) { // river vm->m_data[index_data] = n_river_water; } else { vm->m_data[index_data] = n_air; } } vm->m_area.add_y(em, index_data, 1); index_3d += ystride; } // This happens if we're generating a chunk that doesn't // contain the terrain surface, in which case, we need // to set heightmap to a value outside of the chunk, // to avoid confusing lua mods that use heightmap. if (heightmap[index_2d] == -MAX_MAP_GENERATION_LIMIT) { s16 surface_y_int = myround(surface_y); if (surface_y_int > node_max.Y + 1 || surface_y_int < node_min.Y - 1) { // If surface_y is outside the chunk, it's good enough. heightmap[index_2d] = surface_y_int; } else { // If the ground is outside of this chunk, but surface_y // is within the chunk, give a value outside. heightmap[index_2d] = node_min.Y - 2; } } if (humid_rivers) { // Use base ground (water table) in a riverbed, to // avoid an unnatural rise in humidity. float t_alt = MYMAX(noise_rivers->result[index_2d], (float)heightmap[index_2d]); float humid = m_bgen->humidmap[index_2d]; float water_depth = (t_alt - river_y) / humidity_dropoff; humid *= 1.f + pow(0.5f, MYMAX(water_depth, 1.f)); // Reduce humidity with altitude (ignoring riverbeds). // This is similar to the lua version's seawater adjustment, // but doesn't increase the base humidity, which causes // problems with the default biomes. if (t_alt > 0.f) humid -= alt_to_humid * t_alt / altitude_chill; m_bgen->humidmap[index_2d] = humid; } // Assign the heat adjusted by any changed altitudes. // The altitude will change about half the time. if (use_altitude_chill) { // ground height ignoring riverbeds float t_alt = MYMAX(noise_rivers->result[index_2d], (float)heightmap[index_2d]); if (humid_rivers && heightmap[index_2d] == (s16)myround(surface_y)) // The altitude hasn't changed. Use the first result. m_bgen->heatmap[index_2d] = t_heat; else if (t_alt > 0.f) m_bgen->heatmap[index_2d] -= alt_to_heat * t_alt / altitude_chill; } } return surface_max_y; }
int MapgenValleys::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_river_water(c_river_water_source); MapNode n_sand(c_sand); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); s16 surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index_2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index_2d++) { s16 river_y = floor(noise_rivers->result[index_2d]); s16 surface_y = floor(noise_terrain_height->result[index_2d]); float slope = noise_inter_valley_slope->result[index_2d]; heightmap[index_2d] = surface_y; if (surface_y > surface_max_y) surface_max_y = surface_y; u32 index_3d = (z - node_min.Z) * zstride + (x - node_min.X); u32 index_data = vm->m_area.index(x, node_min.Y - 1, z); // Mapgens concern themselves with stone and water. for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { float fill = 0.f; fill = noise_inter_valley_fill->result[index_3d]; if (vm->m_data[index_data].getContent() == CONTENT_IGNORE) { bool river = (river_y > surface_y); if (river && y == surface_y) { // river bottom vm->m_data[index_data] = n_sand; } else if (river && y <= surface_y) { // ground vm->m_data[index_data] = n_stone; } else if (river && y < river_y) { // river vm->m_data[index_data] = n_river_water; } else if ((!river) && myround(fill * slope) >= y - surface_y) { // ground vm->m_data[index_data] = n_stone; heightmap[index_2d] = surface_max_y = y; } else if (y <= water_level) { // sea vm->m_data[index_data] = n_water; } else { vm->m_data[index_data] = n_air; } } vm->m_area.add_y(em, index_data, 1); index_3d += ystride; } // Although the original valleys adjusts humidity by distance // from seawater, this causes problems with the default biomes. // Adjust only by freshwater proximity. const float humidity_offset = 0.8f; // derived by testing if (humid_rivers) noise_humidity->result[index_2d] *= (1 + pow(0.5f, MYMAX((surface_max_y - noise_rivers->result[index_2d]) / 3.f, 0.f))) * humidity_offset; // Assign the heat adjusted by altitude. if (use_altitude_chill && surface_max_y > 0) noise_heat->result[index_2d] *= pow(0.5f, (surface_max_y - altitude_chill / 3.f) / altitude_chill); } return surface_max_y; }
int MapgenMath::generateTerrain() { MapNode n_air(CONTENT_AIR, LIGHT_SUN), n_water_source(c_water_source, LIGHT_SUN); MapNode n_stone(c_stone, LIGHT_SUN); u32 index = 0; v3s16 em = vm->m_area.getExtent(); #if 1 /* debug v3f vec0 = (v3f(node_min.X, node_min.Y, node_min.Z) - center) * scale ; errorstream << " X=" << node_min.X << " Y=" << node_min.Y << " Z=" << node_min.Z //<< " N="<< mengersponge(vec0.X, vec0.Y, vec0.Z, distance, iterations) << " N=" << (*func)(vec0.X, vec0.Y, vec0.Z, distance, iterations) << " Sc=" << scale << " gen=" << params["generator"].asString() << " J=" << Json::FastWriter().write(params) << std::endl; */ for (s16 z = node_min.Z; z <= node_max.Z; z++) { for (s16 x = node_min.X; x <= node_max.X; x++, index++) { //Biome *biome = bmgr->biomes[biomemap[index]]; u32 i = vm->m_area.index(x, node_min.Y, z); for (s16 y = node_min.Y; y <= node_max.Y; y++) { v3f vec = (v3f(x, y, z) - center) * scale ; double d = (*func)(vec.X, vec.Y, vec.Z, distance, iterations); if ((!invert && d > 0) || (invert && d == 0) ) { if (vm->m_data[i].getContent() == CONTENT_IGNORE) // vm->m_data[i] = (y > water_level + biome->filler) ? // MapNode(biome->c_filler) : n_stone; vm->m_data[i] = n_stone; } else if (y <= water_level) { vm->m_data[i] = n_water_source; } else { vm->m_data[i] = n_air; } vm->m_area.add_y(em, i, 1); } } } #endif #if 0 // mandelbulber, unfinished but works sFractal par; par.doubles.N = 10; par.doubles.power = 9.0; par.doubles.foldingSphericalFixed = 1.0; par.doubles.foldingSphericalMin = 0.5; //no par.formula = smoothMandelbox; par.doubles.N = 40; invert = 0;//no par.mandelbox.doubles.sharpness = 3.0; par.mandelbox.doubles.scale = 1; par.mandelbox.doubles.sharpness = 2; par.mandelbox.doubles.foldingLimit = 1.0; par.mandelbox.doubles.foldingValue = 2; //ok par.formula = mandelboxVaryScale4D; par.doubles.N = 50; scale = 5; invert = 1; //ok par.mandelbox.doubles.vary4D.scaleVary = 0.1; par.mandelbox.doubles.vary4D.fold = 1; par.mandelbox.doubles.vary4D.rPower = 1; par.mandelbox.doubles.vary4D.minR = 0.5; par.mandelbox.doubles.vary4D.wadd = 0; par.doubles.constantFactor = 1.0; par.formula = menger_sponge; par.doubles.N = 15; invert = 0; size = 30000; center = v3f(-size / 2, -size + (-2 * -invert), 2); scale = (double)1 / size; //ok //double tresh = 1.5; //par.formula = mandelbulb2; par.doubles.N = 10; scale = (double)1/size; invert=1; center = v3f(5,-size-5,0); //ok //par.formula = hypercomplex; par.doubles.N = 20; scale = 0.0001; invert=1; center = v3f(0,-10001,0); //(double)50 / max_r; //no par.formula = trig_DE; par.doubles.N = 5; scale = (double)10; invert=1; //no par.formula = trig_optim; scale = (double)10; par.doubles.N = 4; //par.formula = mandelbulb2; scale = (double)1/10000; par.doubles.N = 10; invert = 1; center = v3f(1,-4201,1); //ok // no par.formula = tglad; //par.formula = xenodreambuie; par.juliaMode = 1; par.doubles.julia.x = -1; par.doubles.power = 2.0; center=v3f(-size/2,-size/2-5,5); //ok par.mandelbox.doubles.vary4D.scaleVary = 0.1; par.mandelbox.doubles.vary4D.fold = 1; par.mandelbox.doubles.vary4D.minR = 0.5; par.mandelbox.doubles.vary4D.rPower = 1; par.mandelbox.doubles.vary4D.wadd = 0; //no par.formula = mandelboxVaryScale4D; par.doubles.cadd = -1.3; //par.formula = aexion; // ok but center //par.formula = benesi; par.doubles.N = 10; center = v3f(0,0,0); invert = 0; //ok // par.formula = bristorbrot; //ok v3f vec0(node_min.X, node_min.Y, node_min.Z); vec0 = (vec0 - center) * scale ; errorstream << " X=" << node_min.X << " Y=" << node_min.Y << " Z=" << node_min.Z << " N=" << Compute<normal>(CVector3(vec0.X, vec0.Y, vec0.Z), par) //<<" F="<< Compute<fake_AO>(CVector3(node_min.X,node_min.Y,node_min.Z), par) //<<" L="<<node_min.getLength()<< " -="<<node_min.getLength() - Compute<normal>(CVector3(node_min.X,node_min.Y,node_min.Z), par) << " Sc=" << scale << std::endl; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 y = node_min.Y; y <= node_max.Y; y++) { u32 i = vm->m_area.index(node_min.X, y, z); for (s16 x = node_min.X; x <= node_max.X; x++) { v3f vec(x, y, z); vec = (vec - center) * scale ; //double d = Compute<fake_AO>(CVector3(x,y,z), par); double d = Compute<normal>(CVector3(vec.X, vec.Y, vec.Z), par); //if (d>0) // errorstream << " d=" << d <<" v="<< vec.getLength()<< " -="<< vec.getLength() - d <<" yad=" //<< Compute<normal>(CVector3(x,y,z), par) //<< std::endl; if ((!invert && d > 0) || (invert && d == 0)/*&& vec.getLength() - d > tresh*/ ) { if (vm->m_data[i].getContent() == CONTENT_IGNORE) vm->m_data[i] = n_stone; } else { vm->m_data[i] = n_air; } i++; } } #endif return 0; }
int MapgenValleys::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_river_water(c_river_water_source); MapNode n_sand(c_sand); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); s16 surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index_2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index_2d++) { s16 river_y = floor(noise_rivers->result[index_2d]); s16 surface_y = floor(noise_terrain_height->result[index_2d]); float slope = noise_inter_valley_slope->result[index_2d]; heightmap[index_2d] = surface_y; if (surface_y > surface_max_y) surface_max_y = surface_y; u32 index_3d = 0; if (!fast_terrain) index_3d = (z - node_min.Z) * zstride + (x - node_min.X); u32 index_data = vm->m_area.index(x, node_min.Y - 1, z); // Mapgens concern themselves with stone and water. for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { float fill = 0.f; if (!fast_terrain) fill = noise_inter_valley_fill->result[index_3d]; if (vm->m_data[index_data].getContent() == CONTENT_IGNORE) { bool river = (river_y > surface_y); if (river && y == surface_y) { // river bottom vm->m_data[index_data] = n_sand; } else if ((fast_terrain || river) && y <= surface_y) { // ground vm->m_data[index_data] = n_stone; } else if (river && y < river_y) { // river vm->m_data[index_data] = n_river_water; } else if ((!fast_terrain) && (!river) && round(fill * slope) >= y - surface_y) { // ground (slow method) vm->m_data[index_data] = n_stone; heightmap[index_2d] = surface_max_y = y; } else if (y <= water_level) { // sea vm->m_data[index_data] = n_water; } else { vm->m_data[index_data] = n_air; } } vm->m_area.add_y(em, index_data, 1); if (!fast_terrain) index_3d += ystride; } if (!fast_terrain) { // Assign the humidity adjusted by water proximity. noise_humidity->result[index_2d] = humidityByTerrain( noise_humidity->result[index_2d], surface_max_y, noise_rivers->result[index_2d], noise_valley_depth->result[index_2d]); // Assign the heat adjusted by altitude. See humidity, above. if (use_altitude_chill && surface_max_y > 0) noise_heat->result[index_2d] *= pow(0.5f, (surface_max_y - altitude_chill / 3.f) / altitude_chill); } } return surface_max_y; }
void MapgenV7::generateBiomes() { if (node_max.Y < water_level) return; MapNode n_air(CONTENT_AIR); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { Biome *biome = (Biome *)bmgr->get(biomemap[index]); s16 dfiller = biome->depth_filler + noise_filler_depth->result[index]; s16 y0_top = biome->depth_top; s16 y0_filler = biome->depth_top + dfiller; s16 shore_max = water_level + biome->height_shore; s16 depth_water_top = biome->depth_water_top; s16 nplaced = 0; u32 i = vm->m_area.index(x, node_max.Y, z); content_t c_above = vm->m_data[i + em.X].getContent(); bool have_air = c_above == CONTENT_AIR; for (s16 y = node_max.Y; y >= node_min.Y; y--) { content_t c = vm->m_data[i].getContent(); // It could be the case that the elevation is equal to the chunk // boundary, but the chunk above has not been generated yet if (y == node_max.Y && c_above == CONTENT_IGNORE && y == heightmap[index] && c == c_stone) { int j = (z - node_min.Z) * zstride + (y - node_min.Y) * ystride + (x - node_min.X); have_air = !getMountainTerrainFromMap(j, index, y); } if (c == c_stone && have_air) { content_t c_below = vm->m_data[i - em.X].getContent(); if (c_below != CONTENT_AIR) { if (nplaced < y0_top) { if(y < water_level) vm->m_data[i] = MapNode(biome->c_underwater); else if(y <= shore_max) vm->m_data[i] = MapNode(biome->c_shore_top); else vm->m_data[i] = MapNode(biome->c_top); nplaced++; } else if (nplaced < y0_filler && nplaced >= y0_top) { if(y < water_level) vm->m_data[i] = MapNode(biome->c_underwater); else if(y <= shore_max) vm->m_data[i] = MapNode(biome->c_shore_filler); else vm->m_data[i] = MapNode(biome->c_filler); nplaced++; } else if (c == c_stone) { have_air = false; nplaced = 0; vm->m_data[i] = MapNode(biome->c_stone); } else { have_air = false; nplaced = 0; } } else if (c == c_stone) { have_air = false; nplaced = 0; vm->m_data[i] = MapNode(biome->c_stone); } } else if (c == c_stone) { have_air = false; nplaced = 0; vm->m_data[i] = MapNode(biome->c_stone); } else if (c == c_water_source) { have_air = true; nplaced = 0; if(y > water_level - depth_water_top) vm->m_data[i] = MapNode(biome->c_water_top); else vm->m_data[i] = MapNode(biome->c_water); } else if (c == CONTENT_AIR) { have_air = true; nplaced = 0; } vm->m_area.add_y(em, i, -1); } } }