void setLocalConstraint(TransInfo *t, int mode, const char text[]) {
	if (t->flag & T_EDIT) {
		float obmat[3][3];
		copy_m3_m4(obmat, t->scene->obedit->obmat);
		normalize_m3(obmat);
		setConstraint(t, obmat, mode, text);
	}
	else {
		if (t->total == 1) {
			setConstraint(t, t->data->axismtx, mode, text);
		}
		else {
			strncpy(t->con.text + 1, text, 48);
			copy_m3_m3(t->con.mtx, t->data->axismtx);
			t->con.mode = mode;
			getConstraintMatrix(t);

			startConstraint(t);

			t->con.drawExtra = drawObjectConstraint;
			t->con.applyVec = applyObjectConstraintVec;
			t->con.applySize = applyObjectConstraintSize;
			t->con.applyRot = applyObjectConstraintRot;
			t->redraw = 1;
		}
	}
}
Beispiel #2
0
void ED_armature_transform_bones(struct bArmature *arm, float mat[4][4])
{
	EditBone *ebone;
	float scale = mat4_to_scale(mat);   /* store the scale of the matrix here to use on envelopes */
	float mat3[3][3];

	copy_m3_m4(mat3, mat);
	normalize_m3(mat3);
	/* Do the rotations */
	for (ebone = arm->edbo->first; ebone; ebone = ebone->next) {
		float tmat[3][3];
		
		/* find the current bone's roll matrix */
		ED_armature_ebone_to_mat3(ebone, tmat);
		
		/* transform the roll matrix */
		mul_m3_m3m3(tmat, mat3, tmat);
		
		/* transform the bone */
		mul_m4_v3(mat, ebone->head);
		mul_m4_v3(mat, ebone->tail);

		/* apply the transformed roll back */
		mat3_to_vec_roll(tmat, NULL, &ebone->roll);
		
		ebone->rad_head *= scale;
		ebone->rad_tail *= scale;
		ebone->dist     *= scale;
		
		/* we could be smarter and scale by the matrix along the x & z axis */
		ebone->xwidth   *= scale;
		ebone->zwidth   *= scale;
	}
}
static bool mball_select_similar_rotation(MetaBall *mb, const float thresh)
{
	const float thresh_rad = thresh * (float)M_PI_2;
	MetaElem *ml;
	bool changed = false;

	for (ml = mb->editelems->first; ml; ml = ml->next) {
		if (ml->flag & SELECT) {
			MetaElem *ml_iter;

			float ml_mat[3][3];

			unit_m3(ml_mat);
			mul_qt_v3(ml->quat, ml_mat[0]);
			mul_qt_v3(ml->quat, ml_mat[1]);
			mul_qt_v3(ml->quat, ml_mat[2]);
			normalize_m3(ml_mat);

			for (ml_iter = mb->editelems->first; ml_iter; ml_iter = ml_iter->next) {
				if ((ml_iter->flag & SELECT) == 0) {
					float ml_iter_mat[3][3];

					unit_m3(ml_iter_mat);
					mul_qt_v3(ml_iter->quat, ml_iter_mat[0]);
					mul_qt_v3(ml_iter->quat, ml_iter_mat[1]);
					mul_qt_v3(ml_iter->quat, ml_iter_mat[2]);
					normalize_m3(ml_iter_mat);

					if ((angle_normalized_v3v3(ml_mat[0], ml_iter_mat[0]) +
					     angle_normalized_v3v3(ml_mat[1], ml_iter_mat[1]) +
					     angle_normalized_v3v3(ml_mat[2], ml_iter_mat[2])) < thresh_rad)
					{
						ml_iter->flag |= SELECT;
						changed = true;
					}
				}
			}
		}
	}

	return changed;
}
static void camera_frame_fit_data_init(
        const Scene *scene, const Object *ob,
        CameraParams *params, CameraViewFrameData *data)
{
	float camera_rotmat_transposed_inversed[4][4];
	unsigned int i;

	/* setup parameters */
	BKE_camera_params_init(params);
	BKE_camera_params_from_object(params, ob);

	/* compute matrix, viewplane, .. */
	if (scene) {
		BKE_camera_params_compute_viewplane(params, scene->r.xsch, scene->r.ysch, scene->r.xasp, scene->r.yasp);
	}
	else {
		BKE_camera_params_compute_viewplane(params, 1, 1, 1.0f, 1.0f);
	}
	BKE_camera_params_compute_matrix(params);

	/* initialize callback data */
	copy_m3_m4(data->camera_rotmat, (float (*)[4])ob->obmat);
	normalize_m3(data->camera_rotmat);
	/* To transform a plane which is in its homogeneous representation (4d vector),
	 * we need the inverse of the transpose of the transform matrix... */
	copy_m4_m3(camera_rotmat_transposed_inversed, data->camera_rotmat);
	transpose_m4(camera_rotmat_transposed_inversed);
	invert_m4(camera_rotmat_transposed_inversed);

	/* Extract frustum planes from projection matrix. */
	planes_from_projmat(params->winmat,
	                    /*   left              right                 top              bottom        near  far */
	                    data->plane_tx[2], data->plane_tx[0], data->plane_tx[3], data->plane_tx[1], NULL, NULL);

	/* Rotate planes and get normals from them */
	for (i = 0; i < CAMERA_VIEWFRAME_NUM_PLANES; i++) {
		mul_m4_v4(camera_rotmat_transposed_inversed, data->plane_tx[i]);
		normalize_v3_v3(data->normal_tx[i], data->plane_tx[i]);
	}

	copy_v4_fl(data->dist_vals_sq, FLT_MAX);
	data->tot = 0;
	data->is_ortho = params->is_ortho;
	if (params->is_ortho) {
		/* we want (0, 0, -1) transformed by camera_rotmat, this is a quicker shortcut. */
		negate_v3_v3(data->camera_no, data->camera_rotmat[2]);
		data->dist_to_cam = FLT_MAX;
	}
}
Beispiel #5
0
int mathutils_any_to_rotmat(float rmat[3][3], PyObject *value, const char *error_prefix)
{
  if (EulerObject_Check(value)) {
    if (BaseMath_ReadCallback((BaseMathObject *)value) == -1) {
      return -1;
    }
    else {
      eulO_to_mat3(rmat, ((EulerObject *)value)->eul, ((EulerObject *)value)->order);
      return 0;
    }
  }
  else if (QuaternionObject_Check(value)) {
    if (BaseMath_ReadCallback((BaseMathObject *)value) == -1) {
      return -1;
    }
    else {
      float tquat[4];
      normalize_qt_qt(tquat, ((QuaternionObject *)value)->quat);
      quat_to_mat3(rmat, tquat);
      return 0;
    }
  }
  else if (MatrixObject_Check(value)) {
    if (BaseMath_ReadCallback((BaseMathObject *)value) == -1) {
      return -1;
    }
    else if (((MatrixObject *)value)->num_row < 3 || ((MatrixObject *)value)->num_col < 3) {
      PyErr_Format(
          PyExc_ValueError, "%.200s: matrix must have minimum 3x3 dimensions", error_prefix);
      return -1;
    }
    else {
      matrix_as_3x3(rmat, (MatrixObject *)value);
      normalize_m3(rmat);
      return 0;
    }
  }
  else {
    PyErr_Format(PyExc_TypeError,
                 "%.200s: expected a Euler, Quaternion or Matrix type, "
                 "found %.200s",
                 error_prefix,
                 Py_TYPE(value)->tp_name);
    return -1;
  }
}
Beispiel #6
0
void ED_armature_apply_transform(Object *ob, float mat[4][4])
{
	EditBone *ebone;
	bArmature *arm = ob->data;
	float scale = mat4_to_scale(mat);   /* store the scale of the matrix here to use on envelopes */
	float mat3[3][3];
	
	copy_m3_m4(mat3, mat);
	normalize_m3(mat3);
	
	/* Put the armature into editmode */
	ED_armature_to_edit(ob);
	
	/* Do the rotations */
	for (ebone = arm->edbo->first; ebone; ebone = ebone->next) {
		float delta[3], tmat[3][3];
		
		/* find the current bone's roll matrix */
		sub_v3_v3v3(delta, ebone->tail, ebone->head);
		vec_roll_to_mat3(delta, ebone->roll, tmat);
		
		/* transform the roll matrix */
		mul_m3_m3m3(tmat, mat3, tmat);
		
		/* transform the bone */
		mul_m4_v3(mat, ebone->head);
		mul_m4_v3(mat, ebone->tail);
		
		/* apply the transfiormed roll back */
		mat3_to_vec_roll(tmat, NULL, &ebone->roll);
		
		ebone->rad_head *= scale;
		ebone->rad_tail *= scale;
		ebone->dist     *= scale;
		
		/* we could be smarter and scale by the matrix along the x & z axis */
		ebone->xwidth   *= scale;
		ebone->zwidth   *= scale;
	}
	
	/* Turn the list into an armature */
	ED_armature_from_edit(ob);
	ED_armature_edit_free(ob);
}
Beispiel #7
0
/* Evaluate spline IK for a given bone */
static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan,
                                   int index, float ctime)
{
	bSplineIKConstraint *ikData = tree->ikData;
	float poseHead[3], poseTail[3], poseMat[4][4];
	float splineVec[3], scaleFac, radius = 1.0f;

	/* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
	BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);

	copy_v3_v3(poseHead, pchan->pose_head);
	copy_v3_v3(poseTail, pchan->pose_tail);

	/* step 1: determine the positions for the endpoints of the bone */
	{
		float vec[4], dir[3], rad;
		float tailBlendFac = 1.0f;

		/* determine if the bone should still be affected by SplineIK */
		if (tree->points[index + 1] >= 1.0f) {
			/* spline doesn't affect the bone anymore, so done... */
			pchan->flag |= POSE_DONE;
			return;
		}
		else if ((tree->points[index] >= 1.0f) && (tree->points[index + 1] < 1.0f)) {
			/* blending factor depends on the amount of the bone still left on the chain */
			tailBlendFac = (1.0f - tree->points[index + 1]) / (tree->points[index] - tree->points[index + 1]);
		}

		/* tail endpoint */
		if (where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL)) {
			/* apply curve's object-mode transforms to the position
			 * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
			 */
			if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
				mul_m4_v3(ikData->tar->obmat, vec);

			/* convert the position to pose-space, then store it */
			mul_m4_v3(ob->imat, vec);
			interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);

			/* set the new radius */
			radius = rad;
		}

		/* head endpoint */
		if (where_on_path(ikData->tar, tree->points[index + 1], vec, dir, NULL, &rad, NULL)) {
			/* apply curve's object-mode transforms to the position
			 * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
			 */
			if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
				mul_m4_v3(ikData->tar->obmat, vec);

			/* store the position, and convert it to pose space */
			mul_m4_v3(ob->imat, vec);
			copy_v3_v3(poseHead, vec);

			/* set the new radius (it should be the average value) */
			radius = (radius + rad) / 2;
		}
	}

	/* step 2: determine the implied transform from these endpoints
	 *     - splineVec: the vector direction that the spline applies on the bone
	 *     - scaleFac: the factor that the bone length is scaled by to get the desired amount
	 */
	sub_v3_v3v3(splineVec, poseTail, poseHead);
	scaleFac = len_v3(splineVec) / pchan->bone->length;

	/* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
	 *      - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
	 */
	{
		float dmat[3][3], rmat[3][3], tmat[3][3];
		float raxis[3], rangle;

		/* compute the raw rotation matrix from the bone's current matrix by extracting only the
		 * orientation-relevant axes, and normalizing them
		 */
		copy_v3_v3(rmat[0], pchan->pose_mat[0]);
		copy_v3_v3(rmat[1], pchan->pose_mat[1]);
		copy_v3_v3(rmat[2], pchan->pose_mat[2]);
		normalize_m3(rmat);

		/* also, normalize the orientation imposed by the bone, now that we've extracted the scale factor */
		normalize_v3(splineVec);

		/* calculate smallest axis-angle rotation necessary for getting from the
		 * current orientation of the bone, to the spline-imposed direction
		 */
		cross_v3_v3v3(raxis, rmat[1], splineVec);

		rangle = dot_v3v3(rmat[1], splineVec);
		CLAMP(rangle, -1.0f, 1.0f);
		rangle = acosf(rangle);

		/* multiply the magnitude of the angle by the influence of the constraint to
		 * control the influence of the SplineIK effect
		 */
		rangle *= tree->con->enforce;

		/* construct rotation matrix from the axis-angle rotation found above
		 *	- this call takes care to make sure that the axis provided is a unit vector first
		 */
		axis_angle_to_mat3(dmat, raxis, rangle);

		/* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
		 * while still maintaining roll control from the existing bone animation
		 */
		mul_m3_m3m3(tmat, dmat, rmat); /* m1, m3, m2 */
		normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
		copy_m4_m3(poseMat, tmat);
	}

	/* step 4: set the scaling factors for the axes */
	{
		/* only multiply the y-axis by the scaling factor to get nice volume-preservation */
		mul_v3_fl(poseMat[1], scaleFac);

		/* set the scaling factors of the x and z axes from... */
		switch (ikData->xzScaleMode) {
			case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
			{
				/* original scales get used */
				float scale;

				/* x-axis scale */
				scale = len_v3(pchan->pose_mat[0]);
				mul_v3_fl(poseMat[0], scale);
				/* z-axis scale */
				scale = len_v3(pchan->pose_mat[2]);
				mul_v3_fl(poseMat[2], scale);
				break;
			}
			case CONSTRAINT_SPLINEIK_XZS_INVERSE:
			{
				/* old 'volume preservation' method using the inverse scale */
				float scale;

				/* calculate volume preservation factor which is
				 * basically the inverse of the y-scaling factor
				 */
				if (fabsf(scaleFac) != 0.0f) {
					scale = 1.0f / fabsf(scaleFac);

					/* we need to clamp this within sensible values */
					/* NOTE: these should be fine for now, but should get sanitised in future */
					CLAMP(scale, 0.0001f, 100000.0f);
				}
				else
					scale = 1.0f;

				/* apply the scaling */
				mul_v3_fl(poseMat[0], scale);
				mul_v3_fl(poseMat[2], scale);
				break;
			}
			case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
			{
				/* improved volume preservation based on the Stretch To constraint */
				float final_scale;
				
				/* as the basis for volume preservation, we use the inverse scale factor... */
				if (fabsf(scaleFac) != 0.0f) {
					/* NOTE: The method here is taken wholesale from the Stretch To constraint */
					float bulge = powf(1.0f / fabsf(scaleFac), ikData->bulge);
					
					if (bulge > 1.0f) {
						if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MAX) {
							float bulge_max = max_ff(ikData->bulge_max, 1.0f);
							float hard = min_ff(bulge, bulge_max);
							
							float range = bulge_max - 1.0f;
							float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
							float soft = 1.0f + range * atanf((bulge - 1.0f) * scale) / (float)M_PI_2;
							
							bulge = interpf(soft, hard, ikData->bulge_smooth);
						}
					}
					if (bulge < 1.0f) {
						if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MIN) {
							float bulge_min = CLAMPIS(ikData->bulge_min, 0.0f, 1.0f);
							float hard = max_ff(bulge, bulge_min);
							
							float range = 1.0f - bulge_min;
							float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
							float soft = 1.0f - range * atanf((1.0f - bulge) * scale) / (float)M_PI_2;
							
							bulge = interpf(soft, hard, ikData->bulge_smooth);
						}
					}
					
					/* compute scale factor for xz axes from this value */
					final_scale = sqrtf(bulge);
				}
				else {
					/* no scaling, so scale factor is simple */
					final_scale = 1.0f;
				}
				
				/* apply the scaling (assuming normalised scale) */
				mul_v3_fl(poseMat[0], final_scale);
				mul_v3_fl(poseMat[2], final_scale);
				break;
			}
		}

		/* finally, multiply the x and z scaling by the radius of the curve too,
		 * to allow automatic scales to get tweaked still
		 */
		if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
			mul_v3_fl(poseMat[0], radius);
			mul_v3_fl(poseMat[2], radius);
		}
	}

	/* step 5: set the location of the bone in the matrix */
	if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
		/* when the 'no-root' option is affected, the chain can retain
		 * the shape but be moved elsewhere
		 */
		copy_v3_v3(poseHead, pchan->pose_head);
	}
	else if (tree->con->enforce < 1.0f) {
		/* when the influence is too low
		 *	- blend the positions for the 'root' bone
		 *	- stick to the parent for any other
		 */
		if (pchan->parent) {
			copy_v3_v3(poseHead, pchan->pose_head);
		}
		else {
			/* FIXME: this introduces popping artifacts when we reach 0.0 */
			interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
		}
	}
	copy_v3_v3(poseMat[3], poseHead);

	/* finally, store the new transform */
	copy_m4_m4(pchan->pose_mat, poseMat);
	copy_v3_v3(pchan->pose_head, poseHead);

	/* recalculate tail, as it's now outdated after the head gets adjusted above! */
	BKE_pose_where_is_bone_tail(pchan);

	/* done! */
	pchan->flag |= POSE_DONE;
}
Beispiel #8
0
/* only valid for perspective cameras */
int camera_view_frame_fit_to_scene(Scene *scene, struct View3D *v3d, Object *camera_ob, float r_co[3])
{
	float shift[2];
	float plane_tx[4][3];
	float rot_obmat[3][3];
	const float zero[3]= {0,0,0};
	CameraViewFrameData data_cb;

	unsigned int i;

	camera_view_frame(scene, camera_ob->data, data_cb.frame_tx);

	copy_m3_m4(rot_obmat, camera_ob->obmat);
	normalize_m3(rot_obmat);

	for (i= 0; i < 4; i++) {
		/* normalize so Z is always 1.0f*/
		mul_v3_fl(data_cb.frame_tx[i], 1.0f/data_cb.frame_tx[i][2]);
	}

	/* get the shift back out of the frame */
	shift[0]= (data_cb.frame_tx[0][0] +
	           data_cb.frame_tx[1][0] +
	           data_cb.frame_tx[2][0] +
	           data_cb.frame_tx[3][0]) / 4.0f;
	shift[1]= (data_cb.frame_tx[0][1] +
	           data_cb.frame_tx[1][1] +
	           data_cb.frame_tx[2][1] +
	           data_cb.frame_tx[3][1]) / 4.0f;

	for (i= 0; i < 4; i++) {
		mul_m3_v3(rot_obmat, data_cb.frame_tx[i]);
	}

	for (i= 0; i < 4; i++) {
		normal_tri_v3(data_cb.normal_tx[i],
		              zero, data_cb.frame_tx[i], data_cb.frame_tx[(i + 1) % 4]);
	}

	/* initialize callback data */
	data_cb.dist_vals[0]=
	data_cb.dist_vals[1]=
	data_cb.dist_vals[2]=
	data_cb.dist_vals[3]= FLT_MAX;
	data_cb.tot= 0;
	/* run callback on all visible points */
	BKE_scene_foreach_display_point(scene, v3d, BA_SELECT,
	                                camera_to_frame_view_cb, &data_cb);

	if (data_cb.tot <= 1) {
		return FALSE;
	}
	else {
		float plane_isect_1[3], plane_isect_1_no[3], plane_isect_1_other[3];
		float plane_isect_2[3], plane_isect_2_no[3], plane_isect_2_other[3];

		float plane_isect_pt_1[3], plane_isect_pt_2[3];

		/* apply the dist-from-plane's to the transformed plane points */
		for (i= 0; i < 4; i++) {
			mul_v3_v3fl(plane_tx[i], data_cb.normal_tx[i], data_cb.dist_vals[i]);
		}

		isect_plane_plane_v3(plane_isect_1, plane_isect_1_no,
		                     plane_tx[0], data_cb.normal_tx[0],
		                     plane_tx[2], data_cb.normal_tx[2]);
		isect_plane_plane_v3(plane_isect_2, plane_isect_2_no,
		                     plane_tx[1], data_cb.normal_tx[1],
		                     plane_tx[3], data_cb.normal_tx[3]);

		add_v3_v3v3(plane_isect_1_other, plane_isect_1, plane_isect_1_no);
		add_v3_v3v3(plane_isect_2_other, plane_isect_2, plane_isect_2_no);

		if (isect_line_line_v3(plane_isect_1, plane_isect_1_other,
		                       plane_isect_2, plane_isect_2_other,
		                       plane_isect_pt_1, plane_isect_pt_2) == 0)
		{
			return FALSE;
		}
		else {
			float cam_plane_no[3]= {0.0f, 0.0f, -1.0f};
			float plane_isect_delta[3];
			float plane_isect_delta_len;

			mul_m3_v3(rot_obmat, cam_plane_no);

			sub_v3_v3v3(plane_isect_delta, plane_isect_pt_2, plane_isect_pt_1);
			plane_isect_delta_len= len_v3(plane_isect_delta);

			if (dot_v3v3(plane_isect_delta, cam_plane_no) > 0.0f) {
				copy_v3_v3(r_co, plane_isect_pt_1);

				/* offset shift */
				normalize_v3(plane_isect_1_no);
				madd_v3_v3fl(r_co, plane_isect_1_no, shift[1] * -plane_isect_delta_len);
			}
			else {
				copy_v3_v3(r_co, plane_isect_pt_2);

				/* offset shift */
				normalize_v3(plane_isect_2_no);
				madd_v3_v3fl(r_co, plane_isect_2_no, shift[0] * -plane_isect_delta_len);
			}


			return TRUE;
		}
	}
}
/* called from within the core BKE_pose_where_is loop, all animsystems and constraints
 * were executed & assigned. Now as last we do an IK pass */
static void execute_posetree(struct Scene *scene, Object *ob, PoseTree *tree)
{
	float R_parmat[3][3], identity[3][3];
	float iR_parmat[3][3];
	float R_bonemat[3][3];
	float goalrot[3][3], goalpos[3];
	float rootmat[4][4], imat[4][4];
	float goal[4][4], goalinv[4][4];
	float irest_basis[3][3], full_basis[3][3];
	float end_pose[4][4], world_pose[4][4];
	float length, basis[3][3], rest_basis[3][3], start[3], *ikstretch = NULL;
	float resultinf = 0.0f;
	int a, flag, hasstretch = 0, resultblend = 0;
	bPoseChannel *pchan;
	IK_Segment *seg, *parent, **iktree, *iktarget;
	IK_Solver *solver;
	PoseTarget *target;
	bKinematicConstraint *data, *poleangledata = NULL;
	Bone *bone;

	if (tree->totchannel == 0)
		return;

	iktree = MEM_mallocN(sizeof(void *) * tree->totchannel, "ik tree");

	for (a = 0; a < tree->totchannel; a++) {
		pchan = tree->pchan[a];
		bone = pchan->bone;

		/* set DoF flag */
		flag = 0;
		if (!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP))
			flag |= IK_XDOF;
		if (!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP))
			flag |= IK_YDOF;
		if (!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP))
			flag |= IK_ZDOF;

		if (tree->stretch && (pchan->ikstretch > 0.0f)) {
			flag |= IK_TRANS_YDOF;
			hasstretch = 1;
		}

		seg = iktree[a] = IK_CreateSegment(flag);

		/* find parent */
		if (a == 0)
			parent = NULL;
		else
			parent = iktree[tree->parent[a]];

		IK_SetParent(seg, parent);

		/* get the matrix that transforms from prevbone into this bone */
		copy_m3_m4(R_bonemat, pchan->pose_mat);

		/* gather transformations for this IK segment */

		if (pchan->parent)
			copy_m3_m4(R_parmat, pchan->parent->pose_mat);
		else
			unit_m3(R_parmat);

		/* bone offset */
		if (pchan->parent && (a > 0))
			sub_v3_v3v3(start, pchan->pose_head, pchan->parent->pose_tail);
		else
			/* only root bone (a = 0) has no parent */
			start[0] = start[1] = start[2] = 0.0f;

		/* change length based on bone size */
		length = bone->length * len_v3(R_bonemat[1]);

		/* compute rest basis and its inverse */
		copy_m3_m3(rest_basis, bone->bone_mat);
		copy_m3_m3(irest_basis, bone->bone_mat);
		transpose_m3(irest_basis);

		/* compute basis with rest_basis removed */
		invert_m3_m3(iR_parmat, R_parmat);
		mul_m3_m3m3(full_basis, iR_parmat, R_bonemat);
		mul_m3_m3m3(basis, irest_basis, full_basis);

		/* basis must be pure rotation */
		normalize_m3(basis);

		/* transform offset into local bone space */
		normalize_m3(iR_parmat);
		mul_m3_v3(iR_parmat, start);

		IK_SetTransform(seg, start, rest_basis, basis, length);

		if (pchan->ikflag & BONE_IK_XLIMIT)
			IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]);
		if (pchan->ikflag & BONE_IK_YLIMIT)
			IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]);
		if (pchan->ikflag & BONE_IK_ZLIMIT)
			IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]);

		IK_SetStiffness(seg, IK_X, pchan->stiffness[0]);
		IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]);
		IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]);

		if (tree->stretch && (pchan->ikstretch > 0.0f)) {
			const float ikstretch = pchan->ikstretch * pchan->ikstretch;
			/* this function does its own clamping */
			IK_SetStiffness(seg, IK_TRANS_Y, 1.0f - ikstretch);
			IK_SetLimit(seg, IK_TRANS_Y, IK_STRETCH_STIFF_MIN, IK_STRETCH_STIFF_MAX);
		}
	}

	solver = IK_CreateSolver(iktree[0]);

	/* set solver goals */

	/* first set the goal inverse transform, assuming the root of tree was done ok! */
	pchan = tree->pchan[0];
	if (pchan->parent) {
		/* transform goal by parent mat, so this rotation is not part of the
		 * segment's basis. otherwise rotation limits do not work on the
		 * local transform of the segment itself. */
		copy_m4_m4(rootmat, pchan->parent->pose_mat);
		/* However, we do not want to get (i.e. reverse) parent's scale, as it generates [#31008]
		 * kind of nasty bugs... */
		normalize_m4(rootmat);
	}
	else
		unit_m4(rootmat);
	copy_v3_v3(rootmat[3], pchan->pose_head);

	mul_m4_m4m4(imat, ob->obmat, rootmat);
	invert_m4_m4(goalinv, imat);

	for (target = tree->targets.first; target; target = target->next) {
		float polepos[3];
		int poleconstrain = 0;

		data = (bKinematicConstraint *)target->con->data;

		/* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though
		 * strictly speaking, it is a posechannel)
		 */
		BKE_constraint_target_matrix_get(scene, target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);

		/* and set and transform goal */
		mul_m4_m4m4(goal, goalinv, rootmat);

		copy_v3_v3(goalpos, goal[3]);
		copy_m3_m4(goalrot, goal);
		normalize_m3(goalrot);

		/* same for pole vector target */
		if (data->poletar) {
			BKE_constraint_target_matrix_get(scene, target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);

			if (data->flag & CONSTRAINT_IK_SETANGLE) {
				/* don't solve IK when we are setting the pole angle */
				break;
			}
			else {
				mul_m4_m4m4(goal, goalinv, rootmat);
				copy_v3_v3(polepos, goal[3]);
				poleconstrain = 1;

				/* for pole targets, we blend the result of the ik solver
				 * instead of the target position, otherwise we can't get
				 * a smooth transition */
				resultblend = 1;
				resultinf = target->con->enforce;

				if (data->flag & CONSTRAINT_IK_GETANGLE) {
					poleangledata = data;
					data->flag &= ~CONSTRAINT_IK_GETANGLE;
				}
			}
		}

		/* do we need blending? */
		if (!resultblend && target->con->enforce != 1.0f) {
			float q1[4], q2[4], q[4];
			float fac = target->con->enforce;
			float mfac = 1.0f - fac;

			pchan = tree->pchan[target->tip];

			/* end effector in world space */
			copy_m4_m4(end_pose, pchan->pose_mat);
			copy_v3_v3(end_pose[3], pchan->pose_tail);
			mul_serie_m4(world_pose, goalinv, ob->obmat, end_pose, NULL, NULL, NULL, NULL, NULL);

			/* blend position */
			goalpos[0] = fac * goalpos[0] + mfac * world_pose[3][0];
			goalpos[1] = fac * goalpos[1] + mfac * world_pose[3][1];
			goalpos[2] = fac * goalpos[2] + mfac * world_pose[3][2];

			/* blend rotation */
			mat3_to_quat(q1, goalrot);
			mat4_to_quat(q2, world_pose);
			interp_qt_qtqt(q, q1, q2, mfac);
			quat_to_mat3(goalrot, q);
		}

		iktarget = iktree[target->tip];

		if ((data->flag & CONSTRAINT_IK_POS) && data->weight != 0.0f) {
			if (poleconstrain)
				IK_SolverSetPoleVectorConstraint(solver, iktarget, goalpos,
				                                 polepos, data->poleangle, (poleangledata == data));
			IK_SolverAddGoal(solver, iktarget, goalpos, data->weight);
		}
		if ((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0f))
			if ((data->flag & CONSTRAINT_IK_AUTO) == 0)
				IK_SolverAddGoalOrientation(solver, iktarget, goalrot,
				                            data->orientweight);
	}

	/* solve */
	IK_Solve(solver, 0.0f, tree->iterations);

	if (poleangledata)
		poleangledata->poleangle = IK_SolverGetPoleAngle(solver);

	IK_FreeSolver(solver);

	/* gather basis changes */
	tree->basis_change = MEM_mallocN(sizeof(float[3][3]) * tree->totchannel, "ik basis change");
	if (hasstretch)
		ikstretch = MEM_mallocN(sizeof(float) * tree->totchannel, "ik stretch");

	for (a = 0; a < tree->totchannel; a++) {
		IK_GetBasisChange(iktree[a], tree->basis_change[a]);

		if (hasstretch) {
			/* have to compensate for scaling received from parent */
			float parentstretch, stretch;

			pchan = tree->pchan[a];
			parentstretch = (tree->parent[a] >= 0) ? ikstretch[tree->parent[a]] : 1.0f;

			if (tree->stretch && (pchan->ikstretch > 0.0f)) {
				float trans[3], length;

				IK_GetTranslationChange(iktree[a], trans);
				length = pchan->bone->length * len_v3(pchan->pose_mat[1]);

				ikstretch[a] = (length == 0.0f) ? 1.0f : (trans[1] + length) / length;
			}
			else
				ikstretch[a] = 1.0;

			stretch = (parentstretch == 0.0f) ? 1.0f : ikstretch[a] / parentstretch;

			mul_v3_fl(tree->basis_change[a][0], stretch);
			mul_v3_fl(tree->basis_change[a][1], stretch);
			mul_v3_fl(tree->basis_change[a][2], stretch);
		}

		if (resultblend && resultinf != 1.0f) {
			unit_m3(identity);
			blend_m3_m3m3(tree->basis_change[a], identity,
			              tree->basis_change[a], resultinf);
		}

		IK_FreeSegment(iktree[a]);
	}

	MEM_freeN(iktree);
	if (ikstretch) MEM_freeN(ikstretch);
}
Beispiel #10
0
PyObject* BL_ArmatureChannel::py_attr_get_joint_rotation(void *self_v, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
	bPoseChannel* pchan = static_cast<bPoseChannel*>(self_v);
	// decompose the pose matrix in euler rotation
	float rest_mat[3][3];
	float pose_mat[3][3];
	float joint_mat[3][3];
	float joints[3];
	float norm;
	double sa, ca;
	// get rotation in armature space
	copy_m3_m4(pose_mat, pchan->pose_mat);
	normalize_m3(pose_mat);
	if (pchan->parent) {
		// bone has a parent, compute the rest pose of the bone taking actual pose of parent
		mult_m3_m3m4(rest_mat, pchan->parent->pose_mat, pchan->bone->bone_mat);
		normalize_m3(rest_mat);
	} else {
		// otherwise, the bone matrix in armature space is the rest pose
		copy_m3_m4(rest_mat, pchan->bone->arm_mat);
	}
	// remove the rest pose to get the joint movement
	transpose_m3(rest_mat);
	mul_m3_m3m3(joint_mat, rest_mat, pose_mat);		
	joints[0] = joints[1] = joints[2] = 0.f;
	// returns a 3 element list that gives corresponding joint
	int flag = 0;
	if (!(pchan->ikflag & BONE_IK_NO_XDOF))
		flag |= 1;
	if (!(pchan->ikflag & BONE_IK_NO_YDOF))
		flag |= 2;
	if (!(pchan->ikflag & BONE_IK_NO_ZDOF))
		flag |= 4;
	switch (flag) {
	case 0:	// fixed joint
		break;
	case 1:	// X only
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[1] = joints[2] = 0.f;
		break;
	case 2:	// Y only
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[0] = joints[2] = 0.f;
		break;
	case 3:	// X+Y
		mat3_to_eulO( joints, EULER_ORDER_ZYX,joint_mat);
		joints[2] = 0.f;
		break;
	case 4:	// Z only
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[0] = joints[1] = 0.f;
		break;
	case 5:	// X+Z
		// decompose this as an equivalent rotation vector in X/Z plane
		joints[0] = joint_mat[1][2];
		joints[2] = -joint_mat[1][0];
		norm = normalize_v3(joints);
		if (norm < FLT_EPSILON) {
			norm = (joint_mat[1][1] < 0.f) ? M_PI : 0.f;
		} else {
			norm = acos(joint_mat[1][1]);
		}
		mul_v3_fl(joints, norm);
		break;
	case 6:	// Y+Z
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[0] = 0.f;
		break;
	case 7: // X+Y+Z
		// equivalent axis
		joints[0] = (joint_mat[1][2]-joint_mat[2][1])*0.5f;
		joints[1] = (joint_mat[2][0]-joint_mat[0][2])*0.5f;
		joints[2] = (joint_mat[0][1]-joint_mat[1][0])*0.5f;
		sa = len_v3(joints);
		ca = (joint_mat[0][0]+joint_mat[1][1]+joint_mat[1][1]-1.0f)*0.5f;
		if (sa > FLT_EPSILON) {
			norm = atan2(sa,ca)/sa;
		} else {
			if (ca < 0.0) {
				norm = M_PI;
				mul_v3_fl(joints,0.f);
				if (joint_mat[0][0] > 0.f) {
					joints[0] = 1.0f;
				} else if (joint_mat[1][1] > 0.f) {
					joints[1] = 1.0f;
				} else {
					joints[2] = 1.0f;
				}
			} else {
				norm = 0.0;
			}
		}
		mul_v3_fl(joints,norm);
		break;
	}
	return Vector_CreatePyObject(joints, 3, Py_NEW, NULL);
}