Beispiel #1
0
static int
get_disk_online(dm_descriptor_t disk, int *error)
{
    uint32_t status = 0;

    nvlist_t *attrs;
    *error = 0;
    attrs = dm_get_attributes(disk, error);
    if (*error) {
        handle_error("could not get disk attributes for disk");
    } else {

        /* Try to get the status */
        nvpair_t *match = zjni_nvlist_walk_nvpair(
                              attrs, DM_STATUS, DATA_TYPE_UINT32, NULL);

        if (match == NULL || nvpair_value_uint32(match, &status)) {

            handle_error("could not get status of disk");
            *error = 1;
        }

        nvlist_free(attrs);
    }

    return (status != 0);
}
Beispiel #2
0
uint32_t
fnvpair_value_uint32(nvpair_t *nvp)
{
	uint32_t rv;
	VERIFY0(nvpair_value_uint32(nvp, &rv));
	return (rv);
}
Beispiel #3
0
static void
get_disk_size(dm_descriptor_t media, char *name, uint64_t *size,
              uint32_t *blocksize, int *error)
{
    nvlist_t *attrs;

    *size = 0;
    *error = 0;

    attrs = dm_get_attributes(media, error);

    if (*error) {
        handle_error("could not get media attributes from disk: %s",
                     name);
    } else {
        /* Try to get the number of accessible blocks */
        nvpair_t *match = zjni_nvlist_walk_nvpair(
                              attrs, DM_NACCESSIBLE, DATA_TYPE_UINT64, NULL);
        if (match == NULL || nvpair_value_uint64(match, size)) {

            /* Disk is probably not labeled, get raw size instead */
            match = zjni_nvlist_walk_nvpair(
                        attrs, DM_SIZE, DATA_TYPE_UINT64, NULL);
            if (match == NULL || nvpair_value_uint64(match, size)) {
                handle_error("could not get size of disk: %s",
                             name);
                *error = 1;
            }
        }

        if (*error == 0) {
            match = zjni_nvlist_walk_nvpair(
                        attrs, DM_BLOCKSIZE, DATA_TYPE_UINT32, NULL);
            if (match == NULL ||
                    nvpair_value_uint32(match, blocksize)) {
                handle_error("could not get "
                             "block size of disk: %s", name);
                *error = 1;
            } else {
                *size *= *blocksize;
            }
        }

        nvlist_free(attrs);
    }
}
Beispiel #4
0
/*
 * Get the named uint32 from the given nvlist_t.
 *
 * @param       attrs
 *              the nvlist_t to search
 *
 * @param       which
 *              the string key for this element in the list
 *
 * @param       val
 *              RETURN: the value of the requested uint32
 *
 * @return      0
 *              if successful
 *
 * @return      ENOENT
 *              if no matching name-value pair is found
 */
int
get_uint32(
    nvlist_t *attrs,
    char *which,
    uint32_t *val)
{
    int error;
    nvpair_t *match =
        nvlist_walk_nvpair(attrs, which, DATA_TYPE_UINT32, NULL);

    if (match == NULL) {
        error = ENOENT;
    } else {
        error = nvpair_value_uint32(match, val);
    }

    return (error);
}
Beispiel #5
0
void
zpool_get_load_policy(nvlist_t *nvl, zpool_load_policy_t *zlpp)
{
	nvlist_t *policy;
	nvpair_t *elem;
	char *nm;

	/* Defaults */
	zlpp->zlp_rewind = ZPOOL_NO_REWIND;
	zlpp->zlp_maxmeta = 0;
	zlpp->zlp_maxdata = UINT64_MAX;
	zlpp->zlp_txg = UINT64_MAX;

	if (nvl == NULL)
		return;

	elem = NULL;
	while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) {
		nm = nvpair_name(elem);
		if (strcmp(nm, ZPOOL_LOAD_POLICY) == 0) {
			if (nvpair_value_nvlist(elem, &policy) == 0)
				zpool_get_load_policy(policy, zlpp);
			return;
		} else if (strcmp(nm, ZPOOL_LOAD_REWIND_POLICY) == 0) {
			if (nvpair_value_uint32(elem, &zlpp->zlp_rewind) == 0)
				if (zlpp->zlp_rewind & ~ZPOOL_REWIND_POLICIES)
					zlpp->zlp_rewind = ZPOOL_NO_REWIND;
		} else if (strcmp(nm, ZPOOL_LOAD_REQUEST_TXG) == 0) {
			(void) nvpair_value_uint64(elem, &zlpp->zlp_txg);
		} else if (strcmp(nm, ZPOOL_LOAD_META_THRESH) == 0) {
			(void) nvpair_value_uint64(elem, &zlpp->zlp_maxmeta);
		} else if (strcmp(nm, ZPOOL_LOAD_DATA_THRESH) == 0) {
			(void) nvpair_value_uint64(elem, &zlpp->zlp_maxdata);
		}
	}
	if (zlpp->zlp_rewind == 0)
		zlpp->zlp_rewind = ZPOOL_NO_REWIND;
}
Beispiel #6
0
/*
 * nvlist_print - Prints elements in an event buffer
 */
static
void
nvlist_print_with_indent(FILE *fp, nvlist_t *nvl, int depth)
{
	int i;
	char *name;
	uint_t nelem;
	nvpair_t *nvp;

	if (nvl == NULL)
		return;

	indent(fp, depth);
	(void) fprintf(fp, "nvlist version: %d\n", NVL_VERSION(nvl));

	nvp = nvlist_next_nvpair(nvl, NULL);

	while (nvp) {
		data_type_t type = nvpair_type(nvp);

		indent(fp, depth);
		name = nvpair_name(nvp);
		(void) fprintf(fp, "\t%s =", name);
		nelem = 0;
		switch (type) {
		case DATA_TYPE_BOOLEAN: {
			(void) fprintf(fp, " 1");
			break;
		}
		case DATA_TYPE_BOOLEAN_VALUE: {
			boolean_t val;
			(void) nvpair_value_boolean_value(nvp, &val);
			(void) fprintf(fp, " %d", val);
			break;
		}
		case DATA_TYPE_BYTE: {
			uchar_t val;
			(void) nvpair_value_byte(nvp, &val);
			(void) fprintf(fp, " 0x%2.2x", val);
			break;
		}
		case DATA_TYPE_INT8: {
			int8_t val;
			(void) nvpair_value_int8(nvp, &val);
			(void) fprintf(fp, " %d", val);
			break;
		}
		case DATA_TYPE_UINT8: {
			uint8_t val;
			(void) nvpair_value_uint8(nvp, &val);
			(void) fprintf(fp, " 0x%x", val);
			break;
		}
		case DATA_TYPE_INT16: {
			int16_t val;
			(void) nvpair_value_int16(nvp, &val);
			(void) fprintf(fp, " %d", val);
			break;
		}
		case DATA_TYPE_UINT16: {
			uint16_t val;
			(void) nvpair_value_uint16(nvp, &val);
			(void) fprintf(fp, " 0x%x", val);
			break;
		}
		case DATA_TYPE_INT32: {
			int32_t val;
			(void) nvpair_value_int32(nvp, &val);
			(void) fprintf(fp, " %d", val);
			break;
		}
		case DATA_TYPE_UINT32: {
			uint32_t val;
			(void) nvpair_value_uint32(nvp, &val);
			(void) fprintf(fp, " 0x%x", val);
			break;
		}
		case DATA_TYPE_INT64: {
			int64_t val;
			(void) nvpair_value_int64(nvp, &val);
			(void) fprintf(fp, " %lld", (longlong_t)val);
			break;
		}
		case DATA_TYPE_UINT64: {
			uint64_t val;
			(void) nvpair_value_uint64(nvp, &val);
			(void) fprintf(fp, " 0x%llx", (u_longlong_t)val);
			break;
		}
		case DATA_TYPE_DOUBLE: {
			double val;
			(void) nvpair_value_double(nvp, &val);
			(void) fprintf(fp, " 0x%llf", val);
			break;
		}
		case DATA_TYPE_STRING: {
			char *val;
			(void) nvpair_value_string(nvp, &val);
			(void) fprintf(fp, " %s", val);
			break;
		}
		case DATA_TYPE_BOOLEAN_ARRAY: {
			boolean_t *val;
			(void) nvpair_value_boolean_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " %d", val[i]);
			break;
		}
		case DATA_TYPE_BYTE_ARRAY: {
			uchar_t *val;
			(void) nvpair_value_byte_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " 0x%2.2x", val[i]);
			break;
		}
		case DATA_TYPE_INT8_ARRAY: {
			int8_t *val;
			(void) nvpair_value_int8_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " %d", val[i]);
			break;
		}
		case DATA_TYPE_UINT8_ARRAY: {
			uint8_t *val;
			(void) nvpair_value_uint8_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " 0x%x", val[i]);
			break;
		}
		case DATA_TYPE_INT16_ARRAY: {
			int16_t *val;
			(void) nvpair_value_int16_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " %d", val[i]);
			break;
		}
		case DATA_TYPE_UINT16_ARRAY: {
			uint16_t *val;
			(void) nvpair_value_uint16_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " 0x%x", val[i]);
			break;
		}
		case DATA_TYPE_INT32_ARRAY: {
			int32_t *val;
			(void) nvpair_value_int32_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " %d", val[i]);
			break;
		}
		case DATA_TYPE_UINT32_ARRAY: {
			uint32_t *val;
			(void) nvpair_value_uint32_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " 0x%x", val[i]);
			break;
		}
		case DATA_TYPE_INT64_ARRAY: {
			int64_t *val;
			(void) nvpair_value_int64_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " %lld", (longlong_t)val[i]);
			break;
		}
		case DATA_TYPE_UINT64_ARRAY: {
			uint64_t *val;
			(void) nvpair_value_uint64_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " 0x%llx",
				    (u_longlong_t)val[i]);
			break;
		}
		case DATA_TYPE_STRING_ARRAY: {
			char **val;
			(void) nvpair_value_string_array(nvp, &val, &nelem);
			for (i = 0; i < nelem; i++)
				(void) fprintf(fp, " %s", val[i]);
			break;
		}
		case DATA_TYPE_HRTIME: {
			hrtime_t val;
			(void) nvpair_value_hrtime(nvp, &val);
			(void) fprintf(fp, " 0x%llx", val);
			break;
		}
		case DATA_TYPE_NVLIST: {
			nvlist_t *val;
			(void) nvpair_value_nvlist(nvp, &val);
			(void) fprintf(fp, " (embedded nvlist)\n");
			nvlist_print_with_indent(fp, val, depth + 1);
			indent(fp, depth + 1);
			(void) fprintf(fp, "(end %s)\n", name);
			break;
		}
		case DATA_TYPE_NVLIST_ARRAY: {
			nvlist_t **val;
			(void) nvpair_value_nvlist_array(nvp, &val, &nelem);
			(void) fprintf(fp, " (array of embedded nvlists)\n");
			for (i = 0; i < nelem; i++) {
				indent(fp, depth + 1);
				(void) fprintf(fp,
				    "(start %s[%d])\n", name, i);
				nvlist_print_with_indent(fp, val[i], depth + 1);
				indent(fp, depth + 1);
				(void) fprintf(fp, "(end %s[%d])\n", name, i);
			}
			break;
		}
		default:
			(void) fprintf(fp, " unknown data type (%d)", type);
			break;
		}
		(void) fprintf(fp, "\n");
		nvp = nvlist_next_nvpair(nvl, nvp);
	}
}
Beispiel #7
0
/*
 * Determine if string 'value' matches 'nvp' value.  The 'value' string is
 * converted, depending on the type of 'nvp', prior to match.  For numeric
 * types, a radix independent sscanf conversion of 'value' is used. If 'nvp'
 * is an array type, 'ai' is the index into the array against which we are
 * checking for match. If nvp is of DATA_TYPE_STRING*, the caller can pass
 * in a regex_t compilation of value in 'value_regex' to trigger regular
 * expression string match instead of simple strcmp().
 *
 * Return 1 on match, 0 on no-match, and -1 on error.  If the error is
 * related to value syntax error and 'ep' is non-NULL, *ep will point into
 * the 'value' string at the location where the error exists.
 *
 * NOTE: It may be possible to move the non-regex_t version of this into
 * common code used by library/kernel/boot.
 */
int
nvpair_value_match_regex(nvpair_t *nvp, int ai,
    char *value, regex_t *value_regex, char **ep)
{
	char	*evalue;
	uint_t	a_len;
	int	sr;

	if (ep)
		*ep = NULL;

	if ((nvp == NULL) || (value == NULL))
		return (-1);		/* error fail match - invalid args */

	/* make sure array and index combination make sense */
	if ((nvpair_type_is_array(nvp) && (ai < 0)) ||
	    (!nvpair_type_is_array(nvp) && (ai >= 0)))
		return (-1);		/* error fail match - bad index */

	/* non-string values should be single 'chunk' */
	if ((nvpair_type(nvp) != DATA_TYPE_STRING) &&
	    (nvpair_type(nvp) != DATA_TYPE_STRING_ARRAY)) {
		value += strspn(value, " \t");
		evalue = value + strcspn(value, " \t");
		if (*evalue) {
			if (ep)
				*ep = evalue;
			return (-1);	/* error fail match - syntax */
		}
	}

	sr = EOF;
	switch (nvpair_type(nvp)) {
	case DATA_TYPE_STRING: {
		char	*val;

		/* check string value for match */
		if (nvpair_value_string(nvp, &val) == 0) {
			if (value_regex) {
				if (regexec(value_regex, val,
				    (size_t)0, NULL, 0) == 0)
					return (1);	/* match */
			} else {
				if (strcmp(value, val) == 0)
					return (1);	/* match */
			}
		}
		break;
	}
	case DATA_TYPE_STRING_ARRAY: {
		char **val_array;

		/* check indexed string value of array for match */
		if ((nvpair_value_string_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len)) {
			if (value_regex) {
				if (regexec(value_regex, val_array[ai],
				    (size_t)0, NULL, 0) == 0)
					return (1);
			} else {
				if (strcmp(value, val_array[ai]) == 0)
					return (1);
			}
		}
		break;
	}
	case DATA_TYPE_BYTE: {
		uchar_t val, val_arg;

		/* scanf uchar_t from value and check for match */
		sr = sscanf(value, "%c", &val_arg);
		if ((sr == 1) && (nvpair_value_byte(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_BYTE_ARRAY: {
		uchar_t *val_array, val_arg;


		/* check indexed value of array for match */
		sr = sscanf(value, "%c", &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_byte_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_INT8: {
		int8_t val, val_arg;

		/* scanf int8_t from value and check for match */
		sr = sscanf(value, "%"SCNi8, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_int8(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_INT8_ARRAY: {
		int8_t *val_array, val_arg;

		/* check indexed value of array for match */
		sr = sscanf(value, "%"SCNi8, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_int8_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_UINT8: {
		uint8_t val, val_arg;

		/* scanf uint8_t from value and check for match */
		sr = sscanf(value, "%"SCNi8, (int8_t *)&val_arg);
		if ((sr == 1) &&
		    (nvpair_value_uint8(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_UINT8_ARRAY: {
		uint8_t *val_array, val_arg;

		/* check indexed value of array for match */
		sr = sscanf(value, "%"SCNi8, (int8_t *)&val_arg);
		if ((sr == 1) &&
		    (nvpair_value_uint8_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_INT16: {
		int16_t val, val_arg;

		/* scanf int16_t from value and check for match */
		sr = sscanf(value, "%"SCNi16, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_int16(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_INT16_ARRAY: {
		int16_t *val_array, val_arg;

		/* check indexed value of array for match */
		sr = sscanf(value, "%"SCNi16, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_int16_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_UINT16: {
		uint16_t val, val_arg;

		/* scanf uint16_t from value and check for match */
		sr = sscanf(value, "%"SCNi16, (int16_t *)&val_arg);
		if ((sr == 1) &&
		    (nvpair_value_uint16(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_UINT16_ARRAY: {
		uint16_t *val_array, val_arg;

		/* check indexed value of array for match */
		sr = sscanf(value, "%"SCNi16, (int16_t *)&val_arg);
		if ((sr == 1) &&
		    (nvpair_value_uint16_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_INT32: {
		int32_t val, val_arg;

		/* scanf int32_t from value and check for match */
		sr = sscanf(value, "%"SCNi32, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_int32(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_INT32_ARRAY: {
		int32_t *val_array, val_arg;

		/* check indexed value of array for match */
		sr = sscanf(value, "%"SCNi32, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_int32_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_UINT32: {
		uint32_t val, val_arg;

		/* scanf uint32_t from value and check for match */
		sr = sscanf(value, "%"SCNi32, (int32_t *)&val_arg);
		if ((sr == 1) &&
		    (nvpair_value_uint32(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_UINT32_ARRAY: {
		uint32_t *val_array, val_arg;

		/* check indexed value of array for match */
		sr = sscanf(value, "%"SCNi32, (int32_t *)&val_arg);
		if ((sr == 1) &&
		    (nvpair_value_uint32_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_INT64: {
		int64_t val, val_arg;

		/* scanf int64_t from value and check for match */
		sr = sscanf(value, "%"SCNi64, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_int64(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_INT64_ARRAY: {
		int64_t *val_array, val_arg;

		/* check indexed value of array for match */
		sr = sscanf(value, "%"SCNi64, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_int64_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
				return (1);
		break;
	}
	case DATA_TYPE_UINT64: {
		uint64_t val_arg, val;

		/* scanf uint64_t from value and check for match */
		sr = sscanf(value, "%"SCNi64, (int64_t *)&val_arg);
		if ((sr == 1) &&
		    (nvpair_value_uint64(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_UINT64_ARRAY: {
		uint64_t *val_array, val_arg;

		/* check indexed value of array for match */
		sr = sscanf(value, "%"SCNi64, (int64_t *)&val_arg);
		if ((sr == 1) &&
		    (nvpair_value_uint64_array(nvp, &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_BOOLEAN_VALUE: {
		boolean_t val, val_arg;

		/* scanf boolean_t from value and check for match */
		sr = sscanf(value, "%"SCNi32, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_boolean_value(nvp, &val) == 0) &&
		    (val == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_BOOLEAN_ARRAY: {
		boolean_t *val_array, val_arg;

		/* check indexed value of array for match */
		sr = sscanf(value, "%"SCNi32, &val_arg);
		if ((sr == 1) &&
		    (nvpair_value_boolean_array(nvp,
		    &val_array, &a_len) == 0) &&
		    (ai < a_len) &&
		    (val_array[ai] == val_arg))
			return (1);
		break;
	}
	case DATA_TYPE_HRTIME:
	case DATA_TYPE_NVLIST:
	case DATA_TYPE_NVLIST_ARRAY:
	case DATA_TYPE_BOOLEAN:
	case DATA_TYPE_DOUBLE:
	case DATA_TYPE_UNKNOWN:
	default:
		/*
		 * unknown/unsupported data type
		 */
		return (-1);		/* error fail match */
	}

	/*
	 * check to see if sscanf failed conversion, return approximate
	 * pointer to problem
	 */
	if (sr != 1) {
		if (ep)
			*ep = value;
		return (-1);		/* error fail match  - syntax */
	}

	return (0);			/* fail match */
}
Beispiel #8
0
/*
 * Copy in a packed nvlist from the user and create a request set out of it.
 * If successful, return 0 and store a pointer to the set we've created. Returns
 * error code on error.
 */
int
kcpc_copyin_set(kcpc_set_t **inset, void *ubuf, size_t len)
{
	kcpc_set_t	*set;
	int		i;
	int		j;
	char		*packbuf;

	nvlist_t	*nvl;
	nvpair_t	*nvp = NULL;

	nvlist_t	*attrs;
	nvpair_t	*nvp_attr;
	kcpc_attr_t	*attrp;

	nvlist_t	**reqlist;
	uint_t		nreqs;
	uint64_t	uint64;
	uint32_t	uint32;
	uint32_t	setflags = (uint32_t)-1;
	char		*string;
	char		*name;

	if (len < CPC_MIN_PACKSIZE || len > CPC_MAX_PACKSIZE)
		return (EINVAL);

	packbuf = kmem_alloc(len, KM_SLEEP);

	if (copyin(ubuf, packbuf, len) == -1) {
		kmem_free(packbuf, len);
		return (EFAULT);
	}

	if (nvlist_unpack(packbuf, len, &nvl, KM_SLEEP) != 0) {
		kmem_free(packbuf, len);
		return (EINVAL);
	}

	/*
	 * The nvlist has been unpacked so there is no need for the packed
	 * representation from this point on.
	 */
	kmem_free(packbuf, len);

	i = 0;
	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
		switch (nvpair_type(nvp)) {
		case DATA_TYPE_UINT32:
			if (strcmp(nvpair_name(nvp), "flags") != 0 ||
			    nvpair_value_uint32(nvp, &setflags) != 0) {
				nvlist_free(nvl);
				return (EINVAL);
			}
			break;
		case DATA_TYPE_NVLIST_ARRAY:
			if (strcmp(nvpair_name(nvp), "reqs") != 0 ||
			    nvpair_value_nvlist_array(nvp, &reqlist,
			    &nreqs) != 0) {
				nvlist_free(nvl);
				return (EINVAL);
			}
			break;
		default:
			nvlist_free(nvl);
			return (EINVAL);
		}
		i++;
	}

	/*
	 * There should be two members in the top-level nvlist:
	 * an array of nvlists consisting of the requests, and flags.
	 * Anything else is an invalid set.
	 */
	if (i != 2) {
		nvlist_free(nvl);
		return (EINVAL);
	}

	if (nreqs > CPC_MAX_NREQS) {
		nvlist_free(nvl);
		return (EINVAL);
	}

	/*
	 * The requests are now stored in the nvlist array at reqlist.
	 * Note that the use of kmem_zalloc() to alloc the kcpc_set_t means
	 * we don't need to call the init routines for ks_lock and ks_condv.
	 */
	set = kmem_zalloc(sizeof (kcpc_set_t), KM_SLEEP);
	set->ks_req = (kcpc_request_t *)kmem_zalloc(sizeof (kcpc_request_t) *
	    nreqs, KM_SLEEP);
	set->ks_nreqs = nreqs;
	/*
	 * If the nvlist didn't contain a flags member, setflags was initialized
	 * with an illegal value and this set will fail sanity checks later on.
	 */
	set->ks_flags = setflags;
	/*
	 * Initialize bind/unbind set synchronization.
	 */
	set->ks_state &= ~KCPC_SET_BOUND;

	/*
	 * Build the set up one request at a time, always keeping it self-
	 * consistent so we can give it to kcpc_free_set() if we need to back
	 * out and return and error.
	 */
	for (i = 0; i < nreqs; i++) {
		nvp = NULL;
		set->ks_req[i].kr_picnum = -1;
		while ((nvp = nvlist_next_nvpair(reqlist[i], nvp)) != NULL) {
			name = nvpair_name(nvp);
			switch (nvpair_type(nvp)) {
			case DATA_TYPE_UINT32:
				if (nvpair_value_uint32(nvp, &uint32) == EINVAL)
					goto inval;
				if (strcmp(name, "cr_flags") == 0)
					set->ks_req[i].kr_flags = uint32;
				if (strcmp(name, "cr_index") == 0)
					set->ks_req[i].kr_index = uint32;
				break;
			case DATA_TYPE_UINT64:
				if (nvpair_value_uint64(nvp, &uint64) == EINVAL)
					goto inval;
				if (strcmp(name, "cr_preset") == 0)
					set->ks_req[i].kr_preset = uint64;
				break;
			case DATA_TYPE_STRING:
				if (nvpair_value_string(nvp, &string) == EINVAL)
					goto inval;
				if (strcmp(name, "cr_event") == 0)
					(void) strncpy(set->ks_req[i].kr_event,
					    string, CPC_MAX_EVENT_LEN);
				break;
			case DATA_TYPE_NVLIST:
				if (strcmp(name, "cr_attr") != 0)
					goto inval;
				if (nvpair_value_nvlist(nvp, &attrs) == EINVAL)
					goto inval;
				nvp_attr = NULL;
				/*
				 * If the picnum has been specified as an
				 * attribute, consume that attribute here and
				 * remove it from the list of attributes.
				 */
				if (nvlist_lookup_uint64(attrs, "picnum",
				    &uint64) == 0) {
					if (nvlist_remove(attrs, "picnum",
					    DATA_TYPE_UINT64) != 0)
						panic("nvlist %p faulty",
						    (void *)attrs);
					set->ks_req[i].kr_picnum = uint64;
				}

				if ((set->ks_req[i].kr_nattrs =
				    kcpc_nvlist_npairs(attrs)) == 0)
					break;

				if (set->ks_req[i].kr_nattrs > CPC_MAX_ATTRS)
					goto inval;

				set->ks_req[i].kr_attr =
				    kmem_alloc(set->ks_req[i].kr_nattrs *
				    sizeof (kcpc_attr_t), KM_SLEEP);
				j = 0;

				while ((nvp_attr = nvlist_next_nvpair(attrs,
				    nvp_attr)) != NULL) {
					attrp = &set->ks_req[i].kr_attr[j];

					if (nvpair_type(nvp_attr) !=
					    DATA_TYPE_UINT64)
						goto inval;

					(void) strncpy(attrp->ka_name,
					    nvpair_name(nvp_attr),
					    CPC_MAX_ATTR_LEN);

					if (nvpair_value_uint64(nvp_attr,
					    &(attrp->ka_val)) == EINVAL)
						goto inval;
					j++;
				}
				ASSERT(j == set->ks_req[i].kr_nattrs);
			default:
				break;
			}
		}
	}

	nvlist_free(nvl);
	*inset = set;
	return (0);

inval:
	nvlist_free(nvl);
	kcpc_free_set(set);
	return (EINVAL);
}
Beispiel #9
0
/*
 * Convert the nvpair [nvp] to a string which is added to the environment
 * of the child process.
 * Return 0 on success, -1 on error.
 *
 * FIXME: Refactor with cmd/zpool/zpool_main.c:zpool_do_events_nvprint()?
 */
static void
_zed_event_add_nvpair(uint64_t eid, zed_strings_t *zsp, nvpair_t *nvp)
{
	const char *name;
	data_type_t type;
	const char *prefix = ZEVENT_VAR_PREFIX;
	boolean_t b;
	double d;
	uint8_t i8;
	uint16_t i16;
	uint32_t i32;
	uint64_t i64;
	char *str;

	assert(zsp != NULL);
	assert(nvp != NULL);

	name = nvpair_name(nvp);
	type = nvpair_type(nvp);

	switch (type) {
	case DATA_TYPE_BOOLEAN:
		_zed_event_add_var(eid, zsp, prefix, name, "%s", "1");
		break;
	case DATA_TYPE_BOOLEAN_VALUE:
		(void) nvpair_value_boolean_value(nvp, &b);
		_zed_event_add_var(eid, zsp, prefix, name, "%s", b ? "1" : "0");
		break;
	case DATA_TYPE_BYTE:
		(void) nvpair_value_byte(nvp, &i8);
		_zed_event_add_var(eid, zsp, prefix, name, "%d", i8);
		break;
	case DATA_TYPE_INT8:
		(void) nvpair_value_int8(nvp, (int8_t *) &i8);
		_zed_event_add_var(eid, zsp, prefix, name, "%d", i8);
		break;
	case DATA_TYPE_UINT8:
		(void) nvpair_value_uint8(nvp, &i8);
		_zed_event_add_var(eid, zsp, prefix, name, "%u", i8);
		break;
	case DATA_TYPE_INT16:
		(void) nvpair_value_int16(nvp, (int16_t *) &i16);
		_zed_event_add_var(eid, zsp, prefix, name, "%d", i16);
		break;
	case DATA_TYPE_UINT16:
		(void) nvpair_value_uint16(nvp, &i16);
		_zed_event_add_var(eid, zsp, prefix, name, "%u", i16);
		break;
	case DATA_TYPE_INT32:
		(void) nvpair_value_int32(nvp, (int32_t *) &i32);
		_zed_event_add_var(eid, zsp, prefix, name, "%d", i32);
		break;
	case DATA_TYPE_UINT32:
		(void) nvpair_value_uint32(nvp, &i32);
		_zed_event_add_var(eid, zsp, prefix, name, "%u", i32);
		break;
	case DATA_TYPE_INT64:
		(void) nvpair_value_int64(nvp, (int64_t *) &i64);
		_zed_event_add_var(eid, zsp, prefix, name,
		    "%lld", (longlong_t) i64);
		break;
	case DATA_TYPE_UINT64:
		(void) nvpair_value_uint64(nvp, &i64);
		_zed_event_add_var(eid, zsp, prefix, name,
		    (_zed_event_value_is_hex(name) ? "0x%.16llX" : "%llu"),
		    (u_longlong_t) i64);
		/*
		 * shadow readable strings for vdev state pairs
		 */
		if (strcmp(name, FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE) == 0 ||
		    strcmp(name, FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE) == 0) {
			char alt[32];

			(void) snprintf(alt, sizeof (alt), "%s_str", name);
			_zed_event_add_var(eid, zsp, prefix, alt, "%s",
			    zpool_state_to_name(i64, VDEV_AUX_NONE));
		}
		break;
	case DATA_TYPE_DOUBLE:
		(void) nvpair_value_double(nvp, &d);
		_zed_event_add_var(eid, zsp, prefix, name, "%g", d);
		break;
	case DATA_TYPE_HRTIME:
		(void) nvpair_value_hrtime(nvp, (hrtime_t *) &i64);
		_zed_event_add_var(eid, zsp, prefix, name,
		    "%llu", (u_longlong_t) i64);
		break;
	case DATA_TYPE_NVLIST:
		_zed_event_add_var(eid, zsp, prefix, name,
		    "%s", "_NOT_IMPLEMENTED_");			/* FIXME */
		break;
	case DATA_TYPE_STRING:
		(void) nvpair_value_string(nvp, &str);
		_zed_event_add_var(eid, zsp, prefix, name,
		    "%s", (str ? str : "<NULL>"));
		break;
	case DATA_TYPE_BOOLEAN_ARRAY:
		_zed_event_add_var(eid, zsp, prefix, name,
		    "%s", "_NOT_IMPLEMENTED_");			/* FIXME */
		break;
	case DATA_TYPE_BYTE_ARRAY:
		_zed_event_add_var(eid, zsp, prefix, name,
		    "%s", "_NOT_IMPLEMENTED_");			/* FIXME */
		break;
	case DATA_TYPE_INT8_ARRAY:
		_zed_event_add_int8_array(eid, zsp, prefix, nvp);
		break;
	case DATA_TYPE_UINT8_ARRAY:
		_zed_event_add_uint8_array(eid, zsp, prefix, nvp);
		break;
	case DATA_TYPE_INT16_ARRAY:
		_zed_event_add_int16_array(eid, zsp, prefix, nvp);
		break;
	case DATA_TYPE_UINT16_ARRAY:
		_zed_event_add_uint16_array(eid, zsp, prefix, nvp);
		break;
	case DATA_TYPE_INT32_ARRAY:
		_zed_event_add_int32_array(eid, zsp, prefix, nvp);
		break;
	case DATA_TYPE_UINT32_ARRAY:
		_zed_event_add_uint32_array(eid, zsp, prefix, nvp);
		break;
	case DATA_TYPE_INT64_ARRAY:
		_zed_event_add_int64_array(eid, zsp, prefix, nvp);
		break;
	case DATA_TYPE_UINT64_ARRAY:
		_zed_event_add_uint64_array(eid, zsp, prefix, nvp);
		break;
	case DATA_TYPE_STRING_ARRAY:
		_zed_event_add_string_array(eid, zsp, prefix, nvp);
		break;
	case DATA_TYPE_NVLIST_ARRAY:
		_zed_event_add_var(eid, zsp, prefix, name,
		    "%s", "_NOT_IMPLEMENTED_");			/* FIXME */
		break;
	default:
		errno = EINVAL;
		zed_log_msg(LOG_WARNING,
		    "Failed to convert nvpair \"%s\" for eid=%llu: "
		    "Unrecognized type=%u", name, eid, (unsigned int) type);
		break;
	}
}
Beispiel #10
0
static void
print_prop_nameval(topo_hdl_t *thp, tnode_t *node, nvlist_t *nvl)
{
	int err;
	topo_type_t type;
	char *tstr, *propn, buf[48], *factype;
	nvpair_t *pv_nvp;
	int i;
	uint_t nelem;

	if ((pv_nvp = nvlist_next_nvpair(nvl, NULL)) == NULL)
		return;

	/* Print property name */
	if ((pv_nvp = nvlist_next_nvpair(nvl, NULL)) == NULL ||
	    nvpair_name(pv_nvp) == NULL ||
	    strcmp(TOPO_PROP_VAL_NAME, nvpair_name(pv_nvp)) != 0) {
		(void) fprintf(stderr, "%s: malformed property name\n",
		    g_pname);
		return;
	} else {
		(void) nvpair_value_string(pv_nvp, &propn);
	}

	if ((pv_nvp = nvlist_next_nvpair(nvl, pv_nvp)) == NULL ||
	    nvpair_name(pv_nvp) == NULL ||
	    strcmp(nvpair_name(pv_nvp), TOPO_PROP_VAL_TYPE) != 0 ||
	    nvpair_type(pv_nvp) != DATA_TYPE_UINT32)  {
		(void) fprintf(stderr, "%s: malformed property type for %s\n",
		    g_pname, propn);
		return;
	} else {
		(void) nvpair_value_uint32(pv_nvp, (uint32_t *)&type);
	}

	switch (type) {
		case TOPO_TYPE_BOOLEAN: tstr = "boolean"; break;
		case TOPO_TYPE_INT32: tstr = "int32"; break;
		case TOPO_TYPE_UINT32: tstr = "uint32"; break;
		case TOPO_TYPE_INT64: tstr = "int64"; break;
		case TOPO_TYPE_UINT64: tstr = "uint64"; break;
		case TOPO_TYPE_DOUBLE: tstr = "double"; break;
		case TOPO_TYPE_STRING: tstr = "string"; break;
		case TOPO_TYPE_FMRI: tstr = "fmri"; break;
		case TOPO_TYPE_INT32_ARRAY: tstr = "int32[]"; break;
		case TOPO_TYPE_UINT32_ARRAY: tstr = "uint32[]"; break;
		case TOPO_TYPE_INT64_ARRAY: tstr = "int64[]"; break;
		case TOPO_TYPE_UINT64_ARRAY: tstr = "uint64[]"; break;
		case TOPO_TYPE_STRING_ARRAY: tstr = "string[]"; break;
		case TOPO_TYPE_FMRI_ARRAY: tstr = "fmri[]"; break;
		default: tstr = "unknown type";
	}

	(void) printf("    %-17s %-8s ", propn, tstr);

	/*
	 * Get property value
	 */
	if (nvpair_name(pv_nvp) == NULL ||
	    (pv_nvp = nvlist_next_nvpair(nvl, pv_nvp)) == NULL) {
		(void) fprintf(stderr, "%s: malformed property value\n",
		    g_pname);
		return;
	}

	switch (nvpair_type(pv_nvp)) {
		case DATA_TYPE_INT32: {
			int32_t val;
			(void) nvpair_value_int32(pv_nvp, &val);
			(void) printf(" %d", val);
			break;
		}
		case DATA_TYPE_UINT32: {
			uint32_t val, type;
			char val_str[49];
			nvlist_t *fac, *rsrc = NULL;

			(void) nvpair_value_uint32(pv_nvp, &val);
			if (node == NULL || topo_node_flags(node) !=
			    TOPO_NODE_FACILITY)
				goto uint32_def;

			if (topo_node_resource(node, &rsrc, &err) != 0)
				goto uint32_def;

			if (nvlist_lookup_nvlist(rsrc, "facility", &fac) != 0)
				goto uint32_def;

			if (nvlist_lookup_string(fac, FM_FMRI_FACILITY_TYPE,
			    &factype) != 0)
				goto uint32_def;

			nvlist_free(rsrc);
			rsrc = NULL;

			/*
			 * Special case code to do friendlier printing of
			 * facility node properties
			 */
			if ((strcmp(propn, TOPO_FACILITY_TYPE) == 0) &&
			    (strcmp(factype, TOPO_FAC_TYPE_SENSOR) == 0)) {
				topo_sensor_type_name(val, val_str, 48);
				(void) printf(" 0x%x (%s)", val, val_str);
				break;
			} else if ((strcmp(propn, TOPO_FACILITY_TYPE) == 0) &&
			    (strcmp(factype, TOPO_FAC_TYPE_INDICATOR) == 0)) {
				topo_led_type_name(val, val_str, 48);
				(void) printf(" 0x%x (%s)", val, val_str);
				break;
			} else if (strcmp(propn, TOPO_SENSOR_UNITS) == 0) {
				topo_sensor_units_name(val, val_str, 48);
				(void) printf(" 0x%x (%s)", val, val_str);
				break;
			} else if (strcmp(propn, TOPO_LED_MODE) == 0) {
				topo_led_state_name(val, val_str, 48);
				(void) printf(" 0x%x (%s)", val, val_str);
				break;
			} else if ((strcmp(propn, TOPO_SENSOR_STATE) == 0) &&
			    (strcmp(factype, TOPO_FAC_TYPE_SENSOR) == 0)) {
				if (topo_prop_get_uint32(node,
				    TOPO_PGROUP_FACILITY, TOPO_FACILITY_TYPE,
				    &type, &err) != 0) {
					goto uint32_def;
				}
				topo_sensor_state_name(type, val, val_str, 48);
				(void) printf(" 0x%x (%s)", val, val_str);
				break;
			}
uint32_def:
			(void) printf(" 0x%x", val);
			if (rsrc != NULL)
				nvlist_free(rsrc);
			break;
		}
		case DATA_TYPE_INT64: {
			int64_t val;
			(void) nvpair_value_int64(pv_nvp, &val);
			(void) printf(" %lld", (longlong_t)val);
			break;
		}
		case DATA_TYPE_UINT64: {
			uint64_t val;
			(void) nvpair_value_uint64(pv_nvp, &val);
			(void) printf(" 0x%llx", (u_longlong_t)val);
			break;
		}
		case DATA_TYPE_DOUBLE: {
			double val;
			(void) nvpair_value_double(pv_nvp, &val);
			(void) printf(" %lf", (double)val);
			break;
		}
		case DATA_TYPE_STRING: {
			char *val;
			(void) nvpair_value_string(pv_nvp, &val);
			if (!opt_V && strlen(val) > 48) {
				(void) snprintf(buf, 48, "%s...", val);
				(void) printf(" %s", buf);
			} else {
				(void) printf(" %s", val);
			}
			break;
		}
		case DATA_TYPE_NVLIST: {
			nvlist_t *val;
			char *fmri;
			(void) nvpair_value_nvlist(pv_nvp, &val);
			if (topo_fmri_nvl2str(thp, val, &fmri, &err) != 0) {
				if (opt_V)
					nvlist_print(stdout, nvl);
				break;
			}

			if (!opt_V && strlen(fmri) > 48) {
				(void) snprintf(buf, 48, "%s", fmri);
				(void) snprintf(&buf[45], 4, "%s", DOTS);
				(void) printf(" %s", buf);
			} else {
				(void) printf(" %s", fmri);
			}

			topo_hdl_strfree(thp, fmri);
			break;
		}
		case DATA_TYPE_INT32_ARRAY: {
			int32_t *val;

			(void) nvpair_value_int32_array(pv_nvp, &val, &nelem);
			(void) printf(" [ ");
			for (i = 0; i < nelem; i++)
				(void) printf("%d ", val[i]);
			(void) printf("]");
			break;
		}
		case DATA_TYPE_UINT32_ARRAY: {
			uint32_t *val;

			(void) nvpair_value_uint32_array(pv_nvp, &val, &nelem);
			(void) printf(" [ ");
			for (i = 0; i < nelem; i++)
				(void) printf("%u ", val[i]);
			(void) printf("]");
			break;
		}
		case DATA_TYPE_INT64_ARRAY: {
			int64_t *val;

			(void) nvpair_value_int64_array(pv_nvp, &val, &nelem);
			(void) printf(" [ ");
			for (i = 0; i < nelem; i++)
				(void) printf("%lld ", val[i]);
			(void) printf("]");
			break;
		}
		case DATA_TYPE_UINT64_ARRAY: {
			uint64_t *val;

			(void) nvpair_value_uint64_array(pv_nvp, &val, &nelem);
			(void) printf(" [ ");
			for (i = 0; i < nelem; i++)
				(void) printf("%llu ", val[i]);
			(void) printf("]");
			break;
		}
		case DATA_TYPE_STRING_ARRAY: {
			char **val;

			(void) nvpair_value_string_array(pv_nvp, &val, &nelem);
			(void) printf(" [ ");
			for (i = 0; i < nelem; i++)
				(void) printf("\"%s\" ", val[i]);
			(void) printf("]");
			break;
		}
		default:
			(void) fprintf(stderr, " unknown data type (%d)",
			    nvpair_type(pv_nvp));
			break;
		}
		(void) printf("\n");
}
Beispiel #11
0
static void
rcm_print_nvlist(nvlist_t *nvl)
{
	uchar_t data_byte;
	int16_t data_int16;
	uint16_t data_uint16;
	int32_t data_int32;
	uint32_t data_uint32;
	int64_t data_int64;
	uint64_t data_uint64;
	char *data_string;
	char **data_strings;
	uint_t data_nstrings;
	nvpair_t *nvp = NULL;
	int i;
	char *name;
	data_type_t type;

	rcm_log_message(RCM_TRACE3, "event attributes:\n");

	while (nvp = nvlist_next_nvpair(nvl, nvp)) {
		type = nvpair_type(nvp);
		name = nvpair_name(nvp);
		rcm_log_message(RCM_TRACE3, "\t%s(%d)=", name, type);

		switch (type) {
		case DATA_TYPE_BOOLEAN:
			rcm_log_message(RCM_TRACE3, "True (boolean)\n");
			break;

		case DATA_TYPE_BYTE:
			(void) nvpair_value_byte(nvp, &data_byte);
			rcm_log_message(RCM_TRACE3, "0x%x (byte)\n",
			    data_byte);
			break;

		case DATA_TYPE_INT16:
			(void) nvpair_value_int16(nvp, &data_int16);
			rcm_log_message(RCM_TRACE3, "0x%x (int16)\n",
			    data_int16);
			break;

		case DATA_TYPE_UINT16:
			(void) nvpair_value_uint16(nvp, &data_uint16);
			rcm_log_message(RCM_TRACE3, "0x%x (uint16)\n",
			    data_uint16);
			break;

		case DATA_TYPE_INT32:
			(void) nvpair_value_int32(nvp, &data_int32);
			rcm_log_message(RCM_TRACE3, "0x%x (int32)\n",
			    data_int32);
			break;

		case DATA_TYPE_UINT32:
			(void) nvpair_value_uint32(nvp, &data_uint32);
			rcm_log_message(RCM_TRACE3, "0x%x (uint32)\n",
			    data_uint32);
			break;

		case DATA_TYPE_INT64:
			(void) nvpair_value_int64(nvp, &data_int64);
			rcm_log_message(RCM_TRACE3, "0x%lx (int64)\n",
			    data_int64);
			break;

		case DATA_TYPE_UINT64:
			(void) nvpair_value_uint64(nvp, &data_uint64);
			rcm_log_message(RCM_TRACE3, "0x%lx (uint64)\n",
			    data_uint64);
			break;

		case DATA_TYPE_STRING:
			(void) nvpair_value_string(nvp, &data_string);
			rcm_log_message(RCM_TRACE3, "\"%s\" (string)\n",
			    data_string);
			break;

		case DATA_TYPE_STRING_ARRAY:
			(void) nvpair_value_string_array(nvp, &data_strings,
			    &data_nstrings);
			for (i = 0; i < data_nstrings; i++) {
				rcm_log_message(RCM_TRACE3,
				    "\t\"%s\" (string)\n", data_strings[i]);
				if (i < (data_nstrings - 1))
					rcm_log_message(RCM_TRACE3, "\t\t\t");
			}
			break;

		default:
			rcm_log_message(RCM_TRACE3, "<not dumped>\n");
			break;
		}
	}
}
Beispiel #12
0
/*
 * Convert the nvpair [nvp] to a string which is added to the environment
 * of the child process.
 * Return 0 on success, -1 on error.
 *
 * FIXME: Refactor with cmd/zpool/zpool_main.c:zpool_do_events_nvprint()?
 */
static void
_zed_event_add_nvpair(uint64_t eid, zed_strings_t *zsp, nvpair_t *nvp)
{
	const char *name;
	data_type_t type;
	char buf[4096];
	int buflen;
	int n;
	char *p;
	const char *q;
	const char *fmt;

	boolean_t b;
	double d;
	uint8_t i8;
	uint16_t i16;
	uint32_t i32;
	uint64_t i64;
	char *str;

	assert(zsp != NULL);
	assert(nvp != NULL);

	name = nvpair_name(nvp);
	type = nvpair_type(nvp);
	buflen = sizeof (buf);

	/* Copy NAME prefix for ZED zevent namespace. */
	n = strlcpy(buf, ZEVENT_VAR_PREFIX, sizeof (buf));
	if (n >= sizeof (buf)) {
		zed_log_msg(LOG_WARNING,
		    "Failed to convert nvpair \"%s\" for eid=%llu: %s",
		    name, eid, "Exceeded buffer size");
		return;
	}
	buflen -= n;
	p = buf + n;

	/* Convert NAME to alphanumeric uppercase. */
	for (q = name; *q && (buflen > 0); q++) {
		*p++ = isalnum(*q) ? toupper(*q) : '_';
		buflen--;
	}

	/* Separate NAME from VALUE. */
	if (buflen > 0) {
		*p++ = '=';
		buflen--;
	}
	*p = '\0';

	/* Convert VALUE. */
	switch (type) {
	case DATA_TYPE_BOOLEAN:
		n = snprintf(p, buflen, "%s", "1");
		break;
	case DATA_TYPE_BOOLEAN_VALUE:
		(void) nvpair_value_boolean_value(nvp, &b);
		n = snprintf(p, buflen, "%s", b ? "1" : "0");
		break;
	case DATA_TYPE_BYTE:
		(void) nvpair_value_byte(nvp, &i8);
		n = snprintf(p, buflen, "%d", i8);
		break;
	case DATA_TYPE_INT8:
		(void) nvpair_value_int8(nvp, (int8_t *) &i8);
		n = snprintf(p, buflen, "%d", i8);
		break;
	case DATA_TYPE_UINT8:
		(void) nvpair_value_uint8(nvp, &i8);
		n = snprintf(p, buflen, "%u", i8);
		break;
	case DATA_TYPE_INT16:
		(void) nvpair_value_int16(nvp, (int16_t *) &i16);
		n = snprintf(p, buflen, "%d", i16);
		break;
	case DATA_TYPE_UINT16:
		(void) nvpair_value_uint16(nvp, &i16);
		n = snprintf(p, buflen, "%u", i16);
		break;
	case DATA_TYPE_INT32:
		(void) nvpair_value_int32(nvp, (int32_t *) &i32);
		n = snprintf(p, buflen, "%d", i32);
		break;
	case DATA_TYPE_UINT32:
		(void) nvpair_value_uint32(nvp, &i32);
		n = snprintf(p, buflen, "%u", i32);
		break;
	case DATA_TYPE_INT64:
		(void) nvpair_value_int64(nvp, (int64_t *) &i64);
		n = snprintf(p, buflen, "%lld", (longlong_t) i64);
		break;
	case DATA_TYPE_UINT64:
		(void) nvpair_value_uint64(nvp, &i64);
		fmt = _zed_event_value_is_hex(name) ? "0x%.16llX" : "%llu";
		n = snprintf(p, buflen, fmt, (u_longlong_t) i64);
		break;
	case DATA_TYPE_DOUBLE:
		(void) nvpair_value_double(nvp, &d);
		n = snprintf(p, buflen, "%g", d);
		break;
	case DATA_TYPE_HRTIME:
		(void) nvpair_value_hrtime(nvp, (hrtime_t *) &i64);
		n = snprintf(p, buflen, "%llu", (u_longlong_t) i64);
		break;
	case DATA_TYPE_NVLIST:
		/* FIXME */
		n = snprintf(p, buflen, "%s", "_NOT_IMPLEMENTED_");
		break;
	case DATA_TYPE_STRING:
		(void) nvpair_value_string(nvp, &str);
		n = snprintf(p, buflen, "%s", (str ? str : "<NULL>"));
		break;
	case DATA_TYPE_BOOLEAN_ARRAY:
		/* FIXME */
		n = snprintf(p, buflen, "%s", "_NOT_IMPLEMENTED_");
		break;
	case DATA_TYPE_BYTE_ARRAY:
		/* FIXME */
		n = snprintf(p, buflen, "%s", "_NOT_IMPLEMENTED_");
		break;
	case DATA_TYPE_INT8_ARRAY:
		n = _zed_event_convert_int8_array(p, buflen, nvp);
		break;
	case DATA_TYPE_UINT8_ARRAY:
		n = _zed_event_convert_uint8_array(p, buflen, nvp);
		break;
	case DATA_TYPE_INT16_ARRAY:
		n = _zed_event_convert_int16_array(p, buflen, nvp);
		break;
	case DATA_TYPE_UINT16_ARRAY:
		n = _zed_event_convert_uint16_array(p, buflen, nvp);
		break;
	case DATA_TYPE_INT32_ARRAY:
		n = _zed_event_convert_int32_array(p, buflen, nvp);
		break;
	case DATA_TYPE_UINT32_ARRAY:
		n = _zed_event_convert_uint32_array(p, buflen, nvp);
		break;
	case DATA_TYPE_INT64_ARRAY:
		n = _zed_event_convert_int64_array(p, buflen, nvp);
		break;
	case DATA_TYPE_UINT64_ARRAY:
		fmt = _zed_event_value_is_hex(name) ? "0x%.16llX " : "%llu ";
		n = _zed_event_convert_uint64_array(p, buflen, nvp, fmt);
		break;
	case DATA_TYPE_STRING_ARRAY:
		n = _zed_event_convert_string_array(p, buflen, nvp);
		break;
	case DATA_TYPE_NVLIST_ARRAY:
		/* FIXME */
		n = snprintf(p, buflen, "%s", "_NOT_IMPLEMENTED_");
		break;
	default:
		zed_log_msg(LOG_WARNING,
		    "Failed to convert nvpair \"%s\" for eid=%llu: "
		    "Unrecognized type=%u", name, eid, (unsigned int) type);
		return;
	}
	if ((n < 0) || (n >= sizeof (buf))) {
		zed_log_msg(LOG_WARNING,
		    "Failed to convert nvpair \"%s\" for eid=%llu: %s",
		    name, eid, "Exceeded buffer size");
		return;
	}
	if (zed_strings_add(zsp, buf) < 0) {
		zed_log_msg(LOG_WARNING,
		    "Failed to convert nvpair \"%s\" for eid=%llu: %s",
		    name, eid, strerror(ENOMEM));
		return;
	}
}
CCIMInstance *
partbasedon_descriptor_toCCIMInstance(char *hostname, dm_descriptor_t  ant,
    dm_descriptor_t dep, char *provider, int *errp)
{
	nvlist_t		*nvlp;
	nvpair_t		*nvp;
	CCIMInstance		*inst = NULL;
	CCIMInstance		*ant_inst;
	CCIMInstance		*dep_inst;
	CCIMObjectPath		*ant_op;
	CCIMObjectPath		*dep_op;
	CCIMException		*ex;
	int			error;
	uint64_t		size;  /* need these to calculate ending addr */
	uint64_t		startaddr;
	uint64_t		endaddr;
	char			attrval[100];
	int			isFdisk = 0;

	*errp = 0;

	/* Create instance of partition based on assoc. */

	if ((inst = cim_createInstance(provider)) == NULL) {
	    ex = cim_getLastError();
	    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
		CIM_ERR_FAILED, CREATE_INSTANCE_FAILURE, ex, errp);
	    return ((CCIMInstance *)NULL);
	}

	if ((strcasecmp(provider, DISKPART_BASEDONFDISK)) == 0) {
	    isFdisk = 1;
	}

	/*
	 * Now get the object path for the REF pointers.
	 */


	if (isFdisk) {
	    ant_inst = partition_descriptor_toCCIMInstance(hostname, ant,
		DISK_PARTITION, &error);
	} else {
	    ant_inst = logicaldisk_descriptor_toCCIMInstance(hostname, ant,
		LOGICAL_DISK, &error);
	}

	if (error != 0) {
	    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
		CIM_ERR_FAILED, PARTBASEDON_DESC_TO_INSTANCE_FAILURE,
		    NULL, &error);
	    cim_freeInstance(inst);
	    return ((CCIMInstance *)NULL);
	}

	dep_inst = partition_descriptor_toCCIMInstance(hostname, dep,
	    DISK_PARTITION, &error);

	if (error != 0) {
	    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
		CIM_ERR_FAILED, PARTBASEDON_DESC_TO_INSTANCE_FAILURE,
		    NULL, &error);
	    cim_freeInstance(inst);
	    cim_freeInstance(ant_inst);
	    return ((CCIMInstance *)NULL);
	}

	/*
	 * Get the object paths that are represented by these instances.
	 * Add these properties to the association instance.
	 */

	ant_op = cim_createObjectPath(ant_inst);
	dep_op = cim_createObjectPath(dep_inst);
	cim_freeInstance(ant_inst);
	cim_freeInstance(dep_inst);

	if (ant_op == NULL || dep_op == NULL) {
	    ex = cim_getLastError();
	    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
		CIM_ERR_FAILED, CREATE_OBJECT_PATH_FAILURE, ex, &error);
	    cim_freeInstance(inst);
	    return ((CCIMInstance *)NULL);
	}

	util_doReferenceProperty(ANTECEDENT, ant_op, cim_true, inst, errp);
	util_doReferenceProperty(DEPENDENT, dep_op, cim_true, inst, errp);
	cim_freeObjectPath(ant_op);
	cim_freeObjectPath(dep_op);

	if (*errp != 0) {
	    ex = cim_getLastError();
	    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
		CIM_ERR_FAILED, ADD_PROPERTY_FAILURE, ex, errp);
	    cim_freeInstance(inst);
	    return ((CCIMInstance *)NULL);
	}

	/*
	 * Now get the other attributes we are interested in
	 */

	nvlp = dm_get_attributes(dep, &error);
	if (error != 0) {
	    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC, CIM_ERR_FAILED,
		DM_GET_ATTR_FAILURE, NULL, errp);
	    cim_freeInstance(inst);
	    return ((CCIMInstance *)NULL);
	}

	if (nvlp == NULL) {
	    return (inst);
	}

	for (nvp = nvlist_next_nvpair(nvlp, NULL); nvp != NULL;
	    nvp = nvlist_next_nvpair(nvlp, nvp)) {

	    char	*attrname;
	    uint64_t	ui64;
	    uint32_t	ui32;

	    attrname = nvpair_name(nvp);
	    if (attrname == NULL) {
		continue;
	    }

	    if (strcasecmp(attrname, DM_SIZE) == 0) {
		error = nvpair_value_uint64(nvp, &ui64);
		if (error != 0) {
		    cim_freeInstance(inst);
		    nvlist_free(nvlp);
		    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
			CIM_ERR_FAILED, DM_GET_ATTR_FAILURE, NULL, errp);
		    return ((CCIMInstance *)NULL);
		}
		size = ui64;
	    } else if (strcasecmp(attrname, DM_START) == 0) {
		error = nvpair_value_uint64(nvp, &ui64);
		if (error != 0) {
		    cim_freeInstance(inst);
		    nvlist_free(nvlp);
		    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
			CIM_ERR_FAILED, DM_GET_ATTR_FAILURE, NULL, errp);
		    return ((CCIMInstance *)NULL);
		}

		startaddr = ui64;
		error = snprintf(attrval, sizeof (attrval), "%llu", ui64);
		if (error < 0) {
		    cim_freeInstance(inst);
		    nvlist_free(nvlp);
		    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
			CIM_ERR_FAILED, DM_GET_ATTR_FAILURE, NULL, errp);
		    return ((CCIMInstance *)NULL);
		}

		util_doProperty("StartingAddress", uint64, attrval, cim_false,
		    inst, errp);

		if (*errp != 0) {
		    ex = cim_getLastError();
		    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
			CIM_ERR_FAILED, ADD_PROPERTY_FAILURE, ex, errp);
		    cim_freeInstance(inst);
		    nvlist_free(nvlp);
		    return ((CCIMInstance *)NULL);
		}
	    } else if (strcasecmp(attrname, DM_INDEX) == 0) {
		error = nvpair_value_uint32(nvp, &ui32);
		if (error != 0) {
		    cim_freeInstance(inst);
		    nvlist_free(nvlp);
		    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
			CIM_ERR_FAILED, DM_GET_ATTR_FAILURE, NULL, errp);
		    return ((CCIMInstance *)NULL);
		}

		error = snprintf(attrval, sizeof (attrval), "%u", ui32);
		if (error < 0) {
		    cim_freeInstance(inst);
		    nvlist_free(nvlp);
		    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
			CIM_ERR_FAILED, DM_GET_ATTR_FAILURE, NULL, errp);
		    return ((CCIMInstance *)NULL);
		}

		util_doProperty("OrderIndex", uint32, attrval, cim_false,
		    inst, errp);

		if (*errp != 0) {
		    ex = cim_getLastError();
		    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
			CIM_ERR_FAILED, ADD_PROPERTY_FAILURE, ex, errp);
		    cim_freeInstance(inst);
		    nvlist_free(nvlp);
		    return ((CCIMInstance *)NULL);
		}
	    }
	}

	nvlist_free(nvlp);
	/*
	 * Now add the ending address attribute. Do this here because
	 * there is no guarantee about the order for how these name/value
	 * pairs are given and without the starting address we cannot
	 * calculate the ending address.
	 */

	endaddr = startaddr + size;
	error = snprintf(attrval, sizeof (attrval), "%llu", endaddr);
	if (error < 0) {
	    cim_freeInstance(inst);
	    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
		CIM_ERR_FAILED, DM_GET_ATTR_FAILURE, NULL, errp);
	    return ((CCIMInstance *)NULL);
	}

	util_doProperty("EndingAddress", uint64, attrval, cim_false, inst,
	    errp);

	if (*errp != 0) {
	    ex = cim_getLastError();
	    util_handleError(PARTBASEDON_DESCRIPTOR_FUNC,
		CIM_ERR_FAILED, ADD_PROPERTY_FAILURE, ex, errp);
	    cim_freeInstance(inst);
	    return ((CCIMInstance *)NULL);
	}
	return (inst);
}