narfStruct narf(const sensor_msgs::PointCloud2::Ptr p)
{
	//sensor_msgs::PointCloud2::Ptr s = msg.instantiate<sensor_msgs::PointCloud2>();
	pcl::PointCloud<pcl::PointXYZ> point_cloud;
    pcl::fromROSMsg (*p, point_cloud);

	pcl::RangeImage range_image;
	point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;
	range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
				   scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);

	// Extract NARF keypoints
	pcl::RangeImageBorderExtractor range_image_border_extractor;
	pcl::NarfKeypoint narf_keypoint_detector;
	narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);
	narf_keypoint_detector.setRangeImage (&range_image);
	narf_keypoint_detector.getParameters ().support_size = support_size;
		
	pcl::PointCloud<int> keypoint_indices;
	narf_keypoint_detector.compute (keypoint_indices);

	// Extract NARF descriptors for interest points
	std::vector<int> keypoint_indices2;
	keypoint_indices2.resize (keypoint_indices.points.size ());
	for (unsigned int i=0; i<keypoint_indices.size (); ++i){ // This step is necessary to get the right vector type
        keypoint_indices2[i]=keypoint_indices.points[i];    }

	pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);
	narf_descriptor.getParameters ().support_size = support_size;
	narf_descriptor.getParameters ().rotation_invariant = rotation_invariant;
    narfStruct ns;
    //pcl::PointCloud<pcl::Narf36> narf_descriptors;
	
    narf_descriptor.compute (ns.narf_descriptors);
    std::cout << "\nNarf:[36 x " <<ns.narf_descriptors.size ()<< "]\t";

    ns.rangeImg = range_image;

    return ns;
}
Beispiel #2
0
// ----------------------------------------------------------------------------
void loadFeatures3d(BoWFeatures &features)
{
    typedef pcl::PointXYZ PointType;
    float angular_resolution = pcl::deg2rad (0.15f);
    float support_size = 0.1f;

    features.clear();
    features.reserve(files_list_3d.size());
    
    float noise_level = 0.0f;
    float min_range = 0.0f;
    int border_size = 1;
    
    double acc_media = 0,media=0,scarti=0,varianza=0;
    //pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
    pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
    pcl::RangeImage::Ptr range_image_ptr (new pcl::RangeImage);
    pcl::RangeImage& range_image = *range_image_ptr;
    
    for (int i = 0; i < files_list_3d.size(); ++i) {
        clock_t begin = clock();
        pcl::PointCloud<PointType>::Ptr point_cloud_wf (new pcl::PointCloud<PointType>);
        pcl::PointCloud<PointType>::Ptr point_cloud (new pcl::PointCloud<PointType>);
        
        pcl::io::loadPCDFile (files_list_3d[i], *point_cloud_wf);

        //filtraggio valori NaN
        std::vector<int> indices;
        pcl::removeNaNFromPointCloud (*point_cloud_wf,*point_cloud_wf,indices);
        pcl::VoxelGrid<PointType> sor;
        sor.setInputCloud (point_cloud_wf);
        sor.setLeafSize (0.01f, 0.01f, 0.01f);
        sor.filter (*point_cloud);
        cout << "Estrazione NARF: " << files_list_3d[i] ;
        
        Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity());
        scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f ((*point_cloud).sensor_origin_[0],
                                             (*point_cloud).sensor_origin_[1],
                (*point_cloud).sensor_origin_[2])) *
                Eigen::Affine3f ((*point_cloud).sensor_orientation_);
       // pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
        range_image.max_no_of_threads = 2;
        range_image.createFromPointCloud ((*point_cloud),angular_resolution,pcl::deg2rad(360.0f),pcl::deg2rad(180.0f),scene_sensor_pose,coordinate_frame,noise_level,min_range,border_size);
        range_image.setUnseenToMaxRange();
        //saveRangeImagePlanarFilePNG(boost::lexical_cast<string>(i),range_image);
        
        //range_image_widget.showRangeImage (range_image);
        //range_image_widget.spin();
        pcl::RangeImageBorderExtractor range_image_border_extractor;
        pcl::NarfKeypoint narf_keypoint_detector;
        narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);
        narf_keypoint_detector.setRangeImage (&range_image);
        narf_keypoint_detector.getParameters().support_size = support_size;
        //euristiche, per avvicinarsi al real time
        narf_keypoint_detector.getParameters().max_no_of_threads = 2;
        narf_keypoint_detector.getParameters().calculate_sparse_interest_image=false; //false
        narf_keypoint_detector.getParameters().use_recursive_scale_reduction=true; //true
        //narf_keypoint_detector.getParameters().add_points_on_straight_edges=true;
        
        pcl::PointCloud<int> keypoint_indices;
        narf_keypoint_detector.compute (keypoint_indices);
        
        vector<int> keypoint_indices2;
        keypoint_indices2.resize (keypoint_indices.points.size ());
        for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector type
            keypoint_indices2[i]=keypoint_indices.points[i];
        pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);
        narf_descriptor.getParameters().support_size = support_size;
        narf_descriptor.getParameters().rotation_invariant = true;
        pcl::PointCloud<pcl::Narf36> narf_descriptors;
        
        narf_descriptor.compute (narf_descriptors);
        
        clock_t end = clock();
        double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC;
        media = media + elapsed_secs;
        acc_media = media / (i+1);
        cout << "media: " << acc_media<<endl;
        scarti += pow(elapsed_secs-acc_media,2);
        varianza = sqrt(scarti/(i+1));
        cout << "varianza: " << varianza<<endl; 
        cout << ". Estratti "<<narf_descriptors.size ()<<" descrittori. Punti: " <<keypoint_indices.points.size ()<< "."<<endl;
        
        features.push_back(vector<vector<float> >());
        for (int p = 0; p < narf_descriptors.size(); p++) {
            vector<float> flot;
            copy(narf_descriptors[p].descriptor, narf_descriptors[p].descriptor+FNarf::L, back_inserter(flot));
            features.back().push_back(flot);
            flot.clear();
        } 
        
        indices.clear();
        range_image_border_extractor.clearData();
        narf_keypoint_detector.clearData();
        (*range_image_ptr).clear();
        keypoint_indices.clear();
        keypoint_indices2.clear();
        (*point_cloud).clear();
        (*point_cloud_wf).clear();
        range_image.clear();
        narf_descriptors.clear();
        narf_descriptor = NULL;
    }
    cout << "Estrazione terminata." << endl;
}
// --------------
// -----Main-----
// --------------
int
main (int argc, char** argv)
{
    // --------------------------------------
    // -----Parse Command Line Arguments-----
    // --------------------------------------
    if (pcl::console::find_argument (argc, argv, "-h") >= 0)
    {
        printUsage (argv[0]);
        return 0;
    }
    if (pcl::console::find_argument (argc, argv, "-m") >= 0)
    {
        setUnseenToMaxRange = true;
        cout << "Setting unseen values in range image to maximum range readings.\n";
    }
    if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0)
        cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".\n";
    int tmp_coordinate_frame;
    if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
    {
        coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
        cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";
    }
    if (pcl::console::parse (argc, argv, "-s", support_size) >= 0)
        cout << "Setting support size to "<<support_size<<".\n";
    if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)
        cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";
    angular_resolution = pcl::deg2rad (angular_resolution);

    // ------------------------------------------------------------------
    // -----Read pcd file or create example point cloud if not given-----
    // ------------------------------------------------------------------
    pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);
    pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
    pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;
    Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
    std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
    if (!pcd_filename_indices.empty ())
    {
        std::string filename = argv[pcd_filename_indices[0]];
        if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
        {
            cerr << "Was not able to open file \""<<filename<<"\".\n";
            printUsage (argv[0]);
            return 0;
        }
        scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
                                             point_cloud.sensor_origin_[1],
                                             point_cloud.sensor_origin_[2])) *
                            Eigen::Affine3f (point_cloud.sensor_orientation_);
        std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";
        if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)
            std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";
    }
    else
    {
        setUnseenToMaxRange = true;
        cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n";
        for (float x=-0.5f; x<=0.5f; x+=0.01f)
        {
            for (float y=-0.5f; y<=0.5f; y+=0.01f)
            {
                PointType point;
                point.x = x;
                point.y = y;
                point.z = 2.0f - y;
                point_cloud.points.push_back (point);
            }
        }
        point_cloud.width = (int) point_cloud.points.size ();
        point_cloud.height = 1;
    }

    // -----------------------------------------------
    // -----Create RangeImage from the PointCloud-----
    // -----------------------------------------------
    float noise_level = 0.0;
    float min_range = 0.0f;
    int border_size = 1;
    boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
    pcl::RangeImage& range_image = *range_image_ptr;
    range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                      scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
    range_image.integrateFarRanges (far_ranges);
    if (setUnseenToMaxRange)
        range_image.setUnseenToMaxRange ();

    // --------------------------------------------
    // -----Open 3D viewer and add point cloud-----
    // --------------------------------------------
    pcl::visualization::PCLVisualizer viewer ("3D Viewer");
    viewer.setBackgroundColor (1, 1, 1);
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);
    viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
    viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");
    //viewer.addCoordinateSystem (1.0f);
    //PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);
    //viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");
    viewer.initCameraParameters ();
    setViewerPose (viewer, range_image.getTransformationToWorldSystem ());

    // --------------------------
    // -----Show range image-----
    // --------------------------
    pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
    range_image_widget.showRangeImage (range_image);

    // --------------------------------
    // -----Extract NARF keypoints-----
    // --------------------------------
    pcl::RangeImageBorderExtractor range_image_border_extractor;
    pcl::NarfKeypoint narf_keypoint_detector;
    narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);
    narf_keypoint_detector.setRangeImage (&range_image);
    narf_keypoint_detector.getParameters ().support_size = support_size;

    pcl::PointCloud<int> keypoint_indices;
    narf_keypoint_detector.compute (keypoint_indices);
    std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.\n";

    // ----------------------------------------------
    // -----Show keypoints in range image widget-----
    // ----------------------------------------------
    //for (size_t i=0; i<keypoint_indices.points.size (); ++i)
    //range_image_widget.markPoint (keypoint_indices.points[i]%range_image.width,
    //keypoint_indices.points[i]/range_image.width);

    // -------------------------------------
    // -----Show keypoints in 3D viewer-----
    // -------------------------------------
    pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints_ptr (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>& keypoints = *keypoints_ptr;
    keypoints.points.resize (keypoint_indices.points.size ());
    for (size_t i=0; i<keypoint_indices.points.size (); ++i)
        keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);
    viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, "keypoints");
    viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints");

    // ------------------------------------------------------
    // -----Extract NARF descriptors for interest points-----
    // ------------------------------------------------------
    std::vector<int> keypoint_indices2;
    keypoint_indices2.resize (keypoint_indices.points.size ());
    for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector type
        keypoint_indices2[i]=keypoint_indices.points[i];
    pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);
    narf_descriptor.getParameters ().support_size = support_size;
    narf_descriptor.getParameters ().rotation_invariant = rotation_invariant;
    pcl::PointCloud<pcl::Narf36> narf_descriptors;
    narf_descriptor.compute (narf_descriptors);
    cout << "Extracted "<<narf_descriptors.size ()<<" descriptors for "
         <<keypoint_indices.points.size ()<< " keypoints.\n";

    //--------------------
    // -----Main loop-----
    //--------------------
    while (!viewer.wasStopped ())
    {
        range_image_widget.spinOnce ();  // process GUI events
        viewer.spinOnce ();
        pcl_sleep(0.01);
    }
}