REFERENCE_TIME CTimeStretchFilter::DrainBuffers(IMediaSample* pSample, REFERENCE_TIME rtNewStart) { Log("TS - DrainBuffers - rtNewStart: %6.3f", rtNewStart / 10000000.0); uint unprocessedSamplesBefore = numUnprocessedSamples(); uint zeros = flushEx() - 32; // Magic 32 to keep the SoundTouch's output in sync uint unprocessedSamplesAfter = numUnprocessedSamples(); UINT32 outFramesAfter = numSamples(); UINT32 totalSamples = zeros + unprocessedSamplesBefore; UINT32 totalProcessedSamples = totalSamples - unprocessedSamplesAfter; Log("TS - DrainBuffers - unprocessedSamplesBefore: %u zeros: %u unprocessedSamplesAfter: %u outFramesAfter: %u duration %6.3f", unprocessedSamplesBefore, zeros, unprocessedSamplesAfter, outFramesAfter, (double)unprocessedSamplesBefore * (double) UNITS / (double) m_pOutputFormat->Format.nSamplesPerSec); REFERENCE_TIME rtAHwTime = 0; REFERENCE_TIME rtRCTime = 0; REFERENCE_TIME estimatedExtraSampleDuration = (((int)zeros - (int)unprocessedSamplesAfter) * UNITS) / m_pOutputFormat->Format.nSamplesPerSec; double bias = m_pClock->GetBias(); double adjustment = m_pClock->Adjustment(); m_pClock->GetHWTime(&rtRCTime, &rtAHwTime); double AVMult = m_pClock->SuggestedAudioMultiplier(rtAHwTime, rtRCTime, bias, adjustment); setTempoInternal(AVMult, 1.0); CreateOutput(totalProcessedSamples, outFramesAfter, bias, adjustment, AVMult, true); // Empty SoundTouch's buffers clear(); pSample->SetDiscontinuity(false); return estimatedExtraSampleDuration; }
HRESULT CTimeStretchFilter::CheckSample(IMediaSample* pSample) { if (!pSample) return S_OK; AM_MEDIA_TYPE *pmt = NULL; bool bFormatChanged = false; HRESULT hr = S_OK; if (SUCCEEDED(pSample->GetMediaType(&pmt)) && pmt) bFormatChanged = !FormatsEqual((WAVEFORMATEXTENSIBLE*)pmt->pbFormat, m_pInputFormat); if (bFormatChanged) { uint unprocessedSamplesBefore = numUnprocessedSamples(); uint zeros = flushEx(); uint unprocessedSamplesAfter = numUnprocessedSamples(); UINT32 outFramesAfter = numSamples(); UINT32 totalSamples = zeros + unprocessedSamplesBefore; UINT32 totalProcessedSamples = totalSamples - unprocessedSamplesAfter; //double bias = (double)totalProcessedSamples / (double)outFramesAfter; REFERENCE_TIME estimatedSampleDuration = totalProcessedSamples * UNITS / m_pOutputFormat->Format.nSamplesPerSec; double bias = m_pClock->GetBias(); double adjustment = m_pClock->Adjustment(); double AVMult = m_pClock->SuggestedAudioMultiplier(estimatedSampleDuration, bias, adjustment); setTempoInternal(AVMult, 1.0); CreateOutput(totalProcessedSamples, outFramesAfter, bias, adjustment, AVMult, true); // Empty SoundTouch's buffers clear(); // Apply format change ChannelOrder chOrder; hr = NegotiateFormat((WAVEFORMATEXTENSIBLE*)pmt->pbFormat, 1, &chOrder); pSample->SetDiscontinuity(false); if (FAILED(hr)) { DeleteMediaType(pmt); Log("CTimeStretchFilter::CheckFormat failed to change format: 0x%08x", hr); return hr; } else { m_chOrder = chOrder; return S_FALSE; // format changed } } return S_OK; }
void CTimeStretchFilter::CreateOutput(UINT32 nInFrames, UINT32 nOutFrames, double dBias, double dAdjustment, double dAVMult, bool bFlushPartialSample) { HRESULT hr = S_OK; UINT32 maxBufferFrames = DEFAULT_OUT_BUFFER_SIZE / m_pOutputFormat->Format.nBlockAlign; UINT32 nOutFramesTotal = 0; while (nOutFrames > 0) { // try to get an output buffer if none available if (!m_pNextOutSample && FAILED(hr = RequestNextOutBuffer(m_rtInSampleTime))) { Log("CTimeStretchFilter::timestretch thread - Failed to get next output sample!"); break; } BYTE* pOutData = NULL; m_pNextOutSample->GetPointer(&pOutData); if (pOutData) { UINT32 nOffset = m_pNextOutSample->GetActualDataLength(); UINT32 nOffsetInFrames = nOffset / m_pOutputFormat->Format.nBlockAlign; if (nOutFrames > maxBufferFrames - nOffsetInFrames) nOutFrames = maxBufferFrames - nOffsetInFrames; m_pNextOutSample->SetActualDataLength(nOffset + nOutFrames * m_pOutputFormat->Format.nBlockAlign); pOutData += nOffset; receiveSamplesInternal((short*)pOutData, nOutFrames); nOutFramesTotal += nOutFrames; if (m_pMediaType) m_pNextOutSample->SetMediaType(m_pMediaType); OutputSample(bFlushPartialSample); nOutFrames = numSamples(); } } if (nOutFramesTotal > 0) { double rtSampleDuration = (double)nInFrames * (double)UNITS / (double)m_pOutputFormat->Format.nSamplesPerSec; double rtProcessedSampleDuration = (double)(nOutFramesTotal) * (double)UNITS / (double)m_pOutputFormat->Format.nSamplesPerSec; m_pClock->AudioResampled(rtProcessedSampleDuration, rtSampleDuration, dBias, dAdjustment, dAVMult); //Log(m_pClock->DebugData()); } }
uint CTimeStretchFilter::receiveSamplesInternal(short *outBuffer, uint maxSamples) { if (!m_Streams) return 0; uint outSamples = numSamples(); if (outSamples > maxSamples) outSamples = maxSamples; for (int i = 0; i < m_Streams->size(); i++) { m_Streams->at(i)->getBuffer((BYTE *)outBuffer, outSamples); } return outSamples; }
std::vector<std::size_t> ConflictGraph::selectEssentialConstraints(){ std::vector<std::size_t> res; for (std::size_t sample = 0; sample < numSamples(); sample++){ std::size_t numConflicts = 0; std::size_t essentialConstraint = 0; for(std::size_t constraint = 0; constraint < mData.size(); constraint++){ if(mData[constraint].test(sample)) { numConflicts++; essentialConstraint = constraint; } } if(numConflicts == 1){ selectConstraint(essentialConstraint); res.push_back(essentialConstraint); } } return res; }
void CTimeStretchFilter::CreateOutput(UINT32 nInFrames, UINT32 nOutFrames, double dBias, double dAdjustment, double dAVMult, bool bFlushPartialSample) { HRESULT hr = S_OK; UINT32 maxBufferFrames = m_nOutBufferSize / m_pOutputFormat->Format.nBlockAlign; UINT32 nOutFramesTotal = 0; while (nOutFrames > 0) { // try to get an output buffer if none available if (!m_pNextOutSample && FAILED(hr = RequestNextOutBuffer(m_rtInSampleTime))) { Log("CTimeStretchFilter::timestretch thread - Failed to get next output sample!"); break; } BYTE* pOutData = NULL; m_pNextOutSample->GetPointer(&pOutData); if (pOutData) { UINT32 nOffset = m_pNextOutSample->GetActualDataLength(); UINT32 nOffsetInFrames = nOffset / m_pOutputFormat->Format.nBlockAlign; if (nOutFrames > maxBufferFrames - nOffsetInFrames) nOutFrames = maxBufferFrames - nOffsetInFrames; m_pNextOutSample->SetActualDataLength(nOffset + nOutFrames * m_pOutputFormat->Format.nBlockAlign); pOutData += nOffset; receiveSamplesInternal((short*)pOutData, nOutFrames); nOutFramesTotal += nOutFrames; if (m_pMediaType) m_pNextOutSample->SetMediaType(m_pMediaType); OutputSample(bFlushPartialSample); nOutFrames = numSamples(); } } }
/** * Returns a new ConflictGraph whose adjacency matrix consists * only of the unique columns of the adjacency matrix of this graph. */ ConflictGraph ConflictGraph::removeDuplicateColumns(){ std::set<std::vector<uint8_t>> uniqueColumns; for(std::size_t s = 0; s < numSamples(); s++){ std::vector<uint8_t> column (mData.size(), 0); for(std::size_t constraint = 0; constraint < mData.size(); constraint++){ column[constraint] = mData[constraint].test(s); } uniqueColumns.insert(column); } ConflictGraph res(mData.size()); for(auto& b : res.mData){ b.resize(uniqueColumns.size()); } std::size_t sid = 0; for(auto column : uniqueColumns){ for(std::size_t row = 0; row < mData.size(); row++){ res.mData[row].set(sid, column[row]); } sid++; } return res; }
// Processing DWORD CTimeStretchFilter::ThreadProc() { Log("CTimeStretchFilter::timestretch thread - starting up - thread ID: %d", m_ThreadId); SetThreadName(0, "TimeStretchFilter"); AudioSinkCommand command; CComPtr<IMediaSample> sample; while (true) { m_csResources.Unlock(); HRESULT hr = GetNextSampleOrCommand(&command, &sample.p, INFINITE, &m_hSampleEvents, &m_dwSampleWaitObjects); m_csResources.Lock(); if (hr == MPAR_S_THREAD_STOPPING) { Log("CTimeStretchFilter::timestretch thread - closing down - thread ID: %d", m_ThreadId); SetEvent(m_hCurrentSampleReleased); CloseThread(); m_csResources.Unlock(); return 0; } else { if (command == ASC_Flush) { Log("CTimeStretchFilter::timestretch thread - flushing"); m_rtInSampleTime = m_rtNextIncomingSampleTime = 0; if (m_pNextOutSample) m_pNextOutSample.Release(); flush(); sample.Release(); SetEvent(m_hCurrentSampleReleased); } else if (command == ASC_Pause || command == ASC_Resume) continue; else if (sample) { BYTE *pMediaBuffer = NULL; long size = sample->GetActualDataLength(); if (sample->IsDiscontinuity() == S_OK) { sample->SetDiscontinuity(false); m_bDiscontinuity = true; } if (CheckSample(sample) == S_FALSE) { DeleteMediaType(m_pMediaType); sample->GetMediaType(&m_pMediaType); } CheckStreamContinuity(sample); m_nSampleNum++; hr = sample->GetPointer(&pMediaBuffer); if ((hr == S_OK) && m_pMemAllocator) { uint unprocessedSamplesBefore = numUnprocessedSamples(); uint unprocessedSamplesAfter = 0; UINT32 nFrames = size / m_pOutputFormat->Format.nBlockAlign; REFERENCE_TIME estimatedSampleDuration = nFrames * UNITS / m_pOutputFormat->Format.nSamplesPerSec; double bias = m_pClock->GetBias(); double adjustment = m_pClock->Adjustment(); double AVMult = m_pClock->SuggestedAudioMultiplier(estimatedSampleDuration, bias, adjustment); setTempoInternal(AVMult, 1.0); // this should be the same as previous line, but in future we want to get rid of the 2nd parameter // Process the sample putSamplesInternal((const short*)pMediaBuffer, size / m_pOutputFormat->Format.nBlockAlign); unprocessedSamplesAfter = numUnprocessedSamples(); UINT32 nInFrames = (size / m_pOutputFormat->Format.nBlockAlign) - unprocessedSamplesAfter + unprocessedSamplesBefore; UINT32 nOutFrames = numSamples(); CreateOutput(nInFrames, nOutFrames, bias, adjustment, AVMult, false); } } } } }
// Processing DWORD CTimeStretchFilter::ThreadProc() { Log("CTimeStretchFilter::timestretch thread - starting up - thread ID: %d", m_ThreadId); SetThreadName(0, "TimeStretchFilter"); AudioSinkCommand command; CComPtr<IMediaSample> sample; while (true) { m_csResources.Unlock(); HRESULT hr = GetNextSampleOrCommand(&command, &sample.p, INFINITE, &m_hSampleEvents, &m_dwSampleWaitObjects); m_csResources.Lock(); if (hr == MPAR_S_THREAD_STOPPING) { Log("CTimeStretchFilter::timestretch thread - closing down - thread ID: %d", m_ThreadId); SetEvent(m_hCurrentSampleReleased); CloseThread(); m_csResources.Unlock(); return 0; } else { if (command == ASC_Flush) { Log("CTimeStretchFilter::timestretch thread - flushing"); m_rtInSampleTime = m_rtNextIncomingSampleTime = 0; m_rtLastOuputStart = m_rtLastOuputEnd = -1; if (m_pNextOutSample) m_pNextOutSample.Release(); flush(); m_pClock->Flush(); sample.Release(); SetEvent(m_hCurrentSampleReleased); } else if (command == ASC_Pause || command == ASC_Resume) continue; else if (sample) { BYTE *pMediaBuffer = NULL; long size = sample->GetActualDataLength(); if (sample->IsDiscontinuity() == S_OK) { sample->SetDiscontinuity(false); m_bDiscontinuity = true; } REFERENCE_TIME rtDrained = 0; if (CheckSample(sample, &rtDrained) == S_FALSE) { DeleteMediaType(m_pMediaType); sample->GetMediaType(&m_pMediaType); } CheckStreamContinuity(sample, rtDrained); m_nSampleNum++; hr = sample->GetPointer(&pMediaBuffer); if ((hr == S_OK) && m_pMemAllocator) { REFERENCE_TIME rtStart = 0; REFERENCE_TIME rtAdjustedStart = 0; REFERENCE_TIME rtEnd = 0; REFERENCE_TIME rtAdjustedEnd = 0; REFERENCE_TIME rtAHwTime = 0; REFERENCE_TIME rtRCTime = 0; m_pClock->GetHWTime(&rtRCTime, &rtAHwTime); sample->GetTime(&rtStart, &rtEnd); REFERENCE_TIME sampleDuration = rtEnd - rtStart; uint unprocessedSamplesBefore = numUnprocessedSamples(); uint unprocessedSamplesAfter = 0; UINT32 nFrames = size / m_pOutputFormat->Format.nBlockAlign; double bias = m_pClock->GetBias(); double adjustment = m_pClock->Adjustment(); double AVMult = m_pClock->SuggestedAudioMultiplier(rtAHwTime, rtRCTime, bias, adjustment); setTempoInternal(AVMult, 1.0); if (m_rtLastOuputEnd == -1) m_rtLastOuputEnd = rtStart / AVMult - 1; m_rtLastOuputStart = m_rtLastOuputEnd + 1; // Process the sample putSamplesInternal((const short*)pMediaBuffer, size / m_pOutputFormat->Format.nBlockAlign); unprocessedSamplesAfter = numUnprocessedSamples(); UINT32 nInFrames = (size / m_pOutputFormat->Format.nBlockAlign) - unprocessedSamplesAfter + unprocessedSamplesBefore; UINT32 nOutFrames = numSamples(); // TODO: Soundtouch can provide less samples than asked (but never more) so a cummulative error is possible. This will not happen over the course of a long TV stint, but could be solved for correctness // m_rtLastOuputEnd += (nOutFrames + unprocessedSamplesAfter - unprocessedSamplesBefore) * UNITS / m_pOutputFormat->Format.nSamplesPerSec; //rtStart = m_rtInSampleTime; rtEnd = rtStart + sampleDuration; rtAdjustedStart = m_rtLastOuputEnd +1; rtAdjustedEnd = rtAdjustedStart + sampleDuration / AVMult; m_rtLastOuputEnd += sampleDuration / AVMult; CreateOutput(nInFrames, nOutFrames, bias, adjustment, AVMult, false); m_pClock->AddSample(rtStart, rtAdjustedStart, rtEnd, rtAdjustedEnd); } } } } }
/////////////////////////////////////////////////////////// // // Returns a data handler for the waveform // /////////////////////////////////////////////////////////// ptr<handlers::dataHandler> waveform::getIntegerData(std::uint32_t channel, std::int32_t paddingValue) { PUNTOEXE_FUNCTION_START(L"waveform::getIntegerData"); static std::int32_t uLawDecompressTable[256] = { -32124,-31100,-30076,-29052,-28028,-27004,-25980,-24956, -23932,-22908,-21884,-20860,-19836,-18812,-17788,-16764, -15996,-15484,-14972,-14460,-13948,-13436,-12924,-12412, -11900,-11388,-10876,-10364, -9852, -9340, -8828, -8316, -7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140, -5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092, -3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004, -2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980, -1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436, -1372, -1308, -1244, -1180, -1116, -1052, -988, -924, -876, -844, -812, -780, -748, -716, -684, -652, -620, -588, -556, -524, -492, -460, -428, -396, -372, -356, -340, -324, -308, -292, -276, -260, -244, -228, -212, -196, -180, -164, -148, -132, -120, -112, -104, -96, -88, -80, -72, -64, -56, -48, -40, -32, -24, -16, -8, 0, 32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956, 23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764, 15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412, 11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316, 7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140, 5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092, 3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004, 2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980, 1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436, 1372, 1308, 1244, 1180, 1116, 1052, 988, 924, 876, 844, 812, 780, 748, 716, 684, 652, 620, 588, 556, 524, 492, 460, 428, 396, 372, 356, 340, 324, 308, 292, 276, 260, 244, 228, 212, 196, 180, 164, 148, 132, 120, 112, 104, 96, 88, 80, 72, 64, 56, 48, 40, 32, 24, 16, 8, 0 }; static std::int32_t aLawDecompressTable[256] = { -5504, -5248, -6016, -5760, -4480, -4224, -4992, -4736, -7552, -7296, -8064, -7808, -6528, -6272, -7040, -6784, -2752, -2624, -3008, -2880, -2240, -2112, -2496, -2368, -3776, -3648, -4032, -3904, -3264, -3136, -3520, -3392, -22016,-20992,-24064,-23040,-17920,-16896,-19968,-18944, -30208,-29184,-32256,-31232,-26112,-25088,-28160,-27136, -11008,-10496,-12032,-11520,-8960, -8448, -9984, -9472, -15104,-14592,-16128,-15616,-13056,-12544,-14080,-13568, -344, -328, -376, -360, -280, -264, -312, -296, -472, -456, -504, -488, -408, -392, -440, -424, -88, -72, -120, -104, -24, -8, -56, -40, -216, -200, -248, -232, -152, -136, -184, -168, -1376, -1312, -1504, -1440, -1120, -1056, -1248, -1184, -1888, -1824, -2016, -1952, -1632, -1568, -1760, -1696, -688, -656, -752, -720, -560, -528, -624, -592, -944, -912, -1008, -976, -816, -784, -880, -848, 5504, 5248, 6016, 5760, 4480, 4224, 4992, 4736, 7552, 7296, 8064, 7808, 6528, 6272, 7040, 6784, 2752, 2624, 3008, 2880, 2240, 2112, 2496, 2368, 3776, 3648, 4032, 3904, 3264, 3136, 3520, 3392, 22016, 20992, 24064, 23040, 17920, 16896, 19968, 18944, 30208, 29184, 32256, 31232, 26112, 25088, 28160, 27136, 11008, 10496, 12032, 11520, 8960, 8448, 9984, 9472, 15104, 14592, 16128, 15616, 13056, 12544, 14080, 13568, 344, 328, 376, 360, 280, 264, 312, 296, 472, 456, 504, 488, 408, 392, 440, 424, 88, 72, 120, 104, 24, 8, 56, 40, 216, 200, 248, 232, 152, 136, 184, 168, 1376, 1312, 1504, 1440, 1120, 1056, 1248, 1184, 1888, 1824, 2016, 1952, 1632, 1568, 1760, 1696, 688, 656, 752, 720, 560, 528, 624, 592, 944, 912, 1008, 976, 816, 784, 880, 848 }; // Lock the dataset during the interpretation of the // dataset /////////////////////////////////////////////////////////// lockObject lockDataSet(m_pDataSet); // Get the original data /////////////////////////////////////////////////////////// ptr<handlers::dataHandler> waveformData(m_pDataSet->getDataHandler(0x5400, 0x0, 0x1010, 0, false)); std::string sourceDataType(waveformData->getDataType()); // Get the interpretation, number of channels, number of // samples /////////////////////////////////////////////////////////// std::string waveformInterpretation(getInterpretation()); std::uint32_t numChannels(getChannels()); std::uint32_t numSamples(getSamples()); std::uint32_t originalPaddingValue(0); bool bPaddingValueExists(false); ptr<handlers::dataHandler> paddingTagHandler(m_pDataSet->getDataHandler(0x5400, 0, 0x100A, 0, false)); if(paddingTagHandler != 0) { originalPaddingValue = paddingTagHandler->getUnsignedLong(0); bPaddingValueExists = true; } // Allocate a buffer for the destination data /////////////////////////////////////////////////////////// ptr<buffer> waveformBuffer(new buffer(0, "SL")); ptr<handlers::dataHandler> destinationHandler(waveformBuffer->getDataHandler(true, numSamples)); // Copy the data to the destination for unsigned values /////////////////////////////////////////////////////////// std::uint32_t waveformPointer(channel); std::uint32_t destinationPointer(0); if(sourceDataType == "UB" || sourceDataType == "US") { for(std::uint32_t copySamples (numSamples); copySamples != 0; --copySamples) { std::uint32_t unsignedData(waveformData->getUnsignedLong(waveformPointer)); waveformPointer += numChannels; if(bPaddingValueExists && unsignedData == originalPaddingValue) { destinationHandler->setSignedLong(destinationPointer++, paddingValue); continue; } destinationHandler->setUnsignedLong(destinationPointer++, unsignedData); } return destinationHandler; } // Copy the data to the destination for signed values /////////////////////////////////////////////////////////// int highBit(getBitsAllocated() - 1); std::uint32_t testBit = ((std::uint32_t)1) << highBit; std::uint32_t orBits = ((std::uint32_t)((std::int32_t)-1)) << highBit; for(std::uint32_t copySamples (numSamples); copySamples != 0; --copySamples) { std::uint32_t unsignedData = waveformData->getUnsignedLong(waveformPointer); waveformPointer += numChannels; if(bPaddingValueExists && unsignedData == originalPaddingValue) { destinationHandler->setSignedLong(destinationPointer++, paddingValue);; continue; } if((unsignedData & testBit) != 0) { unsignedData |= orBits; } destinationHandler->setSignedLong(destinationPointer++, (std::int32_t)unsignedData); } // Now decompress uLaw or aLaw if(waveformInterpretation == "AB") // 8bits aLaw { for(std::uint32_t aLawSamples(0); aLawSamples != numSamples; ++aLawSamples) { std::uint32_t compressed(destinationHandler->getUnsignedLong(aLawSamples)); if(bPaddingValueExists && compressed == originalPaddingValue) { continue; } std::int32_t decompressed(aLawDecompressTable[compressed]); destinationHandler->setSignedLong(aLawSamples, decompressed); } } // Now decompress uLaw or aLaw if(waveformInterpretation == "MB") // 8bits aLaw { for(std::uint32_t uLawSamples(0); uLawSamples != numSamples; ++uLawSamples) { std::uint32_t compressed(destinationHandler->getUnsignedLong(uLawSamples)); if(bPaddingValueExists && compressed == originalPaddingValue) { continue; } std::int32_t decompressed(uLawDecompressTable[compressed]); destinationHandler->setSignedLong(uLawSamples, decompressed); } } return destinationHandler; PUNTOEXE_FUNCTION_END(); }