static int multiboot_obj_loadfile(char *filename, u_int64_t dest, struct preloaded_file **result) { struct preloaded_file *mfp, *kfp, *rfp; int error, mod_num; /* See if there's a aout multiboot kernel loaded */ mfp = file_findfile(NULL, "aout multiboot kernel"); if (mfp != NULL) { /* we have normal kernel loaded, add module */ rfp = file_loadraw(filename, "module", 0, NULL, 0); if (rfp == NULL) { printf( "Unable to load %s as a multiboot payload module\n", filename); return (EINVAL); } rfp->f_size = roundup(rfp->f_size, PAGE_SIZE); *result = rfp; return (0); } /* See if there's a multiboot kernel loaded */ mfp = file_findfile(NULL, "elf multiboot kernel"); if (mfp == NULL) { return (EFTYPE); /* this allows to check other methods */ } /* * We have a multiboot kernel loaded, see if there's a * kernel loaded also. */ kfp = file_findfile(NULL, "elf kernel"); if (kfp == NULL) { /* * No kernel loaded, this must be it. The kernel has to * be loaded as a raw file, it will be processed by * Xen and correctly loaded as an ELF file. */ rfp = file_loadraw(filename, "elf kernel", 0, NULL, 0); if (rfp == NULL) { printf( "Unable to load %s as a multiboot payload kernel\n", filename); return (EINVAL); } /* Load kernel metadata... */ setenv("kernelname", filename, 1); error = elf64_load_modmetadata(rfp, rfp->f_addr + rfp->f_size); if (error) { printf("Unable to load kernel %s metadata error: %d\n", rfp->f_name, error); return (EINVAL); } /* * Save space at the end of the kernel in order to place * the metadata information. We do an approximation of the * max metadata size, this is not optimal but it's probably * the best we can do at this point. Once all modules are * loaded and the size of the metadata is known this * space will be recovered if not used. */ mod_num = num_modules(rfp); rfp->f_size = roundup(rfp->f_size, PAGE_SIZE); rfp->f_size += METADATA_RESV_SIZE(mod_num); *result = rfp; } else { /* The rest should be loaded as regular modules */ error = elf64_obj_loadfile(filename, dest, result); if (error != 0) { printf("Unable to load %s as an object file, error: %d", filename, error); return (error); } } return (0); }
static int multiboot_exec(struct preloaded_file *fp) { vm_offset_t module_start, last_addr, metadata_size; vm_offset_t modulep, kernend, entry; struct file_metadata *md; Elf_Ehdr *ehdr; struct multiboot_info *mb_info = NULL; struct multiboot_mod_list *mb_mod = NULL; char *cmdline = NULL; size_t len; int error, mod_num; /* * Don't pass the memory size found by the bootloader, the memory * available to Dom0 will be lower than that. */ unsetenv("smbios.memory.enabled"); /* Allocate the multiboot struct and fill the basic details. */ mb_info = malloc(sizeof(struct multiboot_info)); if (mb_info == NULL) { error = ENOMEM; goto error; } bzero(mb_info, sizeof(struct multiboot_info)); mb_info->flags = MULTIBOOT_INFO_MEMORY|MULTIBOOT_INFO_BOOT_LOADER_NAME; mb_info->mem_lower = bios_basemem / 1024; mb_info->mem_upper = bios_extmem / 1024; mb_info->boot_loader_name = VTOP(mbl_name); /* Set the Xen command line. */ if (fp->f_args == NULL) { /* Add the Xen command line if it is set. */ cmdline = getenv("xen_cmdline"); if (cmdline != NULL) { fp->f_args = strdup(cmdline); if (fp->f_args == NULL) { error = ENOMEM; goto error; } } } if (fp->f_args != NULL) { len = strlen(fp->f_name) + 1 + strlen(fp->f_args) + 1; cmdline = malloc(len); if (cmdline == NULL) { error = ENOMEM; goto error; } snprintf(cmdline, len, "%s %s", fp->f_name, fp->f_args); mb_info->cmdline = VTOP(cmdline); mb_info->flags |= MULTIBOOT_INFO_CMDLINE; } /* Find the entry point of the Xen kernel and save it for later */ if ((md = file_findmetadata(fp, MODINFOMD_ELFHDR)) == NULL) { printf("Unable to find %s entry point\n", fp->f_name); error = EINVAL; goto error; } ehdr = (Elf_Ehdr *)&(md->md_data); entry = ehdr->e_entry & 0xffffff; /* * Prepare the multiboot module list, Xen assumes the first * module is the Dom0 kernel, and the second one is the initramfs. * This is not optimal for FreeBSD, that doesn't have a initramfs * but instead loads modules dynamically and creates the metadata * info on-the-fly. * * As expected, the first multiboot module is going to be the * FreeBSD kernel loaded as a raw file. The second module is going * to contain the metadata info and the loaded modules. * * On native FreeBSD loads all the modules and then places the * metadata info at the end, but this is painful when running on Xen, * because it relocates the second multiboot module wherever it * likes. In order to workaround this limitation the metadata * information is placed at the start of the second module and * the original modulep value is saved together with the other * metadata, so we can relocate everything. * * Native layout: * fp->f_addr + fp->f_size * +---------+----------------+------------+ * | | | | * | Kernel | Modules | Metadata | * | | | | * +---------+----------------+------------+ * fp->f_addr modulep kernend * * Xen layout: * * Initial: * fp->f_addr + fp->f_size * +---------+----------+----------------+------------+ * | | | | | * | Kernel | Reserved | Modules | Metadata | * | | | | dry run | * +---------+----------+----------------+------------+ * fp->f_addr * * After metadata polacement (ie: final): * fp->f_addr + fp->f_size * +-----------+---------+----------+----------------+ * | | | | | * | Kernel | Free | Metadata | Modules | * | | | | | * +-----------+---------+----------+----------------+ * fp->f_addr modulep kernend * \__________/ \__________________________/ * Multiboot module 0 Multiboot module 1 */ fp = file_findfile(NULL, "elf kernel"); if (fp == NULL) { printf("No FreeBSD kernel provided, aborting\n"); error = EINVAL; goto error; } if (fp->f_metadata != NULL) { printf("FreeBSD kernel already contains metadata, aborting\n"); error = EINVAL; goto error; } mb_mod = malloc(sizeof(struct multiboot_mod_list) * NUM_MODULES); if (mb_mod == NULL) { error = ENOMEM; goto error; } bzero(mb_mod, sizeof(struct multiboot_mod_list) * NUM_MODULES); /* * Calculate how much memory is needed for the metatdata. We did * an approximation of the maximum size when loading the kernel, * but now we know the exact size, so we can release some of this * preallocated memory if not needed. */ last_addr = roundup(max_addr(), PAGE_SIZE); mod_num = num_modules(fp); /* * Place the metadata after the last used address in order to * calculate it's size, this will not be used. */ error = bi_load64(fp->f_args, last_addr, &modulep, &kernend, 0); if (error != 0) { printf("bi_load64 failed: %d\n", error); goto error; } metadata_size = roundup(kernend - last_addr, PAGE_SIZE); /* Check that the size is not greater than what we have reserved */ if (metadata_size > METADATA_RESV_SIZE(mod_num)) { printf("Required memory for metadata is greater than reserved " "space, please increase METADATA_FIXED_SIZE and " "METADATA_MODULE_SIZE and rebuild the loader\n"); error = ENOMEM; goto error; } /* Clean the metadata added to the kernel in the bi_load64 dry run */ file_removemetadata(fp); /* * This is the position where the second multiboot module * will be placed. */ module_start = fp->f_addr + fp->f_size - metadata_size; error = bi_load64(fp->f_args, module_start, &modulep, &kernend, 0); if (error != 0) { printf("bi_load64 failed: %d\n", error); goto error; } mb_mod[0].mod_start = fp->f_addr; mb_mod[0].mod_end = fp->f_addr + fp->f_size; mb_mod[0].mod_end -= METADATA_RESV_SIZE(mod_num); mb_mod[1].mod_start = module_start; mb_mod[1].mod_end = last_addr; mb_info->mods_count = NUM_MODULES; mb_info->mods_addr = VTOP(mb_mod); mb_info->flags |= MULTIBOOT_INFO_MODS; dev_cleanup(); __exec((void *)VTOP(multiboot_tramp), (void *)entry, (void *)VTOP(mb_info)); panic("exec returned"); error: if (mb_mod) free(mb_mod); if (mb_info) free(mb_info); if (cmdline) free(cmdline); return (error); }