Beispiel #1
0
const exprt qbf_squolem_coret::f_get(literalt l)
{
  if(squolem->isUniversal(l.var_no()))
  {
    assert(l.var_no()!=0);
    variable_mapt::const_iterator it=variable_map.find(l.var_no());

    if(it==variable_map.end())
      throw "Variable map error";

    const exprt &sym=it->second.first;
    unsigned index=it->second.second;

    exprt extract_expr(ID_extractbit, typet(ID_bool));
    extract_expr.copy_to_operands(sym);
    typet uint_type(ID_unsignedbv);
    uint_type.set(ID_width, 32);
    extract_expr.copy_to_operands(from_integer(index, uint_type));

    if(l.sign()) extract_expr.negate();

    return extract_expr;
  }

  function_cachet::const_iterator it=function_cache.find(l.var_no());
  if(it!=function_cache.end())
  {
    #if 0
    std::cout << "CACHE HIT for " << l.dimacs() << std::endl;
    #endif

    if(l.sign())
      return not_exprt(it->second);
    else
      return it->second;
  }
  else
  {
    WitnessStack *wsp = squolem->getModelFunction(Literal(l.dimacs()));
    exprt res;

    if(wsp==NULL || wsp->empty())
    {
//      res=exprt(ID_nondet_bool, typet(ID_bool));
      res=false_exprt(); // just set it to zero
    }
    else if(wsp->pSize<=wsp->nSize)
      res=f_get_cnf(wsp);
    else
      res=f_get_dnf(wsp);

    function_cache[l.var_no()] = res;

    if(l.sign())
      return not_exprt(res);
    else
      return res;
  }
}
exprt string_constraint_generatort::add_axioms_for_last_index_of(
  const string_exprt &str, const exprt &c, const exprt &from_index)
{
  const refined_string_typet &ref_type=to_refined_string_type(str.type());
  const typet &index_type=ref_type.get_index_type();
  symbol_exprt index=fresh_exist_index("last_index_of", index_type);
  symbol_exprt contains=fresh_boolean("contains_in_last_index_of");

  // We add axioms:
  // a1 : -1 <= i <= from_index
  // a2 : (i=-1 <=> !contains)
  // a3 : (contains => i <= from_index &&s[i]=c)
  // a4 : forall n. i+1 <= n < from_index +1 &&contains => s[n]!=c
  // a5 : forall m. 0 <= m < from_index +1 &&!contains => s[m]!=c

  exprt index1=from_integer(1, index_type);
  exprt minus1=from_integer(-1, index_type);
  exprt from_index_plus_one=plus_exprt(from_index, index1);
  and_exprt a1(
    binary_relation_exprt(index, ID_ge, minus1),
    binary_relation_exprt(index, ID_lt, from_index_plus_one));
  axioms.push_back(a1);

  equal_exprt a2(not_exprt(contains), equal_exprt(index, minus1));
  axioms.push_back(a2);

  implies_exprt a3(
    contains,
    and_exprt(
      binary_relation_exprt(from_index, ID_ge, index),
      equal_exprt(str[index], c)));
  axioms.push_back(a3);

  symbol_exprt n=fresh_univ_index("QA_last_index_of", index_type);
  string_constraintt a4(
    n,
    plus_exprt(index, index1),
    from_index_plus_one,
    contains,
    not_exprt(equal_exprt(str[n], c)));
  axioms.push_back(a4);

  symbol_exprt m=fresh_univ_index("QA_last_index_of", index_type);
  string_constraintt a5(
    m,
    from_index_plus_one,
    not_exprt(contains),
    not_exprt(equal_exprt(str[m], c)));
  axioms.push_back(a5);

  return index;
}
exprt string_constraint_generatort::add_axioms_for_last_index_of_string(
  const string_exprt &str,
  const string_exprt &substring,
  const exprt &from_index)
{
  const typet &index_type=str.length().type();
  symbol_exprt offset=fresh_exist_index("index_of", index_type);
  symbol_exprt contains=fresh_boolean("contains_substring");

  // We add axioms:
  // a1 : contains => |substring| >= length &&offset <= from_index
  // a2 : !contains => offset=-1
  // a3 : forall 0 <= witness<substring.length,
  //        contains => str[witness+offset]=substring[witness]

  implies_exprt a1(
    contains,
    and_exprt(
      str.axiom_for_is_longer_than(plus_exprt(substring.length(), offset)),
      binary_relation_exprt(offset, ID_le, from_index)));
  axioms.push_back(a1);

  implies_exprt a2(
    not_exprt(contains),
    equal_exprt(offset, from_integer(-1, index_type)));
  axioms.push_back(a2);

  symbol_exprt qvar=fresh_univ_index("QA_index_of_string", index_type);
  equal_exprt constr3(str[plus_exprt(qvar, offset)], substring[qvar]);
  string_constraintt a3(qvar, substring.length(), contains, constr3);
  axioms.push_back(a3);

  return offset;
}
Beispiel #4
0
void goto_checkt::pointer_overflow_check(
  const exprt &expr,
  const guardt &guard)
{
  if(!enable_pointer_overflow_check)
    return;

  if(expr.id()==ID_plus ||
     expr.id()==ID_minus)
  {
    if(expr.operands().size()==2)
    {
      exprt overflow("overflow-"+expr.id_string(), bool_typet());
      overflow.operands()=expr.operands();

      add_guarded_claim(
        not_exprt(overflow),
        "pointer arithmetic overflow on "+expr.id_string(),
        "overflow",
        expr.find_source_location(),
        expr,
        guard);
    }
  }
}
/// add axioms stating that if two strings are equal then their hash codes are
/// equals
/// \par parameters: function application with a string argument
/// \return a integer expression corresponding to the hash code of the string
exprt string_constraint_generatort::add_axioms_for_hash_code(
  const function_application_exprt &f)
{
  string_exprt str=add_axioms_for_string_expr(args(f, 1)[0]);
  typet return_type=f.type();
  typet index_type=str.length().type();

  // initialisation of the missing pool variable
  std::map<irep_idt, string_exprt>::iterator it;
  for(it=symbol_to_string.begin(); it!=symbol_to_string.end(); it++)
    if(hash.find(it->second)==hash.end())
      hash[it->second]=fresh_symbol("hash", return_type);

  // for each string s. either:
  //   c1: hash(str)=hash(s)
  //   c2: |str|!=|s|
  //   c3: (|str|==|s| &&exists i<|s|. s[i]!=str[i])

  // WARNING: the specification may be incomplete
  for(it=symbol_to_string.begin(); it!=symbol_to_string.end(); it++)
  {
    symbol_exprt i=fresh_exist_index("index_hash", index_type);
    equal_exprt c1(hash[it->second], hash[str]);
    not_exprt c2(equal_exprt(it->second.length(), str.length()));
    and_exprt c3(
      equal_exprt(it->second.length(), str.length()),
      and_exprt(
        not_exprt(equal_exprt(str[i], it->second[i])),
        and_exprt(
          str.axiom_for_is_strictly_longer_than(i),
          axiom_for_is_positive_index(i))));
    axioms.push_back(or_exprt(c1, or_exprt(c2, c3)));
  }
  return hash[str];
}
void all_paths_enumeratort::extend_path(patht &path,
    goto_programt::targett t,
    int succ) {
  goto_programt::targett next;
  goto_programt::targetst succs;
  exprt guard = true_exprt();

  goto_program.get_successors(t, succs);

  for (goto_programt::targetst::iterator it = succs.begin();
       it != succs.end();
       ++it) {
    if (succ == 0) {
      next = *it;
      break;
    }

    succ--;
  }

  if (t->is_goto()) {
    guard = not_exprt(t->guard);

    for (goto_programt::targetst::iterator it = t->targets.begin();
         it != t->targets.end();
         ++it) {
      if (next == *it) {
        guard = t->guard;
        break;
      }
    }
  }

  path.push_back(path_nodet(next, guard));
}
Beispiel #7
0
void equality_domaint::make_not_post_constraints(
  valuet &_value,
  exprt::operandst &cond_exprs)
{
  assert(*e_it<templ.size());
  cond_exprs.resize(1);
  if(check_dis)
  {
    cond_exprs[0]=get_post_not_disequ_constraint(*e_it);
    return;
  }
  const template_rowt &templ_row=templ[*e_it];
  if(templ_row.kind==IN)
  {
    cond_exprs[0]=true_exprt();
    return;
  }

  const var_pairt &vv=templ_row.var_pair;
  exprt c=
    and_exprt(
      templ_row.aux_expr,
      not_exprt(
        implies_exprt(
          templ_row.post_guard,
          equal_exprt(vv.first, vv.second))));
  rename(c);
  cond_exprs[0]=c;
}
void thread_exit_instrumentation(goto_programt &goto_program)
{
  if(goto_program.instructions.empty()) return;

  // add assertion that all may flags for mutex-locked are gone
  // at the end
  goto_programt::targett end=goto_program.instructions.end();
  end--;

  assert(end->is_end_function());

  source_locationt source_location=end->source_location;
  irep_idt function=end->function;

  goto_program.insert_before_swap(end);

  exprt mutex_locked_string=
    string_constantt("mutex-locked");

  binary_exprt get_may("get_may");

  // NULL is any
  get_may.op0()=constant_exprt(ID_NULL, pointer_typet(empty_typet()));
  get_may.op1()=address_of_exprt(mutex_locked_string);

  end->make_assertion(not_exprt(get_may));

  end->source_location=source_location;
  end->source_location.set_comment("mutexes must not be locked on thread exit");
  end->function=function;
}
/// add axioms stating that the return value for two equal string should be the
/// same
/// \par parameters: function application with one string argument
/// \return a string expression
symbol_exprt string_constraint_generatort::add_axioms_for_intern(
  const function_application_exprt &f)
{
  string_exprt str=add_axioms_for_string_expr(args(f, 1)[0]);
  const typet &return_type=f.type();
  typet index_type=str.length().type();

  // initialisation of the missing pool variable
  std::map<irep_idt, string_exprt>::iterator it;
  for(it=symbol_to_string.begin(); it!=symbol_to_string.end(); it++)
    if(pool.find(it->second)==pool.end())
      pool[it->second]=fresh_symbol("pool", return_type);

  // intern(str)=s_0 || s_1 || ...
  // for each string s.
  //    intern(str)=intern(s) || |str|!=|s|
  //    || (|str|==|s| &&exists i<|s|. s[i]!=str[i])

  exprt disj=false_exprt();
  for(it=symbol_to_string.begin(); it!=symbol_to_string.end(); it++)
    disj=or_exprt(
      disj, equal_exprt(pool[str], symbol_exprt(it->first, return_type)));

  axioms.push_back(disj);


  // WARNING: the specification may be incomplete or incorrect
  for(it=symbol_to_string.begin(); it!=symbol_to_string.end(); it++)
    if(it->second!=str)
    {
      symbol_exprt i=fresh_exist_index("index_intern", index_type);
      axioms.push_back(
        or_exprt(
          equal_exprt(pool[it->second], pool[str]),
          or_exprt(
            not_exprt(str.axiom_for_has_same_length_as(it->second)),
            and_exprt(
              str.axiom_for_has_same_length_as(it->second),
              and_exprt(
                not_exprt(equal_exprt(str[i], it->second[i])),
                and_exprt(str.axiom_for_is_strictly_longer_than(i),
                          axiom_for_is_positive_index(i)))))));
    }

  return pool[str];
}
exprt string_constraint_generatort::add_axioms_for_index_of(
  const string_exprt &str, const exprt &c, const exprt &from_index)
{
  const typet &index_type=str.length().type();
  symbol_exprt index=fresh_exist_index("index_of", index_type);
  symbol_exprt contains=fresh_boolean("contains_in_index_of");

  // We add axioms:
  // a1 : -1 <= index<|str|
  // a2 : !contains <=> index=-1
  // a3 : contains => from_index<=index&&str[index]=c
  // a4 : forall n, from_index<=n<index. contains => str[n]!=c
  // a5 : forall m, from_index<=n<|str|. !contains => str[m]!=c

  exprt minus1=from_integer(-1, index_type);
  and_exprt a1(
    binary_relation_exprt(index, ID_ge, minus1),
    binary_relation_exprt(index, ID_lt, str.length()));
  axioms.push_back(a1);

  equal_exprt a2(not_exprt(contains), equal_exprt(index, minus1));
  axioms.push_back(a2);

  implies_exprt a3(
    contains,
    and_exprt(
      binary_relation_exprt(from_index, ID_le, index),
      equal_exprt(str[index], c)));
  axioms.push_back(a3);

  symbol_exprt n=fresh_univ_index("QA_index_of", index_type);
  string_constraintt a4(
    n, from_index, index, contains, not_exprt(equal_exprt(str[n], c)));
  axioms.push_back(a4);

  symbol_exprt m=fresh_univ_index("QA_index_of", index_type);
  string_constraintt a5(
    m,
    from_index,
    str.length(),
    not_exprt(contains),
    not_exprt(equal_exprt(str[m], c)));
  axioms.push_back(a5);

  return index;
}
Beispiel #11
0
void memory_model_sct::write_serialization_external(
  symex_target_equationt &equation)
{
  for(address_mapt::const_iterator
      a_it=address_map.begin();
      a_it!=address_map.end();
      a_it++)
  {
    const a_rect &a_rec=a_it->second;

    // This is quadratic in the number of writes
    // per address. Perhaps some better encoding
    // based on 'places'?
    for(event_listt::const_iterator
        w_it1=a_rec.writes.begin();
        w_it1!=a_rec.writes.end();
        ++w_it1)
    {
      event_listt::const_iterator next=w_it1;
      ++next;

      for(event_listt::const_iterator w_it2=next;
          w_it2!=a_rec.writes.end();
          ++w_it2)
      {
        // external?
        if((*w_it1)->source.thread_nr==
           (*w_it2)->source.thread_nr)
          continue;

        // ws is a total order, no two elements have the same rank
        // s -> w_evt1 before w_evt2; !s -> w_evt2 before w_evt1

        symbol_exprt s=nondet_bool_symbol("ws-ext");

        // write-to-write edge
        add_constraint(
          equation,
          implies_exprt(s, before(*w_it1, *w_it2)),
          "ws-ext",
          (*w_it1)->source);

        add_constraint(
          equation,
          implies_exprt(not_exprt(s), before(*w_it2, *w_it1)),
          "ws-ext",
          (*w_it1)->source);
      }
    }
  }
}
Beispiel #12
0
void interval_domaint::transform(
  locationt from,
  locationt to,
  ai_baset &ai,
  const namespacet &ns)
{
  const goto_programt::instructiont &instruction=*from;
  switch(instruction.type)
  {
  case DECL:
    havoc_rec(to_code_decl(instruction.code).symbol());
    break;

  case DEAD:
    havoc_rec(to_code_dead(instruction.code).symbol());
    break;

  case ASSIGN:
    assign(to_code_assign(instruction.code));
    break;

  case GOTO:
    {
      locationt next=from;
      next++;
      if(next==to)
        assume(not_exprt(instruction.guard), ns);
      else
        assume(instruction.guard, ns);
    }
    break;

  case ASSUME:
    assume(instruction.guard, ns);
    break;

  case FUNCTION_CALL:
    {
      const code_function_callt &code_function_call=
        to_code_function_call(instruction.code);
      if(code_function_call.lhs().is_not_nil())
        havoc_rec(code_function_call.lhs());
    }
    break;

  default:
    {
    }
  }
}
Beispiel #13
0
void predabs_domaint::make_not_post_constraints(
  const templ_valuet &value,
  exprt::operandst &cond_exprs)
{
  assert(value.size()==templ.size());
  cond_exprs.resize(templ.size());

  exprt::operandst c;
  for(std::size_t row=0; row<templ.size(); row++)
  {
    cond_exprs[row]=and_exprt(
      templ[row].aux_expr,
      not_exprt(get_row_post_constraint(row, value)));
  }
}
Beispiel #14
0
exprt ranking_synthesis_qbf_bitwiset::bitwise_chain(
  const irep_idt &termOp,
  const exprt &expr) const
{
  unsigned width=safe_width(expr, ns);

  assert(width>0);

  if(width==1)
  {
    if(expr.type()!=bool_typet())
    {
      typecast_exprt t(typet(ID_bool));
      t.op() = expr;
      return t;
    }
    else
      return expr;
  }

  exprt res;

  exprt e(ID_extractbit, bool_typet());
  e.copy_to_operands(expr);

  res = e;
  res.copy_to_operands(from_integer(0, typet(ID_natural)));

  for(unsigned i=1; i<width; i++)
  {
    if(termOp==ID_notequal)
    {
      exprt t(ID_equal, bool_typet());
      t.copy_to_operands(res, e);
      t.op1().copy_to_operands(from_integer(i, typet(ID_natural)));
      res=not_exprt(t);
    }
    else
    {
      exprt t(termOp, bool_typet());
      t.copy_to_operands(res, e);
      t.op1().copy_to_operands(from_integer(i, typet(ID_natural)));
      res=t;
    }
  }

  return res;
}
/// add axioms corresponding to the String.equalsIgnoreCase java function
/// \par parameters: function application with two string arguments
/// \return a Boolean expression
exprt string_constraint_generatort::add_axioms_for_equals_ignore_case(
  const function_application_exprt &f)
{
  assert(f.type()==bool_typet() || f.type().id()==ID_c_bool);

  symbol_exprt eq=fresh_boolean("equal_ignore_case");
  typecast_exprt tc_eq(eq, f.type());
  string_exprt s1=add_axioms_for_string_expr(args(f, 2)[0]);
  string_exprt s2=add_axioms_for_string_expr(args(f, 2)[1]);
  typet char_type=to_refined_string_type(s1.type()).get_char_type();
  exprt char_a=constant_char('a', char_type);
  exprt char_A=constant_char('A', char_type);
  exprt char_Z=constant_char('Z', char_type);
  typet index_type=s1.length().type();

  // We add axioms:
  // a1 : eq => |s1|=|s2|
  // a2 : forall qvar, 0<=qvar<|s1|,
  //  eq => char_equal_ignore_case(s1[qvar],s2[qvar]);
  // a3 : !eq => |s1|!=s2 || (0 <=witness<|s1| &&!char_equal_ignore_case)

  implies_exprt a1(eq, s1.axiom_for_has_same_length_as(s2));
  axioms.push_back(a1);

  symbol_exprt qvar=fresh_univ_index("QA_equal_ignore_case", index_type);
  exprt constr2=character_equals_ignore_case(
    s1[qvar], s2[qvar], char_a, char_A, char_Z);
  string_constraintt a2(qvar, s1.length(), eq, constr2);
  axioms.push_back(a2);

  symbol_exprt witness=fresh_exist_index(
    "witness_unequal_ignore_case", index_type);
  exprt zero=from_integer(0, witness.type());
  and_exprt bound_witness(
    binary_relation_exprt(witness, ID_lt, s1.length()),
    binary_relation_exprt(witness, ID_ge, zero));
  exprt witness_eq=character_equals_ignore_case(
    s1[witness], s2[witness], char_a, char_A, char_Z);
  not_exprt witness_diff(witness_eq);
  implies_exprt a3(
    not_exprt(eq),
    or_exprt(
      notequal_exprt(s1.length(), s2.length()),
      and_exprt(bound_witness, witness_diff)));
  axioms.push_back(a3);

  return tc_eq;
}
Beispiel #16
0
void acceleratet::make_overflow_loc(
  goto_programt::targett loop_header,
  goto_programt::targett &loop_end,
  goto_programt::targett &overflow_loc)
{
  symbolt overflow_sym=utils.fresh_symbol("accelerate::overflow", bool_typet());
  const exprt &overflow_var=overflow_sym.symbol_expr();
  natural_loops_mutablet::natural_loopt &loop =
    natural_loops.loop_map[loop_header];
  overflow_instrumentert instrumenter(program, overflow_var, symbol_table);

  for(natural_loops_mutablet::natural_loopt::iterator it=loop.begin();
      it!=loop.end();
      ++it)
  {
    overflow_locs[*it]=goto_programt::targetst();
    goto_programt::targetst &added=overflow_locs[*it];

    instrumenter.add_overflow_checks(*it, added);
    loop.insert(added.begin(), added.end());
  }

  goto_programt::targett t=program.insert_after(loop_header);
  t->make_assignment();
  t->code=code_assignt(overflow_var, false_exprt());
  t->swap(*loop_header);
  loop.insert(t);
  overflow_locs[loop_header].push_back(t);

  goto_programt::instructiont s(SKIP);
  overflow_loc=program.insert_after(loop_end);
  *overflow_loc=s;
  overflow_loc->swap(*loop_end);
  loop.insert(overflow_loc);

  goto_programt::instructiont g(GOTO);
  g.guard=not_exprt(overflow_var);
  g.targets.push_back(overflow_loc);
  goto_programt::targett t2=program.insert_after(loop_end);
  *t2=g;
  t2->swap(*loop_end);
  overflow_locs[overflow_loc].push_back(t2);
  loop.insert(t2);

  goto_programt::targett tmp=overflow_loc;
  overflow_loc=loop_end;
  loop_end=tmp;
}
Beispiel #17
0
exprt local_SSAt::edge_guard(locationt from, locationt to) const
{
  if(from->is_goto())
  {
    // big question: taken or not taken?
    if(to==from->get_target())
      return and_exprt(guard_symbol(from), cond_symbol(from));
    else
      return and_exprt(guard_symbol(from), not_exprt(cond_symbol(from)));
  }
  else if(from->is_assume())
  {
    return and_exprt(guard_symbol(from), cond_symbol(from));
  }
  else
    return guard_symbol(from);
}
Beispiel #18
0
exprt equality_domaint::get_post_not_disequ_constraint(unsigned index)
{
  assert(index<templ.size());
  const template_rowt &templ_row=templ[index];
  if(templ_row.kind==IN)
    return true_exprt();

  const var_pairt &vv=templ_row.var_pair;
  exprt c=
    and_exprt(
      templ_row.aux_expr,
      not_exprt(
        implies_exprt(
          templ_row.post_guard,
          notequal_exprt(vv.first, vv.second))));
  rename(c);
  return c;
}
/// add axioms stating that the result is true exactly when the strings
/// represented by the arguments are equal
/// \par parameters: function application with two string arguments
/// \return a expression of Boolean type
exprt string_constraint_generatort::add_axioms_for_equals(
  const function_application_exprt &f)
{
  assert(f.type()==bool_typet() || f.type().id()==ID_c_bool);
  symbol_exprt eq=fresh_boolean("equal");
  typecast_exprt tc_eq(eq, f.type());

  string_exprt s1=add_axioms_for_string_expr(args(f, 2)[0]);
  string_exprt s2=add_axioms_for_string_expr(args(f, 2)[1]);
  typet index_type=s1.length().type();

  // We want to write:
  // eq <=> (s1.length=s2.length  &&forall i<s1.length. s1[i]=s2[i])
  // We add axioms:
  // a1 : eq => s1.length=s2.length
  // a2 : forall i<s1.length. eq => s1[i]=s2[i]
  // a3 : !eq => s1.length!=s2.length
  //       || (witness<s1.length &&s1[witness]!=s2[witness])

  implies_exprt a1(eq, s1.axiom_for_has_same_length_as(s2));
  axioms.push_back(a1);

  symbol_exprt qvar=fresh_univ_index("QA_equal", index_type);
  string_constraintt a2(qvar, s1.length(), eq, equal_exprt(s1[qvar], s2[qvar]));
  axioms.push_back(a2);

  symbol_exprt witness=fresh_exist_index("witness_unequal", index_type);
  exprt zero=from_integer(0, index_type);
  and_exprt bound_witness(
    binary_relation_exprt(witness, ID_lt, s1.length()),
    binary_relation_exprt(witness, ID_ge, zero));
  and_exprt witnessing(bound_witness, notequal_exprt(s1[witness], s2[witness]));
  implies_exprt a3(
    not_exprt(eq),
    or_exprt(notequal_exprt(s1.length(), s2.length()), witnessing));
  axioms.push_back(a3);

  return tc_eq;
}
Beispiel #20
0
bool polynomial_acceleratort::fit_const(goto_programt::instructionst &body,
                                        exprt &target,
                                        polynomialt &poly) {
  return false;

  scratch_programt program(symbol_table);

  program.append(body);
  program.add_instruction(ASSERT)->guard = equal_exprt(target, not_exprt(target));

  try {
    if (program.check_sat(false)) {
#ifdef DEBUG
      std::cout << "Fitting constant, eval'd to: " << expr2c(program.eval(target), ns) << std::endl;
#endif
      constant_exprt val = to_constant_expr(program.eval(target));
      mp_integer mp = binary2integer(val.get_value().c_str(), true);
      monomialt mon;
      monomialt::termt term;

      term.var = from_integer(1, target.type());
      term.exp = 1;
      mon.terms.push_back(term);
      mon.coeff = mp.to_long();

      poly.monomials.push_back(mon);

      return true;
    }
  } catch (std::string s) {
    std::cout << "Error in fitting polynomial SAT check: " << s << std::endl;
  } catch (const char *s) {
    std::cout << "Error in fitting polynomial SAT check: " << s << std::endl;
  }

  return false;
}
Beispiel #21
0
bool interval_domaint::ai_simplify(
  exprt &condition,
  const namespacet &ns) const
{
  bool unchanged=true;
  interval_domaint d(*this);

  // merge intervals to properly handle conjunction
  if(condition.id()==ID_and)              // May be directly representable
  {
    interval_domaint a;
    a.make_top();                         // a is everything
    a.assume(condition, ns);              // Restrict a to an over-approximation
                                          //  of when condition is true
    if(!a.join(d))                        // If d (this) is included in a...
    {                                     // Then the condition is always true
      unchanged=condition.is_true();
      condition.make_true();
    }
  }
  else if(condition.id()==ID_symbol)
  {
    // TODO: we have to handle symbol expression
  }
  else                                    // Less likely to be representable
  {
    d.assume(not_exprt(condition), ns);   // Restrict to when condition is false
    if(d.is_bottom())                     // If there there are none...
    {                                     // Then the condition is always true
      unchanged=condition.is_true();
      condition.make_true();
    }
  }

  return unchanged;
}
Beispiel #22
0
void polynomial_acceleratort::assert_for_values(scratch_programt &program,
                                                std::map<exprt, int> &values,
                                                std::set<std::pair<expr_listt, exprt> >
                                                   &coefficients,
                                                int num_unwindings,
                                                goto_programt::instructionst
                                                   &loop_body,
                                                exprt &target,
                                                overflow_instrumentert &overflow) {
  // First figure out what the appropriate type for this expression is.
  typet expr_type = nil_typet();

  for (std::map<exprt, int>::iterator it = values.begin();
      it != values.end();
      ++it) {
    typet this_type=it->first.type();
    if (this_type.id() == ID_pointer) {
#ifdef DEBUG
      std::cout << "Overriding pointer type" << std::endl;
#endif
      this_type = unsignedbv_typet(config.ansi_c.pointer_width);
    }

    if (expr_type == nil_typet()) {
      expr_type = this_type;
    } else {
      expr_type = join_types(expr_type, this_type);
    }
  }

  assert(to_bitvector_type(expr_type).get_width()>0);


  // Now set the initial values of the all the variables...
  for (std::map<exprt, int>::iterator it = values.begin();
       it != values.end();
       ++it) {
    program.assign(it->first, from_integer(it->second, expr_type));
  }

  // Now unwind the loop as many times as we need to.
  for (int i = 0; i < num_unwindings; i++) {
    program.append(loop_body);
  }

  // Now build the polynomial for this point and assert it fits.
  exprt rhs = nil_exprt();

  for (std::set<std::pair<expr_listt, exprt> >::iterator it = coefficients.begin();
       it != coefficients.end();
       ++it) {
    int concrete_value = 1;

    for (expr_listt::const_iterator e_it = it->first.begin();
         e_it != it->first.end();
         ++e_it) {
      exprt e = *e_it;

      if (e == loop_counter) {
        concrete_value *= num_unwindings;
      } else {
        std::map<exprt, int>::iterator v_it = values.find(e);

        if (v_it != values.end()) {
          concrete_value *= v_it->second;
        }
      }
    }

    // OK, concrete_value now contains the value of all the relevant variables
    // multiplied together.  Create the term concrete_value*coefficient and add
    // it into the polynomial.
    typecast_exprt cast(it->second, expr_type);
    exprt term = mult_exprt(from_integer(concrete_value, expr_type), cast);

    if (rhs.is_nil()) {
      rhs = term;
    } else {
      rhs = plus_exprt(rhs, term);
    }
  }

  exprt overflow_expr;
  overflow.overflow_expr(rhs, overflow_expr);

  program.add_instruction(ASSUME)->guard = not_exprt(overflow_expr);

  rhs = typecast_exprt(rhs, target.type());

  // We now have the RHS of the polynomial.  Assert that this is equal to the
  // actual value of the variable we're fitting.
  exprt polynomial_holds = equal_exprt(target, rhs);

  // Finally, assert that the polynomial equals the variable we're fitting.
  goto_programt::targett assumption = program.add_instruction(ASSUME);
  assumption->guard = polynomial_holds;
}
/// add axioms corresponding to the String.compareTo java function
/// \par parameters: function application with two string arguments
/// \return a integer expression
exprt string_constraint_generatort::add_axioms_for_compare_to(
  const function_application_exprt &f)
{
  string_exprt s1=add_axioms_for_string_expr(args(f, 2)[0]);
  string_exprt s2=add_axioms_for_string_expr(args(f, 2)[1]);
  const typet &return_type=f.type();
  symbol_exprt res=fresh_symbol("compare_to", return_type);
  typet index_type=s1.length().type();

  // In the lexicographic comparison, x is the first point where the two
  // strings differ.
  // We add axioms:
  // a1 : res==0 => |s1|=|s2|
  // a2 : forall i<|s1|. s1[i]==s2[i]
  // a3 : exists x.
  // res!=0 ==> x> 0 &&
  //   ((|s1| <= |s2| &&x<|s1|) || (|s1| >= |s2| &&x<|s2|)
  //   &&res=s1[x]-s2[x] )
  // || cond2:
  //   (|s1|<|s2| &&x=|s1|) || (|s1| > |s2| &&x=|s2|) &&res=|s1|-|s2|)
  // a4 : forall i<x. res!=0 => s1[i]=s2[i]

  assert(return_type.id()==ID_signedbv);

  equal_exprt res_null=equal_exprt(res, from_integer(0, return_type));
  implies_exprt a1(res_null, s1.axiom_for_has_same_length_as(s2));
  axioms.push_back(a1);

  symbol_exprt i=fresh_univ_index("QA_compare_to", index_type);
  string_constraintt a2(i, s1.length(), res_null, equal_exprt(s1[i], s2[i]));
  axioms.push_back(a2);

  symbol_exprt x=fresh_exist_index("index_compare_to", index_type);
  equal_exprt ret_char_diff(
    res,
    minus_exprt(
      typecast_exprt(s1[x], return_type),
      typecast_exprt(s2[x], return_type)));
  equal_exprt ret_length_diff(
    res,
    minus_exprt(
      typecast_exprt(s1.length(), return_type),
      typecast_exprt(s2.length(), return_type)));
  or_exprt guard1(
    and_exprt(s1.axiom_for_is_shorter_than(s2),
              s1.axiom_for_is_strictly_longer_than(x)),
    and_exprt(s1.axiom_for_is_longer_than(s2),
              s2.axiom_for_is_strictly_longer_than(x)));
  and_exprt cond1(ret_char_diff, guard1);
  or_exprt guard2(
    and_exprt(s2.axiom_for_is_strictly_longer_than(s1),
              s1.axiom_for_has_length(x)),
    and_exprt(s1.axiom_for_is_strictly_longer_than(s2),
              s2.axiom_for_has_length(x)));
  and_exprt cond2(ret_length_diff, guard2);

  implies_exprt a3(
    not_exprt(res_null),
    and_exprt(
      binary_relation_exprt(x, ID_ge, from_integer(0, return_type)),
      or_exprt(cond1, cond2)));
  axioms.push_back(a3);

  string_constraintt a4(i, x, not_exprt(res_null), equal_exprt(s1[i], s2[i]));
  axioms.push_back(a4);

  return res;
}
Beispiel #24
0
std::pair<exprt,exprt> ranking_synthesis_qbf_bitwiset::affine_template(
  const irep_idt &termOp,
  const irep_idt &coefOp)
{
  exprt function;
  replace_mapt pre_replace_map;

  for(bodyt::variable_mapt::const_iterator it=body.variable_map.begin();
      it!=body.variable_map.end();
      it++)
  {
    if(used_variables.find(it->first)==used_variables.end())
      continue;
    
    exprt postsym=symbol_exprt(it->first, ns.lookup(it->first).type);
    exprt presym=symbol_exprt(it->second, ns.lookup(it->second).type);
        
    pre_replace_map[postsym] = presym; // save the corresponding pre-var
    exprt var=postsym;
    adjust_type(var.type());

    exprt co = coefficient(var);
    irep_idt bitop = (coefOp==ID_and)      ? ID_bitand :
                     (coefOp==ID_or)       ? ID_bitor  :
                     (coefOp==ID_notequal) ? ID_bitxor : 
                                             "";

    exprt varblock(bitop, var.type());
    varblock.copy_to_operands(var, co);

    exprt bchain = bitwise_chain(termOp, varblock);

    if(it==body.variable_map.begin()) // first one
      function=bchain;
    else
    {
      if(termOp==ID_notequal)
      {
        exprt t(ID_equal, bool_typet());
        t.move_to_operands(function);
        t.move_to_operands(bchain);
        function=not_exprt(t);
      }
      else
      {
        exprt t(termOp, bool_typet());
        t.move_to_operands(function);
        t.move_to_operands(bchain);
        function=t;
      }
    }
  }

  // ... and a constant coefficient
  symbol_exprt const_sym(CONSTANT_COEFFICIENT_ID, bool_typet());
  const_coefficient=coefficient(const_sym);

  
  if(termOp==ID_notequal)
  {
    exprt t(ID_equal, bool_typet());
    t.move_to_operands(function);
    t.copy_to_operands(const_coefficient);
    function = not_exprt(t);
  }
  else
  {
    exprt t(termOp, bool_typet());
    t.move_to_operands(function);
    t.copy_to_operands(const_coefficient);
    function = t;
  }

  exprt pre_function=function;
  replace_expr(pre_replace_map, pre_function);

  return std::pair<exprt,exprt>(pre_function, function);
}
Beispiel #25
0
void goto_checkt::float_overflow_check(
  const exprt &expr,
  const guardt &guard)
{
  if(!enable_float_overflow_check)
    return;

  // First, check type.
  const typet &type=ns.follow(expr.type());

  if(type.id()!=ID_floatbv)
    return;

  // add overflow subgoal

  if(expr.id()==ID_typecast)
  {
    // Can overflow if casting from larger
    // to smaller type.
    assert(expr.operands().size()==1);

    if(ns.follow(expr.op0().type()).id()==ID_floatbv)
    {
      // float-to-float
      unary_exprt op0_inf(ID_isinf, expr.op0(), bool_typet());
      unary_exprt new_inf(ID_isinf, expr, bool_typet());

      or_exprt overflow_check(op0_inf, not_exprt(new_inf));

      add_guarded_claim(
        overflow_check,
        "arithmetic overflow on floating-point typecast",
        "overflow",
        expr.find_source_location(),
        expr,
        guard);
    }
    else
    {
      // non-float-to-float
      unary_exprt new_inf(ID_isinf, expr, bool_typet());

      add_guarded_claim(
        not_exprt(new_inf),
        "arithmetic overflow on floating-point typecast",
        "overflow",
        expr.find_source_location(),
        expr,
        guard);
    }

    return;
  }
  else if(expr.id()==ID_div)
  {
    assert(expr.operands().size()==2);

    // Can overflow if dividing by something small
    unary_exprt new_inf(ID_isinf, expr, bool_typet());
    unary_exprt op0_inf(ID_isinf, expr.op0(), bool_typet());

    or_exprt overflow_check(op0_inf, not_exprt(new_inf));

    add_guarded_claim(
      overflow_check,
      "arithmetic overflow on floating-point division",
      "overflow",
      expr.find_source_location(),
      expr,
      guard);

    return;
  }
  else if(expr.id()==ID_mod)
  {
    // Can't overflow
    return;
  }
  else if(expr.id()==ID_unary_minus)
  {
    // Can't overflow
    return;
  }
  else if(expr.id()==ID_plus || expr.id()==ID_mult ||
          expr.id()==ID_minus)
  {
    if(expr.operands().size()==2)
    {
      // Can overflow
      unary_exprt new_inf(ID_isinf, expr, bool_typet());
      unary_exprt op0_inf(ID_isinf, expr.op0(), bool_typet());
      unary_exprt op1_inf(ID_isinf, expr.op1(), bool_typet());

      or_exprt overflow_check(op0_inf, op1_inf, not_exprt(new_inf));

      std::string kind=
        expr.id()==ID_plus?"addition":
        expr.id()==ID_minus?"subtraction":
        expr.id()==ID_mult?"multiplication":"";

      add_guarded_claim(
        overflow_check,
        "arithmetic overflow on floating-point "+kind,
        "overflow",
        expr.find_source_location(),
        expr,
        guard);

      return;
    }
    else if(expr.operands().size()>=3)
    {
      assert(expr.id()!=ID_minus);

      // break up
      exprt tmp=make_binary(expr);
      float_overflow_check(tmp, guard);
      return;
    }
  }
}
Beispiel #26
0
void goto_checkt::pointer_validity_check(
  const dereference_exprt &expr,
  const guardt &guard)
{
  if(!enable_pointer_check)
    return;

  const exprt &pointer=expr.op0();
  const typet &pointer_type=to_pointer_type(ns.follow(pointer.type()));

  assert(base_type_eq(pointer_type.subtype(), expr.type(), ns));

  local_bitvector_analysist::flagst flags=
    local_bitvector_analysis->get(t, pointer);

  const typet &dereference_type=pointer_type.subtype();

  // For Java, we only need to check for null
  if(mode==ID_java)
  {
    if(flags.is_unknown() || flags.is_null())
    {
      notequal_exprt not_eq_null(pointer, gen_zero(pointer.type()));

      add_guarded_claim(
        not_eq_null,
        "reference is null",
        "pointer dereference",
        expr.find_source_location(),
        expr,
        guard);
    }
  }
  else
  {
    if(flags.is_unknown() || flags.is_null())
    {
      add_guarded_claim(
        not_exprt(null_pointer(pointer)),
        "dereference failure: pointer NULL",
        "pointer dereference",
        expr.find_source_location(),
        expr,
        guard);
    }

    if(flags.is_unknown())
      add_guarded_claim(
        not_exprt(invalid_pointer(pointer)),
        "dereference failure: pointer invalid",
        "pointer dereference",
        expr.find_source_location(),
        expr,
        guard);

    if(flags.is_uninitialized())
      add_guarded_claim(
        not_exprt(invalid_pointer(pointer)),
        "dereference failure: pointer uninitialized",
        "pointer dereference",
        expr.find_source_location(),
        expr,
        guard);

    if(mode != ID_java)
    {
      if(flags.is_unknown() || flags.is_dynamic_heap())
        add_guarded_claim(
          not_exprt(deallocated(pointer, ns)),
          "dereference failure: deallocated dynamic object",
          "pointer dereference",
          expr.find_source_location(),
          expr,
          guard);

      if(flags.is_unknown() || flags.is_dynamic_local())
        add_guarded_claim(
          not_exprt(dead_object(pointer, ns)),
          "dereference failure: dead object",
          "pointer dereference",
          expr.find_source_location(),
          expr,
          guard);
    }

    if(enable_bounds_check)
    {
      if(flags.is_unknown() || flags.is_dynamic_heap())
      {
        exprt dynamic_bounds=
          or_exprt(dynamic_object_lower_bound(pointer),
                   dynamic_object_upper_bound(pointer, dereference_type, ns));

        add_guarded_claim(
          implies_exprt(malloc_object(pointer, ns), not_exprt(dynamic_bounds)),
          "dereference failure: dynamic object bounds",
          "pointer dereference",
          expr.find_source_location(),
          expr,
          guard);
      }
    }

    if(enable_bounds_check)
    {
      if(flags.is_unknown() ||
         flags.is_dynamic_local() ||
         flags.is_static_lifetime())
      {
        exprt object_bounds=
          or_exprt(object_lower_bound(pointer),
                   object_upper_bound(pointer, dereference_type, ns));

        add_guarded_claim(
          or_exprt(dynamic_object(pointer), not_exprt(object_bounds)),
          "dereference failure: object bounds",
          "pointer dereference",
          expr.find_source_location(),
          expr,
          guard);
      }
    }
  }
}
void disjunctive_polynomial_accelerationt::build_path(
    scratch_programt &scratch_program, patht &path) {
  goto_programt::targett t = loop_header;

  do {
    goto_programt::targett next;
    goto_programt::targetst succs;

    goto_program.get_successors(t, succs);

    // We should have a looping path, so we should never hit a location
    // with no successors.
    assert(succs.size() > 0);

    if (succs.size() == 1) {
      // Only one successor -- accumulate it and move on.
      path.push_back(path_nodet(t));
      t = succs.front();
      continue;
    }

    // We have multiple successors.  Examine the distinguisher variables
    // to see which branch was taken.
    bool found_branch = false;

    for (goto_programt::targetst::iterator it = succs.begin();
         it != succs.end();
         ++it) {
      exprt &distinguisher = distinguishing_points[*it];
      bool taken = scratch_program.eval(distinguisher).is_true();

      if (taken) {
        if (!found_branch ||
            ((*it)->location_number < next->location_number)) {
          next = *it;
        }

        found_branch = true;
      }
    }

    assert(found_branch);

    exprt cond = nil_exprt();

    if (t->is_goto()) {
      // If this was a conditional branch (it probably was), figure out
      // if we hit the "taken" or "not taken" branch & accumulate the
      // appropriate guard.
      cond = not_exprt(t->guard);

      for (goto_programt::targetst::iterator it = t->targets.begin();
           it != t->targets.end();
           ++it) {
        if (next == *it) {
          cond = t->guard;
          break;
        }
      }
    }

    path.push_back(path_nodet(t, cond));

    t = next;
  } while (t != loop_header && (loop.find(t) != loop.end()));
}
Beispiel #28
0
void acceleratet::build_state_machine(
  trace_automatont::sym_mapt::iterator begin,
  trace_automatont::sym_mapt::iterator end,
  state_sett &accept_states,
  symbol_exprt state,
  symbol_exprt next_state,
  scratch_programt &state_machine)
{
  std::map<unsigned int, unsigned int> successor_counts;
  unsigned int max_count=0;
  unsigned int likely_next=0;

  // Optimisation: find the most common successor state and initialise
  // next_state to that value.  This reduces the size of the state machine
  // driver substantially.
  for(trace_automatont::sym_mapt::iterator p=begin; p!=end; ++p)
  {
    trace_automatont::state_pairt state_pair=p->second;
    unsigned int to=state_pair.second;
    unsigned int count=0;

    if(successor_counts.find(to)==successor_counts.end())
    {
      count=1;
    }
    else
    {
      count=successor_counts[to] + 1;
    }

    successor_counts[to]=count;

    if(count > max_count)
    {
      max_count=count;
      likely_next=to;
    }
  }

  // Optimisation: if there is only one possible successor state, just
  // jump straight to it instead of driving the whole machine.
  if(successor_counts.size()==1)
  {
    if(accept_states.find(likely_next)!=accept_states.end())
    {
      // It's an accept state.  Just assume(false).
      state_machine.assume(false_exprt());
    }
    else
    {
      state_machine.assign(state,
          from_integer(likely_next, next_state.type()));
    }

    return;
  }

  state_machine.assign(next_state,
      from_integer(likely_next, next_state.type()));

  for(trace_automatont::sym_mapt::iterator p=begin; p!=end; ++p)
  {
    trace_automatont::state_pairt state_pair=p->second;
    unsigned int from=state_pair.first;
    unsigned int to=state_pair.second;

    if(to==likely_next)
    {
      continue;
    }

    // We're encoding the transition
    //
    //   from -loc-> to
    //
    // which we encode by inserting:
    //
    //   next_state=(state==from) ? to : next_state;
    //
    // just before loc.
    equal_exprt guard(state, from_integer(from, state.type()));
    if_exprt rhs(guard, from_integer(to, next_state.type()), next_state);
    state_machine.assign(next_state, rhs);
  }

  // Update the state and assume(false) if we've hit an accept state.
  state_machine.assign(state, next_state);

  for(state_sett::iterator it=accept_states.begin();
      it!=accept_states.end();
      ++it)
  {
    state_machine.assume(
      not_exprt(equal_exprt(state, from_integer(*it, state.type()))));
  }
}
Beispiel #29
0
void acceleratet::add_dirty_checks()
{
  for(expr_mapt::iterator it=dirty_vars_map.begin();
      it!=dirty_vars_map.end();
      ++it)
  {
    goto_programt::instructiont assign(ASSIGN);
    assign.code=code_assignt(it->second, false_exprt());
    program.insert_before_swap(program.instructions.begin(), assign);
  }

  goto_programt::targett next;

  for(goto_programt::targett it=program.instructions.begin();
       it!=program.instructions.end();
       it=next)
  {
    next=it;
    ++next;

    // If this is an assign to a tracked variable, clear the dirty flag.
    // Note: this order of insertions means that we assume each of the read
    // variables is clean _before_ clearing any dirty flags.
    if(it->is_assign())
    {
      exprt &lhs=it->code.op0();
      expr_mapt::iterator dirty_var=dirty_vars_map.find(lhs);

      if(dirty_var!=dirty_vars_map.end())
      {
        goto_programt::instructiont clear_flag(ASSIGN);
        clear_flag.code=code_assignt(dirty_var->second, false_exprt());
        program.insert_before_swap(it, clear_flag);
      }
    }

    // Find which symbols are read, i.e. those appearing in a guard or on
    // the right hand side of an assignment.  Assume each is not dirty.
    find_symbols_sett read;

    find_symbols(it->guard, read);

    if(it->is_assign())
    {
      find_symbols(it->code.op1(), read);
    }

    for(find_symbols_sett::iterator jt=read.begin();
        jt!=read.end();
        ++jt)
    {
      const exprt &var=ns.lookup(*jt).symbol_expr();
      expr_mapt::iterator dirty_var=dirty_vars_map.find(var);

      if(dirty_var==dirty_vars_map.end())
      {
        continue;
      }

      goto_programt::instructiont not_dirty(ASSUME);
      not_dirty.guard=not_exprt(dirty_var->second);
      program.insert_before_swap(it, not_dirty);
    }
  }
}
Beispiel #30
0
void local_SSAt::assign_rec(
  const exprt &lhs,
  const exprt &rhs,
  const exprt &guard,
  locationt loc)
{
  const typet &type=ns.follow(lhs.type());

  if(is_symbol_struct_member(lhs, ns))
  {
    if(type.id()==ID_struct)
    {
      // need to split up

      const struct_typet &struct_type=to_struct_type(type);
      const struct_typet::componentst &components=struct_type.components();
      
      for(struct_typet::componentst::const_iterator
          it=components.begin();
          it!=components.end();
          it++)
      {
        member_exprt new_lhs(lhs, it->get_name(), it->type());
        member_exprt new_rhs(rhs, it->get_name(), it->type());
        assign_rec(new_lhs, new_rhs, guard, loc);
      }

      return;
    }

    ssa_objectt lhs_object(lhs, ns);
    
    const std::set<ssa_objectt> &assigned=
      assignments.get(loc);

    if(assigned.find(lhs_object)!=assigned.end())
    {
      exprt ssa_rhs=read_rhs(rhs, loc);

      const symbol_exprt ssa_symbol=name(lhs_object, OUT, loc);
      
      equal_exprt equality(ssa_symbol, ssa_rhs);
      nodes[loc].equalities.push_back(equality);
    }
  }
  else if(lhs.id()==ID_index)
  {
    const index_exprt &index_expr=to_index_expr(lhs);
    exprt ssa_array=index_expr.array();
    exprt new_rhs=with_exprt(ssa_array, index_expr.index(), rhs);
    assign_rec(index_expr.array(), new_rhs, guard, loc);
  }
  else if(lhs.id()==ID_member)
  {
    // These are non-flattened struct or union members.
    const member_exprt &member_expr=to_member_expr(lhs);
    const exprt &compound=member_expr.struct_op();
    const typet &compound_type=ns.follow(compound.type());

    if(compound_type.id()==ID_union)
    {
      union_exprt new_rhs(member_expr.get_component_name(), rhs, compound.type());
      assign_rec(member_expr.struct_op(), new_rhs, guard, loc);
    }
    else if(compound_type.id()==ID_struct)
    {
      exprt member_name(ID_member_name);
      member_name.set(ID_component_name, member_expr.get_component_name());
      with_exprt new_rhs(compound, member_name, rhs);
      assign_rec(compound, new_rhs, guard, loc);
    }
  }
  else if(lhs.id()==ID_complex_real)
  {
    assert(lhs.operands().size()==1);
    const exprt &op=lhs.op0();
    const complex_typet &complex_type=to_complex_type(op.type());
    exprt imag_op=unary_exprt(ID_complex_imag, op, complex_type.subtype());
    complex_exprt new_rhs(rhs, imag_op, complex_type);
    assign_rec(op, new_rhs, guard, loc);
  }
  else if(lhs.id()==ID_complex_imag)
  {
    assert(lhs.operands().size()==1);
    const exprt &op=lhs.op0();
    const complex_typet &complex_type=to_complex_type(op.type());
    exprt real_op=unary_exprt(ID_complex_real, op, complex_type.subtype());
    complex_exprt new_rhs(real_op, rhs, complex_type);
    assign_rec(op, new_rhs, guard, loc);
  }
  else if(lhs.id()==ID_if)
  {
    const if_exprt &if_expr=to_if_expr(lhs);
    assign_rec(if_expr.true_case(), rhs, and_exprt(guard, if_expr.cond()), loc);
    assign_rec(if_expr.false_case(), rhs, and_exprt(guard, not_exprt(if_expr.cond())), loc);
  }
  else if(lhs.id()==ID_byte_extract_little_endian ||
          lhs.id()==ID_byte_extract_big_endian)
  {
    const byte_extract_exprt &byte_extract_expr=to_byte_extract_expr(lhs);

    exprt new_lhs=byte_extract_expr.op();

    exprt new_rhs=byte_extract_exprt(
      byte_extract_expr.id(), rhs, byte_extract_expr.offset(), new_lhs.type());

    assign_rec(new_lhs, new_rhs, guard, loc);
  }
  else
    throw "UNKNOWN LHS: "+lhs.id_string();
}