Beispiel #1
0
int
inlineMALblock(MalBlkPtr mb, int pc, MalBlkPtr mc)
{
	int i, k, l, n;
	InstrPtr *ns, p,q;
	int *nv, *np = NULL;

	p = getInstrPtr(mb, pc);
	q = getInstrPtr(mc, 0);
	ns = GDKzalloc((l = (mb->ssize + mc->ssize + p->retc - 3)) * sizeof(InstrPtr));
	if (ns == NULL)
		return -1;
	if ( mc->ptop > 0){
		np = (int*) GDKmalloc(mc->ptop * sizeof(int));
		if (np == 0){
			GDKfree(ns);
			return -1;
		}
	}
	nv = (int*) GDKmalloc(mc->vtop * sizeof(int));
	if (nv == 0){
		GDKfree(ns);
		if( np)
			GDKfree(np);
		return -1;
	}

	/* add all properties of the new block to the target environment */
	for (n = 0; n < mc->ptop; n++) {
		int propid = newProperty(mb);

		if (propid < 0) {
			assert(0);
			return -1;
		}
		np[n] = propid; 
		mb->prps[propid].idx = mc->prps[n].idx;
		mb->prps[propid].op = mc->prps[n].op;
		mb->prps[propid].var = mc->prps[n].var; /* fixed later */
	}

	/* add all variables of the new block to the target environment */
	for (n = 0; n < mc->vtop; n++) {
		VarPtr ov, v;

		if (isExceptionVariable(mc->var[n]->name)) {
			nv[n] = newVariable(mb,GDKstrdup(mc->var[n]->name),TYPE_str);
			if (isVarUDFtype(mc,n))
				setVarUDFtype(mb,nv[n]);
			if (isVarUsed(mc,n))
				setVarUsed(mb,nv[n]);
		} else if (isVarTypedef(mc,n)) {
			nv[n] = newTypeVariable(mb,getVarType(mc,n));
		} else if (isVarConstant(mc,n)) {
			nv[n] = cpyConstant(mb,getVar(mc,n));
		} else {
			nv[n] = newTmpVariable(mb, getVarType(mc, n));
			if (isVarUDFtype(mc,n))
				setVarUDFtype(mb,nv[n]);
			if (isVarUsed(mc,n))
				setVarUsed(mb,nv[n]);
		}
		/* remap the properties */
		ov = getVar(mc, n);
		v = getVar(mb, nv[n]);
		if (ov->propc > v->maxprop) {
			int size = sizeof(VarRecord);
        		VarPtr vnew = (VarPtr) GDKzalloc(size + ov->propc * sizeof(int));
			memcpy((char*) vnew, (char*) v, size);
			vnew->maxprop = ov->propc;
			mb->var[nv[n]] = vnew;
			GDKfree(v);
			v = getVar(mb, nv[n]);
		}
		for (i = 0; i < ov->propc; i++) 
			v->prps[i] = np[ov->prps[i]];
		v->propc = ov->propc;
	}

	/* change the property variables to the new context */
	for (n = 0; n < mc->ptop; n++) {
		if (mc->prps[n].var)
			mb->prps[np[n]].var = nv[mc->prps[n].var];
		assert( mb->prps[np[n]].var >= 0);
	}

	/* use an alias mapping to keep track of the actual arguments */
	for (n = p->retc; n < p->argc; n++)
		nv[getArg(q,n)] = getArg(p, n);

	k = 0;
	/* find the return statement of the inline function */
	for (i = 1; i < mc->stop - 1; i++) {
		q = mc->stmt[i];
		if( q->barrier== RETURNsymbol || q->barrier== YIELDsymbol){
			/* add the mapping of the return variables */
			for(n=0; n<p->retc; n++)
				nv[getArg(q,n)] = getArg(p,n);
		}
	}

	/* copy the stable part */
	for (i = 0; i < pc; i++)
		ns[k++] = mb->stmt[i];

	for (i = 1; i < mc->stop - 1; i++) {
		q = mc->stmt[i];
		if( q->token == ENDsymbol)
			break;

		/* copy the instruction and fix variable references */
		ns[k] = copyInstruction(q);
		for (n = 0; n < q->argc; n++)
			getArg(ns[k], n) = nv[getArg(q, n)];

		if (q->barrier == RETURNsymbol || q->barrier == YIELDsymbol) {
			for(n=0; n<q->retc; n++)
				clrVarFixed(mb,getArg(ns[k],n)); /* for typing */
			setModuleId(ns[k],getModuleId(q));
			setFunctionId(ns[k],getFunctionId(q));
			ns[k]->barrier = 0;
			ns[k]->token = ASSIGNsymbol;
		}
		k++;
	} 

	/* copy the remainder of the stable part */
	freeInstruction(p);
	for (i = pc + 1; i < mb->stop; i++){
		ns[k++] = mb->stmt[i];
	}
	/* remove any free instruction */
	for(; i<mb->ssize; i++)
	if( mb->stmt[i]){
		freeInstruction(mb->stmt[i]);
		mb->stmt[i]= 0;
	}
	GDKfree(mb->stmt);
	mb->stmt = ns;

	mb->ssize = l;
	mb->stop = k;
	GDKfree(np);
	GDKfree(nv);
	return pc;
}
Beispiel #2
0
int
OPTpushrangesImplementation(Client cntxt, MalBlkPtr mb, MalStkPtr stk, InstrPtr pci)
{
	int i,j, limit,actions=0;
	InstrPtr p, *old;
	int x,y,z;
	Range range;

	if( mb->errors) 
		return 0;

	range= (Range) GDKzalloc(mb->vtop * sizeof(RangeRec));
	if (range == NULL)
		return 0;
	OPTDEBUGpushranges
		mnstr_printf(cntxt->fdout,"#Range select optimizer started\n");
	(void) stk;
	(void) pci;
	
	limit = mb->stop;
	old = mb->stmt;
	/*
	 * In phase I we collect information about constants
	 */
	for (i = 0; i < limit; i++) {
		p = old[i];
		if( p->barrier) 
			break; /* end of optimizer */
		for(j=p->retc; j< p->argc; j++)
			range[getArg(p,j)].used++;
		for(j=0; j<p->retc; j++){
			range[getArg(p,j)].lastupdate= i;
			if( range[getArg(p,j)].lastrange == 0)
				range[getArg(p,j)].lastrange= i;
		} 
		if( getModuleId(p)== algebraRef && 
			( getFunctionId(p)== selectRef || getFunctionId(p)== uselectRef) ){
			/*
			 * The operation X:= algebra.select(Y,L,H,Li,Hi) is analysed.
			 * First, we attempt to propagate the range known for Y onto the
			 * requested range of X. This may lead to smaller range of
			 * even the conclusion that X is necessarily empty.
			 * Of course, only under the condition that Y has not been changed by a
			 * side-effect since it was bound to X.
			 */
			x= getArg(p,1);
			y= getArg(p,2);
			if( range[x].lcst && isVarConstant(mb,y) ){
				/* merge lowerbound */
				if( ATOMcmp( getVarGDKType(mb,y), 
						VALptr( &getVarConstant(mb,range[x].lcst)), 
						VALptr( &getVarConstant(mb,y)) ) > 0){
					getArg(p,2)= range[x].lcst;
					z= range[x].srcvar;
					if( getArg(p,1) == x && 
						range[z].lastupdate == range[z].lastrange){
						getArg(p,1) = z;
						actions++;
					}
				}
				y= getArg(p,3);
				/* merge higherbound */
				if( ATOMcmp( getVarGDKType(mb,y), 
						VALptr( &getVarConstant(mb,range[x].hcst)), 
						VALptr( &getVarConstant(mb,y)) ) < 0 ||
					ATOMcmp( getVarGDKType(mb,y),
						VALptr( &getVarConstant(mb,y)),
						 ATOMnilptr(getVarType(mb,y)) ) == 0){
					getArg(p,3)= range[x].hcst;
					z= range[x].srcvar;
					if( getArg(p,1) == x && range[z].lastupdate == range[z].lastrange){
						getArg(p,1) = z;
						actions++;
					}
				}
			}
			/*
			 * The second step is to assign the result of this exercise to the
			 * result variable.
			 */
			x= getArg(p,0);
			if( isVarConstant(mb, getArg(p,2)) ){
				range[x].lcst = getArg(p,2);
				range[x].srcvar= getArg(p,1);
				range[x].lastupdate= range[x].lastrange = i;
			}
			if( isVarConstant(mb, getArg(p,3)) ){
				range[x].hcst = getArg(p,3);
				range[x].srcvar= getArg(p,1);
				range[x].lastupdate= range[x].lastrange = i;
			}
			/*
			 * If both range bounds are constant, we can also detect empty results.
			 * It is empty if L> H or when L=H and the bounds are !(true,true).
			 */
			x= getArg(p,2);
			y= getArg(p,3);
			if( isVarConstant(mb, x)  &&
				isVarConstant(mb, y)  ){
				z =ATOMcmp( getVarGDKType(mb,y),
                        VALptr( &getVarConstant(mb,x)),
                        VALptr( &getVarConstant(mb,y)));
				x=  p->argc > 4;
				x= x && isVarConstant(mb,getArg(p,4));
				x= x && isVarConstant(mb,getArg(p,5));
				x= x && getVarConstant(mb,getArg(p,4)).val.btval;
				x= x && getVarConstant(mb,getArg(p,5)).val.btval;
				if( z > 0 || (z==0 && p->argc>4 && !x)) {
					int var = getArg(p, 0);
					wrd zero = 0;
					ValRecord v, *vp;

					vp = VALset(&v, TYPE_wrd, &zero);
					varSetProp(mb, var, rowsProp, op_eq, vp);
					/* create an empty replacement */
					x = getArgType(mb, p, 1);
					p->argc=1;
					getModuleId(p)= batRef;
					getFunctionId(p)= newRef;
					p= pushArgument(mb,p, newTypeVariable(mb, getHeadType(x)));
					(void) pushArgument(mb,p, newTypeVariable(mb, getTailType(x)));
					actions++;
				}
			}
		}
	}
	OPTDEBUGpushranges
		for(j=0; j< mb->vtop; j++)
		if( range[j].used )
			printRange(cntxt, mb,range,j);
	/*
	 * Phase II, if we succeeded in pushing constants around and
	 * changing instructions, we might as well try once more to perform
	 * aliasRemoval, constantExpression, and pushranges.
	 */
	GDKfree(range);
	return actions;
}