nlopt_result
NLOPT_STDCALL nlopt_minimize_econstrained(
     nlopt_algorithm algorithm,
     int n, nlopt_func_old f, void *f_data,
     int m, nlopt_func_old fc, void *fc_data_, ptrdiff_t fc_datum_size,
     int p, nlopt_func_old h, void *h_data_, ptrdiff_t h_datum_size,
     const double *lb, const double *ub, /* bounds */
     double *x, /* in: initial guess, out: minimizer */
     double *minf, /* out: minimum */
     double minf_max, double ftol_rel, double ftol_abs,
     double xtol_rel, const double *xtol_abs,
     double htol_rel, double htol_abs,
     int maxeval, double maxtime)
{
     char *fc_data = (char *) fc_data_;
     char *h_data = (char *) h_data_;
     nlopt_opt opt;
     nlopt_result ret;
     int i;

     if (n < 0 || m < 0 || p < 0) return NLOPT_INVALID_ARGS;

     opt = nlopt_create(algorithm, (unsigned) n);
     if (!opt) return NLOPT_INVALID_ARGS;

     ret = nlopt_set_min_objective(opt, (nlopt_func) f, f_data);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }

     for (i = 0; i < m; ++i) {
	  ret = nlopt_add_inequality_constraint(opt, (nlopt_func) fc, 
						fc_data + i*fc_datum_size,
						0.0);
	  if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }
     }

     (void) htol_rel; /* unused */
     for (i = 0; i < p; ++i) {
	  ret = nlopt_add_equality_constraint(opt, (nlopt_func) h, 
					      h_data + i*h_datum_size,
					      htol_abs);
	  if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }
     }

     ret = nlopt_set_lower_bounds(opt, lb);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }
     ret = nlopt_set_upper_bounds(opt, ub);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }

     ret = nlopt_set_stopval(opt, minf_max);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }

     ret = nlopt_set_ftol_rel(opt, ftol_rel);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }
     ret = nlopt_set_ftol_abs(opt, ftol_abs);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }

     ret = nlopt_set_xtol_rel(opt, xtol_rel);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }
     ret = nlopt_set_xtol_abs(opt, xtol_abs);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }
     
     ret = nlopt_set_maxeval(opt, maxeval);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }

     ret = nlopt_set_maxtime(opt, maxtime);
     if (ret != NLOPT_SUCCESS) { nlopt_destroy(opt); return ret; }

     ret = nlopt_optimize(opt, x, minf);

     nlopt_destroy(opt);
     return ret;
}
void mexFunction(int nlhs, mxArray *plhs[],
                 int nrhs, const mxArray *prhs[])
{
     unsigned n;
     double *x, *x0, opt_f;
     nlopt_result ret;
     mxArray *x_mx, *mx;
     user_function_data d, dpre, *dfc = NULL, *dh = NULL;
     nlopt_opt opt = NULL;

     CHECK(nrhs == 2 && nlhs <= 3, "wrong number of arguments");

     /* options = prhs[0] */
     CHECK(mxIsStruct(prhs[0]), "opt must be a struct");
     
     /* x0 = prhs[1] */
     CHECK(mxIsDouble(prhs[1]) && !mxIsComplex(prhs[1])
	   && (mxGetM(prhs[1]) == 1 || mxGetN(prhs[1]) == 1),
	   "x must be real row or column vector");
     n = mxGetM(prhs[1]) * mxGetN(prhs[1]),
     x0 = mxGetPr(prhs[1]);

     CHECK(opt = make_opt(prhs[0], n), "error initializing nlopt options");

     d.neval = 0;
     d.verbose = (int) struct_val_default(prhs[0], "verbose", 0);
     d.opt = opt;

     /* function f = prhs[1] */
     mx = struct_funcval(prhs[0], "min_objective");
     if (!mx) mx = struct_funcval(prhs[0], "max_objective");
     CHECK(mx, "either opt.min_objective or opt.max_objective must exist");
     if (mxIsChar(mx)) {
	  CHECK(mxGetString(mx, d.f, FLEN) == 0,
		"error reading function name string (too long?)");
	  d.nrhs = 1;
	  d.xrhs = 0;
     }
     else {
	  d.prhs[0] = mx;
	  strcpy(d.f, "feval");
	  d.nrhs = 2;
	  d.xrhs = 1;
     }
     d.prhs[d.xrhs] = mxCreateDoubleMatrix(1, n, mxREAL);

     if ((mx = struct_funcval(prhs[0], "pre"))) {
	  CHECK(mxIsChar(mx) || mxIsFunctionHandle(mx),
		"pre must contain function handles or function names");
	  if (mxIsChar(mx)) {
	       CHECK(mxGetString(mx, dpre.f, FLEN) == 0,
                     "error reading function name string (too long?)");
	       dpre.nrhs = 2;
	       dpre.xrhs = 0;
	  }
	  else {
	       dpre.prhs[0] = mx;
	       strcpy(dpre.f, "feval");
	       dpre.nrhs = 3;
	       dpre.xrhs = 1;
	  }
	  dpre.verbose = d.verbose > 2;
	  dpre.opt = opt;
	  dpre.neval = 0;
	  dpre.prhs[dpre.xrhs] = d.prhs[d.xrhs];
	  dpre.prhs[d.xrhs+1] = mxCreateDoubleMatrix(1, n, mxREAL);
	  d.dpre = &dpre;

	  if (struct_funcval(prhs[0], "min_objective"))
	       nlopt_set_precond_min_objective(opt, user_function,user_pre,&d);
	  else
	       nlopt_set_precond_max_objective(opt, user_function,user_pre,&d);
     }
     else {
	  dpre.nrhs = 0;
	  if (struct_funcval(prhs[0], "min_objective"))
	       nlopt_set_min_objective(opt, user_function, &d);
	  else
	       nlopt_set_max_objective(opt, user_function, &d);
     }

     if ((mx = mxGetField(prhs[0], 0, "fc"))) {
	  int j, m;
	  double *fc_tol;
	  
	  CHECK(mxIsCell(mx), "fc must be a Cell array");
	  m = mxGetM(mx) * mxGetN(mx);;
	  dfc = (user_function_data *) mxCalloc(m, sizeof(user_function_data));
	  fc_tol = struct_arrval(prhs[0], "fc_tol", m, NULL);

	  for (j = 0; j < m; ++j) {
	       mxArray *fc = mxGetCell(mx, j);
	       CHECK(mxIsChar(fc) || mxIsFunctionHandle(fc),
		     "fc must contain function handles or function names");
	       if (mxIsChar(fc)) {
		    CHECK(mxGetString(fc, dfc[j].f, FLEN) == 0,
		     "error reading function name string (too long?)");
		    dfc[j].nrhs = 1;
		    dfc[j].xrhs = 0;
	       }
	       else {
		    dfc[j].prhs[0] = fc;
		    strcpy(dfc[j].f, "feval");
		    dfc[j].nrhs = 2;
		    dfc[j].xrhs = 1;
	       }
	       dfc[j].verbose = d.verbose > 1;
	       dfc[j].opt = opt;
	       dfc[j].neval = 0;
	       dfc[j].prhs[dfc[j].xrhs] = d.prhs[d.xrhs];
	       CHECK(nlopt_add_inequality_constraint(opt, user_function,
						     dfc + j,
						     fc_tol ? fc_tol[j] : 0)
		     > 0, "nlopt error adding inequality constraint");
	  }
     }


     if ((mx = mxGetField(prhs[0], 0, "h"))) {
	  int j, m;
	  double *h_tol;
	  
	  CHECK(mxIsCell(mx), "h must be a Cell array");
	  m = mxGetM(mx) * mxGetN(mx);;
	  dh = (user_function_data *) mxCalloc(m, sizeof(user_function_data));
	  h_tol = struct_arrval(prhs[0], "h_tol", m, NULL);

	  for (j = 0; j < m; ++j) {
	       mxArray *h = mxGetCell(mx, j);
	       CHECK(mxIsChar(h) || mxIsFunctionHandle(h),
		     "h must contain function handles or function names");
	       if (mxIsChar(h)) {
		    CHECK(mxGetString(h, dh[j].f, FLEN) == 0,
		     "error reading function name string (too long?)");
		    dh[j].nrhs = 1;
		    dh[j].xrhs = 0;
	       }
	       else {
		    dh[j].prhs[0] = h;
		    strcpy(dh[j].f, "feval");
		    dh[j].nrhs = 2;
		    dh[j].xrhs = 1;
	       }
	       dh[j].verbose = d.verbose > 1;
	       dh[j].opt = opt;
	       dh[j].neval = 0;
	       dh[j].prhs[dh[j].xrhs] = d.prhs[d.xrhs];
	       CHECK(nlopt_add_equality_constraint(opt, user_function,
						     dh + j,
						   h_tol ? h_tol[j] : 0)
		     > 0, "nlopt error adding equality constraint");
	  }
     }


     x_mx = mxCreateDoubleMatrix(mxGetM(prhs[1]), mxGetN(prhs[1]), mxREAL);
     x = mxGetPr(x_mx);
     memcpy(x, x0, sizeof(double) * n);

     ret = nlopt_optimize(opt, x, &opt_f);

     mxFree(dh);
     mxFree(dfc);
     mxDestroyArray(d.prhs[d.xrhs]);
     if (dpre.nrhs > 0) mxDestroyArray(dpre.prhs[d.xrhs+1]);
     nlopt_destroy(opt);

     plhs[0] = x_mx;
     if (nlhs > 1) {
	  plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
	  *(mxGetPr(plhs[1])) = opt_f;
     }
     if (nlhs > 2) {
	  plhs[2] = mxCreateDoubleMatrix(1, 1, mxREAL);
	  *(mxGetPr(plhs[2])) = (int) ret;
     }
}
Beispiel #3
0
double Geoometry_Optimization_With_Constraint(CMol *pMol)
{

	return (pMol->Cal_E(0));


	nlopt_opt opt, opt_AugLag;
	int Return_Opt, nAtom, nDim, i, iPos;
	double E_min, x[MAX_NUM_ATOM*3];

	Mol_ESP.Restrain_All_Torsions(1);	// apply soft restraints on all soft dihedrals

	nAtom = pMol->nAtom;
	nDim = 3 * nAtom;

	printf("\nMM before:\t");
	for(i=0; i<n_Phi; i++)	{
		printf("%3d %3d %3d %3d %8.4lf\n", DihList[i][0], DihList[i][1], DihList[i][2], DihList[i][3], 
			Mol_ESP.Query_Dihedral(DihList[i][0], DihList[i][1], DihList[i][2], DihList[i][3], 0, NULL));
	}

	double AUG_LAG_ICM_TOL = 1.0E-17;
	opt_AugLag = nlopt_create(NLOPT_LD_LBFGS_GEO, nDim);
	nlopt_set_min_objective(opt_AugLag, func_Geo_Opt_Constraint, pMol);

//	pMol->SavePdb("opt-free.pdb");

	for(i=0; i<pMol->nBond_Fixed; i++)	{
		int ret=0;
		pMol->Geo_Fix_r0[i].pMol = pMol;
		ret =nlopt_add_equality_constraint(opt_AugLag, Geo_Constraint_Bond, &(pMol->Geo_Fix_r0[i]), 2.0E-6);
		printf(" Fixing bond %d\n", i );
	}

	for(i=0; i<pMol->nAngle_Fixed; i++)	{
		int ret=0;
		pMol->Geo_Fix_theta0[i].pMol = pMol;
		ret=nlopt_add_equality_constraint(opt_AugLag, Geo_Constraint_Angle, &(pMol->Geo_Fix_theta0[i]), 2.0E-6);
		printf(" Fixing angle %d\n", i );
	}

	for(i=0; i<pMol->nPhi_Fixed; i++)	{
		int ret=0;
		pMol->Geo_Fix_phi0[i].pMol = pMol;
		ret=nlopt_add_equality_constraint(opt_AugLag, Geo_Constraint_Dihedral, &(pMol->Geo_Fix_phi0[i]), 2.0E-6);
		printf(" Fixing phi %d : %d\n", i, ret );
	}


	nlopt_set_xtol_rel(opt_AugLag, 2E-7);
	
	
//	opt = nlopt_create(NLOPT_LD_LBFGS_GEO, nDim);
//	opt = nlopt_create(NLOPT_LN_COBYLA, nDim);
//	nlopt_set_min_objective(opt, func_Geo_Opt_Constraint, pMol);
//	nlopt_set_xtol_rel(opt, 1E-7);

//	nlopt_set_local_optimizer(opt_AugLag, opt);
//	nlopt_destroy(opt);

	for(i=0; i<nAtom; i++)	{
		iPos = 3*i;
		x[iPos  ] = pMol->x[i];
		x[iPos+1] = pMol->y[i];
		x[iPos+2] = pMol->z[i];
	}
	
	Iter_Opt_Constrained = 0;
	Return_Opt = nlopt_optimize(opt_AugLag, x, &E_min);
	if (Return_Opt < 0) {
		printf("nlopt failed : %d\n", Return_Opt);
	}
//	else {
//		printf("After constrained optimization, E = %12.6lf\n", E_min);
//	}

	nlopt_destroy(opt_AugLag);

	printf("MM after:\t");
	for(i=0; i<n_Phi; i++)	{
		printf("%3d %3d %3d %3d %8.4lf\n", DihList[i][0], DihList[i][1], DihList[i][2], DihList[i][3], 
			Mol_ESP.Query_Dihedral(DihList[i][0], DihList[i][1], DihList[i][2], DihList[i][3], 0, NULL));
	}

	Mol_ESP.Restrain_All_Torsions(0);	// lift soft restraints on all soft dihedrals

	return (pMol->Cal_E(0));
}
int solve(const int *i, const int *j, const double *a, const double* b,const int num_constraints,   double *phi_dist_approximate, const double *phi_lb, const int s , const double constraint_eps, const double solution_convergence_eps, double * phi_result ) 
{
    if(num_constraints > s){
        std::cout<< "SHIT! too many constraints!";
        throw(0);
    }

    nlopt_opt opt;

    // use local optimization
    opt = nlopt_create(NLOPT_LD_SLSQP, s);
    //opt = nlopt_create(NLOPT_GN_ISRES, s);

    // set lower bound to not less than phi before damge evolution
    double *lb = new double[s];
    for(int k=0;k<s;k++) lb[k]=phi_lb[k];

    nlopt_set_lower_bounds(opt, lb);

    my_function_data func_data={phi_dist_approximate, s};
    nlopt_set_min_objective(opt, myfunc, &func_data);

    std::vector<my_constraint_data> data(num_constraints);
    for(int k=0;k<num_constraints;k++) {
        data[k].a=a[k];
        data[k].b=b[k];
        data[k].i=i[k];
        data[k].j=j[k];
        data[k].s=s;
        nlopt_add_equality_constraint(opt,myconstraint, &data[k],constraint_eps);
    }
    nlopt_set_xtol_rel(opt, solution_convergence_eps);

    double *x = new double[s];

    for(int k=0;k<s;k++) {
        x[k]= (phi_dist_approximate[k]<lb[k]) ? lb[k]:phi_dist_approximate[k];  // need to let the initialial guess in bound!!
    }
    double minf;
    
    int result= nlopt_optimize(opt,x,&minf);

    if(result > 0){
        for(int k=0; k<s;k++){
            phi_result[k]=x[k];
        }
    }
    else{
        std::cout<<"FATAL ERROR! Can't solve optimization.\n";
        std::cout<<result<<std::endl;
        std::cout<<minf<<std::endl;
    }

    nlopt_destroy(opt);


    delete []lb;
    delete []x;
    return result;

}