Beispiel #1
0
TEST(binary_file, binary_read_write_mem)
{
    const char filename[] = "temp_test_mem_binary.dat";
    int num_cpu = 1000;
    int num_gpu = 2048;
    int status = 0;

    // Create the handle.
    oskar_Binary* h = oskar_binary_create(filename, 'w', &status);

    // Save data from CPU.
    {
        oskar_Mem* mem = oskar_mem_create(OSKAR_SINGLE, OSKAR_CPU,
                num_cpu, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        float* data = oskar_mem_float(mem, &status);

        // Fill array with data.
        for (int i = 0; i < num_cpu; ++i)
        {
            data[i] = i * 1024.0;
        }

        // Save CPU data.
        oskar_binary_write_mem_ext(h, mem, "USER", "TEST", 987654, 0, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_mem_free(mem, &status);
    }

    // Save data from GPU.
    {
        oskar_Mem *mem_cpu, *mem_gpu;
        mem_cpu = oskar_mem_create(OSKAR_DOUBLE_COMPLEX, OSKAR_CPU,
                num_gpu, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        double2* data = oskar_mem_double2(mem_cpu, &status);

        // Fill array with data.
        for (int i = 0; i < num_gpu; ++i)
        {
            data[i].x = i * 10.0;
            data[i].y = i * 20.0 + 1.0;
        }

        // Copy data to GPU.
        mem_gpu = oskar_mem_create_copy(mem_cpu, OSKAR_GPU, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Save GPU data.
        oskar_binary_write_mem_ext(h, mem_gpu, "AA", "BB", 2, 0, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_mem_free(mem_cpu, &status);
        oskar_mem_free(mem_gpu, &status);
    }

    // Save a single integer with a large index.
    int val = 0xFFFFFF;
    oskar_binary_write_int(h, 50, 9, 800000, val, &status);
    ASSERT_EQ(0, status) << oskar_get_error_string(status);

    // Save data from CPU with blank tags.
    {
        oskar_Mem* mem = oskar_mem_create(OSKAR_DOUBLE, OSKAR_CPU,
                num_cpu, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        double* data = oskar_mem_double(mem, &status);

        // Fill array with data.
        for (int i = 0; i < num_cpu; ++i)
        {
            data[i] = i * 500.0;
        }

        // Save CPU data.
        oskar_binary_write_mem_ext(h, mem, "", "", 10, 0, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Fill array with data.
        for (int i = 0; i < num_cpu; ++i)
        {
            data[i] = i * 501.0;
        }

        // Save CPU data.
        oskar_binary_write_mem_ext(h, mem, "", "", 11, 0, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_mem_free(mem, &status);
    }

    // Save CPU data with tags that are equal lengths.
    {
        oskar_Mem* mem = oskar_mem_create(OSKAR_DOUBLE, OSKAR_CPU,
                num_cpu, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        double* data = oskar_mem_double(mem, &status);

        // Fill array with data.
        for (int i = 0; i < num_cpu; ++i)
        {
            data[i] = i * 1001.0;
        }

        // Save CPU data.
        oskar_binary_write_mem_ext(h, mem, "DOG", "CAT", 0, 0, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Fill array with data.
        for (int i = 0; i < num_cpu; ++i)
        {
            data[i] = i * 127.0;
        }

        // Save CPU data.
        oskar_binary_write_mem_ext(h, mem, "ONE", "TWO", 0, 0, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_mem_free(mem, &status);
    }

    // Create the handle for reading.
    oskar_binary_free(h);
    h = oskar_binary_create(filename, 'r', &status);

    // Load data directly to GPU.
    {
        oskar_Mem *mem_gpu, *mem_cpu;
        mem_gpu = oskar_mem_create(OSKAR_DOUBLE_COMPLEX, OSKAR_GPU,
                0, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_binary_read_mem_ext(h, mem_gpu, "AA", "BB", 2, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        EXPECT_EQ(num_gpu, (int)oskar_mem_length(mem_gpu));

        // Copy back to CPU and examine contents.
        mem_cpu = oskar_mem_create_copy(mem_gpu, OSKAR_CPU, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        double2* data = oskar_mem_double2(mem_cpu, &status);
        for (int i = 0; i < num_gpu; ++i)
        {
            EXPECT_DOUBLE_EQ(i * 10.0,       data[i].x);
            EXPECT_DOUBLE_EQ(i * 20.0 + 1.0, data[i].y);
        }
        oskar_mem_free(mem_cpu, &status);
        oskar_mem_free(mem_gpu, &status);
    }

    // Load integer with a large index.
    int new_val = 0;
    oskar_binary_read_int(h, 50, 9, 800000, &new_val, &status);
    ASSERT_EQ(0, status) << oskar_get_error_string(status);
    EXPECT_EQ(val, new_val);

    // Load CPU data.
    {
        oskar_Mem* mem = oskar_mem_create(OSKAR_SINGLE, OSKAR_CPU,
                num_cpu, &status);
        oskar_binary_read_mem_ext(h, mem, "USER", "TEST", 987654, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        ASSERT_EQ(num_cpu, (int)oskar_mem_length(mem));
        float* data = oskar_mem_float(mem, &status);
        for (int i = 0; i < num_cpu; ++i)
        {
            EXPECT_DOUBLE_EQ(i * 1024.0, data[i]);
        }
        oskar_mem_free(mem, &status);
    }

    // Load CPU data with blank tags.
    {
        double* data;
        oskar_Mem* mem = oskar_mem_create(OSKAR_DOUBLE, OSKAR_CPU,
                num_cpu, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_binary_read_mem_ext(h, mem, "", "", 10, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_binary_read_mem_ext(h, mem, "DOESN'T", "EXIST", 10, &status);
        EXPECT_EQ((int)OSKAR_ERR_BINARY_TAG_NOT_FOUND, status);
        status = 0;
        ASSERT_EQ(num_cpu, (int)oskar_mem_length(mem));
        data = oskar_mem_double(mem, &status);
        for (int i = 0; i < num_cpu; ++i)
        {
            EXPECT_DOUBLE_EQ(i * 500.0, data[i]);
        }
        oskar_binary_read_mem_ext(h, mem, "", "", 11, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        ASSERT_EQ(num_cpu, (int)oskar_mem_length(mem));
        data = oskar_mem_double(mem, &status);
        for (int i = 0; i < num_cpu; ++i)
        {
            EXPECT_DOUBLE_EQ(i * 501.0, data[i]);
        }
        oskar_mem_free(mem, &status);
    }

    // Load CPU data with tags that are equal lengths.
    {
        double* data;
        oskar_Mem* mem = oskar_mem_create(OSKAR_DOUBLE, OSKAR_CPU, 0,
                &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_binary_read_mem_ext(h, mem, "ONE", "TWO", 0, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        ASSERT_EQ(num_cpu, (int)oskar_mem_length(mem));
        data = oskar_mem_double(mem, &status);
        for (int i = 0; i < num_cpu; ++i)
        {
            EXPECT_DOUBLE_EQ(i * 127.0, data[i]);
        }
        oskar_binary_read_mem_ext(h, mem, "DOG", "CAT", 0, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        ASSERT_EQ(num_cpu, (int)oskar_mem_length(mem));
        data = oskar_mem_double(mem, &status);
        for (int i = 0; i < num_cpu; ++i)
        {
            EXPECT_DOUBLE_EQ(i * 1001.0, data[i]);
        }
        oskar_mem_free(mem, &status);
    }

    // Try to load data that isn't present.
    {
        oskar_Mem* mem = oskar_mem_create(OSKAR_DOUBLE, OSKAR_CPU, 0,
                &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_binary_read_mem_ext(h, mem, "DOESN'T", "EXIST", 10, &status);
        EXPECT_EQ((int)OSKAR_ERR_BINARY_TAG_NOT_FOUND, status);
        status = 0;
        EXPECT_EQ(0, (int)oskar_mem_length(mem));
        oskar_mem_free(mem, &status);
    }

    // Release the handle.
    oskar_binary_free(h);
    ASSERT_EQ(0, status) << oskar_get_error_string(status);
}
int main(int argc, char** argv)
{
    int status = 0;
    oskar::OptionParser opt("oskar_evaulate_pierce_points",
            oskar_version_string());
    opt.add_required("settings file");
    if (!opt.check_options(argc, argv)) return EXIT_FAILURE;

    const char* settings_file = opt.get_arg();

    // Create the log.
    oskar_Log* log = oskar_log_create(OSKAR_LOG_MESSAGE, OSKAR_LOG_STATUS);
    oskar_log_message(log, 'M', 0, "Running binary %s", argv[0]);

    // Enum values used in writing time-freq data binary files
    enum OSKAR_TIME_FREQ_TAGS
    {
        TIME_IDX       = 0,
        FREQ_IDX       = 1,
        TIME_MJD_UTC   = 2,
        FREQ_HZ        = 3,
        NUM_FIELDS     = 4,
        NUM_FIELD_TAGS = 5,
        HEADER_OFFSET  = 10,
        DATA           = 0,
        DIMS           = 1,
        LABEL          = 2,
        UNITS          = 3,
        GRP            = OSKAR_TAG_GROUP_TIME_FREQ_DATA
    };

    oskar_Settings_old settings;
    oskar_settings_old_load(&settings, log, settings_file, &status);
    oskar_log_set_keep_file(log, settings.sim.keep_log_file);
    if (status) return status;

    oskar_Telescope* tel = oskar_settings_to_telescope(&settings, log, &status);
    oskar_Sky* sky = oskar_settings_to_sky(&settings, log, &status);

    // FIXME remove this restriction ... (see evaluate Z)
    if (settings.ionosphere.num_TID_screens != 1)
        return OSKAR_ERR_SETUP_FAIL;

    int type = settings.sim.double_precision ? OSKAR_DOUBLE : OSKAR_SINGLE;
    int loc = OSKAR_CPU;

    int num_sources = oskar_sky_num_sources(sky);
    oskar_Mem *hor_x, *hor_y, *hor_z;
    hor_x = oskar_mem_create(type, loc, num_sources, &status);
    hor_y = oskar_mem_create(type, loc, num_sources, &status);
    hor_z = oskar_mem_create(type, loc, num_sources, &status);

    oskar_Mem *pp_lon, *pp_lat, *pp_rel_path;
    int num_stations = oskar_telescope_num_stations(tel);

    int num_pp = num_stations * num_sources;
    pp_lon = oskar_mem_create(type, loc, num_pp, &status);
    pp_lat = oskar_mem_create(type, loc, num_pp, &status);
    pp_rel_path = oskar_mem_create(type, loc, num_pp, &status);

    // Pierce points for one station (non-owned oskar_Mem pointers)
    oskar_Mem *pp_st_lon, *pp_st_lat, *pp_st_rel_path;
    pp_st_lon = oskar_mem_create_alias(0, 0, 0, &status);
    pp_st_lat = oskar_mem_create_alias(0, 0, 0, &status);
    pp_st_rel_path = oskar_mem_create_alias(0, 0, 0, &status);

    int num_times = settings.obs.num_time_steps;
    double obs_start_mjd_utc = settings.obs.start_mjd_utc;
    double dt_dump = settings.obs.dt_dump_days;

    // Binary file meta-data
    std::string label1 = "pp_lon";
    std::string label2 = "pp_lat";
    std::string label3 = "pp_path";
    std::string units  = "radians";
    std::string units2 = "";
    oskar_Mem *dims = oskar_mem_create(OSKAR_INT, loc, 2, &status);
    /* FIXME is this the correct dimension order ?
     * FIXME get the MATLAB reader to respect dimension ordering */
    oskar_mem_int(dims, &status)[0] = num_sources;
    oskar_mem_int(dims, &status)[1] = num_stations;

    const char* filename = settings.ionosphere.pierce_points.filename;
    oskar_Binary* h = oskar_binary_create(filename, 'w', &status);

    double screen_height_m = settings.ionosphere.TID->height_km * 1000.0;

//    printf("Number of times    = %i\n", num_times);
//    printf("Number of stations = %i\n", num_stations);

    void *x_, *y_, *z_;
    x_ = oskar_mem_void(oskar_telescope_station_true_x_offset_ecef_metres(tel));
    y_ = oskar_mem_void(oskar_telescope_station_true_y_offset_ecef_metres(tel));
    z_ = oskar_mem_void(oskar_telescope_station_true_z_offset_ecef_metres(tel));

    for (int t = 0; t < num_times; ++t)
    {
        double t_dump = obs_start_mjd_utc + t * dt_dump; // MJD UTC
        double gast = oskar_convert_mjd_to_gast_fast(t_dump + dt_dump / 2.0);

        for (int i = 0; i < num_stations; ++i)
        {
            const oskar_Station* station =
                    oskar_telescope_station_const(tel, i);
            double lon = oskar_station_lon_rad(station);
            double lat = oskar_station_lat_rad(station);
            double alt = oskar_station_alt_metres(station);
            double x_ecef, y_ecef, z_ecef, x_offset, y_offset, z_offset;

            if (type == OSKAR_DOUBLE)
            {
                x_offset = ((double*)x_)[i];
                y_offset = ((double*)y_)[i];
                z_offset = ((double*)z_)[i];
            }
            else
            {
                x_offset = (double)((float*)x_)[i];
                y_offset = (double)((float*)y_)[i];
                z_offset = (double)((float*)z_)[i];
            }

            oskar_convert_offset_ecef_to_ecef(1, &x_offset, &y_offset,
                    &z_offset, lon, lat, alt, &x_ecef, &y_ecef, &z_ecef);
            double last = gast + lon;

            if (type == OSKAR_DOUBLE)
            {
                oskar_convert_apparent_ra_dec_to_enu_directions_d(num_sources,
                        oskar_mem_double_const(oskar_sky_ra_rad_const(sky), &status),
                        oskar_mem_double_const(oskar_sky_dec_rad_const(sky), &status),
                        last, lat, oskar_mem_double(hor_x, &status),
                        oskar_mem_double(hor_y, &status),
                        oskar_mem_double(hor_z, &status));
            }
            else
            {
                oskar_convert_apparent_ra_dec_to_enu_directions_f(num_sources,
                        oskar_mem_float_const(oskar_sky_ra_rad_const(sky), &status),
                        oskar_mem_float_const(oskar_sky_dec_rad_const(sky), &status),
                        last, lat, oskar_mem_float(hor_x, &status),
                        oskar_mem_float(hor_y, &status),
                        oskar_mem_float(hor_z, &status));
            }

            int offset = i * num_sources;
            oskar_mem_set_alias(pp_st_lon, pp_lon, offset, num_sources,
                    &status);
            oskar_mem_set_alias(pp_st_lat, pp_lat, offset, num_sources,
                    &status);
            oskar_mem_set_alias(pp_st_rel_path, pp_rel_path, offset,
                    num_sources, &status);
            oskar_evaluate_pierce_points(pp_st_lon, pp_st_lat, pp_st_rel_path,
                    x_ecef, y_ecef, z_ecef, screen_height_m,
                    num_sources, hor_x, hor_y, hor_z, &status);
        } // Loop over stations.

        if (status != 0)
            continue;

        int index = t; // could be = (num_times * f) + t if we have frequency data
        int num_fields = 3;
        int num_field_tags = 4;
        double freq_hz = 0.0;
        int freq_idx = 0;

        // Write the header TAGS
        oskar_binary_write_int(h, GRP, TIME_IDX, index, t, &status);
        oskar_binary_write_double(h, GRP, FREQ_IDX, index, freq_idx, &status);
        oskar_binary_write_double(h, GRP, TIME_MJD_UTC, index, t_dump, &status);
        oskar_binary_write_double(h, GRP, FREQ_HZ, index, freq_hz, &status);
        oskar_binary_write_int(h, GRP, NUM_FIELDS, index, num_fields, &status);
        oskar_binary_write_int(h, GRP, NUM_FIELD_TAGS, index, num_field_tags,
                &status);

        // Write data TAGS (fields)
        int field, tagID;
        field = 0;
        tagID = HEADER_OFFSET + (num_field_tags * field);
        oskar_binary_write_mem(h, pp_lon, GRP, tagID + DATA,
                index, 0, &status);
        oskar_binary_write_mem(h, dims, GRP, tagID  + DIMS,
                index, 0, &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + LABEL,
                index, label1.size()+1, label1.c_str(), &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + UNITS,
                index, units.size()+1, units.c_str(), &status);
        field = 1;
        tagID = HEADER_OFFSET + (num_field_tags * field);
        oskar_binary_write_mem(h, pp_lat, GRP, tagID + DATA,
                index, 0, &status);
        oskar_binary_write_mem(h, dims, GRP, tagID  + DIMS,
                index, 0, &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + LABEL,
                index, label2.size()+1, label2.c_str(), &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + UNITS,
                index, units.size()+1, units.c_str(), &status);
        field = 2;
        tagID = HEADER_OFFSET + (num_field_tags * field);
        oskar_binary_write_mem(h, pp_rel_path, GRP, tagID + DATA,
                index, 0, &status);
        oskar_binary_write_mem(h, dims, GRP, tagID  + DIMS,
                index, 0, &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + LABEL,
                index, label3.size()+1, label3.c_str(), &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + UNITS,
                index, units2.size()+1, units2.c_str(), &status);
    } // Loop over times

    // Close the OSKAR binary file.
    oskar_binary_free(h);

    // clean up memory
    oskar_mem_free(hor_x, &status);
    oskar_mem_free(hor_y, &status);
    oskar_mem_free(hor_z, &status);
    oskar_mem_free(pp_lon, &status);
    oskar_mem_free(pp_lat, &status);
    oskar_mem_free(pp_rel_path, &status);
    oskar_mem_free(pp_st_lon, &status);
    oskar_mem_free(pp_st_lat, &status);
    oskar_mem_free(pp_st_rel_path, &status);
    oskar_mem_free(dims, &status);
    oskar_telescope_free(tel, &status);
    oskar_sky_free(sky, &status);

    // Check for errors.
    if (status)
        oskar_log_error(log, "Run failed: %s.", oskar_get_error_string(status));
    oskar_log_free(log);

    return status;
}