Beispiel #1
0
static void
check_all (sc_MPI_Comm mpicomm, p4est_connectivity_t * conn,
           const char *vtkname, unsigned crc_expected, unsigned gcrc_expected)
{
  int                 mpiret;
  unsigned            crc_computed, gcrc_computed;
  long long           lsize[3], gsize[3];
  size_t              size_conn, size_p4est, size_ghost;
  p4est_t            *p4est;
  p4est_nodes_t      *nodes;
  p4est_ghost_t      *ghost;

  P4EST_GLOBAL_STATISTICSF ("Testing configuration %s\n", vtkname);

  p4est = p4est_new_ext (mpicomm, conn, 0, 0, 0, 0, NULL, NULL);
  p4est_refine (p4est, 1, refine_fn, NULL);
  p4est_coarsen (p4est, 1, coarsen_fn, NULL);
  p4est_balance (p4est, P4EST_CONNECT_FULL, NULL);
  p4est_partition (p4est, 0, NULL);
  p4est_vtk_write_file (p4est, NULL, vtkname);

  crc_computed = p4est_checksum (p4est);
  P4EST_GLOBAL_STATISTICSF ("Forest checksum 0x%08x\n", crc_computed);
  if (p4est->mpisize == 2 && p4est->mpirank == 0) {
    SC_CHECK_ABORT (crc_computed == crc_expected, "Forest checksum mismatch");
  }

  ghost = p4est_ghost_new (p4est, P4EST_CONNECT_FULL);

  /* compute total size of forest storage */
  size_conn = p4est_connectivity_memory_used (conn);
  size_p4est = p4est_memory_used (p4est);
  size_ghost = p4est_ghost_memory_used (ghost);
  lsize[0] = (long long) size_conn;
  lsize[1] = (long long) size_p4est;
  lsize[2] = (long long) size_ghost;
  mpiret = sc_MPI_Reduce (lsize, gsize, 3, sc_MPI_LONG_LONG_INT, sc_MPI_SUM,
                          0, mpicomm);
  SC_CHECK_MPI (mpiret);
  P4EST_GLOBAL_INFOF ("Global byte sizes: %lld %lld %lld\n",
                      gsize[0], gsize[1], gsize[2]);

  gcrc_computed = p4est_ghost_checksum (p4est, ghost);
  P4EST_GLOBAL_STATISTICSF ("Ghost checksum 0x%08x\n", gcrc_computed);
  if (p4est->mpisize == 2 && p4est->mpirank == 0) {
    SC_CHECK_ABORT (gcrc_computed == gcrc_expected,
                    "Ghost checksum mismatch");
  }

  nodes = p4est_nodes_new (p4est, ghost);
  p4est_nodes_destroy (nodes);
  p4est_ghost_destroy (ghost);

  p4est_destroy (p4est);
  p4est_connectivity_destroy (conn);
}
Beispiel #2
0
int
main (int argc, char **argv)
{
  const p4est_qcoord_t qone = 1;
  int                 mpiret;
  int                 k;
  int                 level, mid, cid;
  int                 id0, id1, id2, id3;
  int64_t             index1, index2;
  size_t              iz, jz, incount;
  p4est_qcoord_t      mh = P4EST_QUADRANT_LEN (P4EST_QMAXLEVEL);
  p4est_connectivity_t *connectivity;
  p4est_t            *p4est1;
  p4est_t            *p4est2;
  p4est_tree_t       *t1, *t2, tree;
  p4est_quadrant_t   *p, *q1, *q2;
  p4est_quadrant_t    r, s;
  p4est_quadrant_t    c0, c1, c2, c3;
  p4est_quadrant_t    cv[P4EST_CHILDREN], *cp[P4EST_CHILDREN];
  p4est_quadrant_t    A, B, C, D, E, F, G, H, I, P, Q;
  p4est_quadrant_t    a, f, g, h;
  uint64_t            Aid, Fid;

  /* initialize MPI */
  mpiret = sc_MPI_Init (&argc, &argv);
  SC_CHECK_MPI (mpiret);

  /* create connectivity and forest structures */
  connectivity = p4est_connectivity_new_unitsquare ();
  p4est1 = p4est_new_ext (sc_MPI_COMM_SELF, connectivity, 15, 0, 0,
                          0, NULL, NULL);
  p4est2 = p4est_new_ext (sc_MPI_COMM_SELF, connectivity, 15, 0, 0,
                          8, NULL, NULL);

  /* refine the second tree to a uniform level */
  p4est_refine (p4est1, 1, refine_none, NULL);
  p4est_refine (p4est2, 1, refine_some, NULL);
  t1 = p4est_tree_array_index (p4est1->trees, 0);
  t2 = p4est_tree_array_index (p4est2->trees, 0);
  SC_CHECK_ABORT (p4est_tree_is_sorted (t1), "is_sorted");
  SC_CHECK_ABORT (p4est_tree_is_sorted (t2), "is_sorted");

  /* run a bunch of cross-tests */
  p = NULL;
  for (iz = 0; iz < t1->quadrants.elem_count; ++iz) {
    q1 = p4est_quadrant_array_index (&t1->quadrants, iz);

    /* test the index conversion */
    index1 = p4est_quadrant_linear_id (q1, (int) q1->level);
    p4est_quadrant_set_morton (&r, (int) q1->level, index1);
    index2 = p4est_quadrant_linear_id (&r, (int) r.level);
    SC_CHECK_ABORT (index1 == index2, "index conversion");
    level = (int) q1->level - 1;
    if (level >= 0) {
      index1 = p4est_quadrant_linear_id (q1, level);
      p4est_quadrant_set_morton (&r, level, index1);
      index2 = p4est_quadrant_linear_id (&r, level);
      SC_CHECK_ABORT (index1 == index2, "index conversion");
    }

    /* test the is_next function */
    if (p != NULL) {
      SC_CHECK_ABORT (p4est_quadrant_is_next (p, q1), "is_next");
    }
    p = q1;

    /* test the is_family function */
    p4est_quadrant_children (q1, &c0, &c1, &c2, &c3);
    SC_CHECK_ABORT (p4est_quadrant_is_family (&c0, &c1, &c2, &c3),
                    "is_family");
    SC_CHECK_ABORT (!p4est_quadrant_is_family (&c1, &c0, &c2, &c3),
                    "is_family");
    SC_CHECK_ABORT (!p4est_quadrant_is_family (&c0, &c0, &c1, &c2),
                    "is_family");
    p4est_quadrant_childrenv (q1, cv);
    SC_CHECK_ABORT (p4est_quadrant_is_equal (&c0, &cv[0]), "is_family");
    SC_CHECK_ABORT (p4est_quadrant_is_equal (&c1, &cv[1]), "is_family");
    SC_CHECK_ABORT (p4est_quadrant_is_equal (&c2, &cv[2]), "is_family");
    SC_CHECK_ABORT (p4est_quadrant_is_equal (&c3, &cv[3]), "is_family");
    SC_CHECK_ABORT (p4est_quadrant_is_family (&cv[0], &cv[1], &cv[2], &cv[3]),
                    "is_family");
    cp[0] = &cv[0];
    cp[1] = &cv[1];
    cp[2] = &cv[2];
    cp[3] = &cv[3];
    SC_CHECK_ABORT (p4est_quadrant_is_familypv (cp), "is_family");
    cv[1] = cv[0];
    SC_CHECK_ABORT (!p4est_quadrant_is_familyv (cv), "is_family");
    cp[1] = &c1;
    SC_CHECK_ABORT (p4est_quadrant_is_familypv (cp), "is_family");
    cp[2] = &c3;
    SC_CHECK_ABORT (!p4est_quadrant_is_familypv (cp), "is_family");

    /* test the sibling function */
    mid = p4est_quadrant_child_id (q1);
    for (cid = 0; cid < 4; ++cid) {
      p4est_quadrant_sibling (q1, &r, cid);
      if (cid != mid) {
        SC_CHECK_ABORT (p4est_quadrant_is_sibling (q1, &r), "sibling");
      }
      else {
        SC_CHECK_ABORT (p4est_quadrant_is_equal (q1, &r), "sibling");
      }
    }

    /* test t1 against itself */
    for (jz = 0; jz < t1->quadrants.elem_count; ++jz) {
      q2 = p4est_quadrant_array_index (&t1->quadrants, jz);

      /* test the comparison function */
      SC_CHECK_ABORT (p4est_quadrant_compare (q1, q2) ==
                      -p4est_quadrant_compare (q2, q1), "compare");
      SC_CHECK_ABORT ((p4est_quadrant_compare (q1, q2) == 0) ==
                      p4est_quadrant_is_equal (q1, q2), "is_equal");

      /* test the descriptive versions of functions */
      SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (q1, q2) ==
                      p4est_quadrant_is_sibling (q1, q2), "is_sibling");
      SC_CHECK_ABORT (p4est_quadrant_is_parent_D (q1, q2) ==
                      p4est_quadrant_is_parent (q1, q2), "is_parent");
      SC_CHECK_ABORT (p4est_quadrant_is_parent_D (q2, q1) ==
                      p4est_quadrant_is_parent (q2, q1), "is_parent");
      SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (q1, q2) ==
                      p4est_quadrant_is_ancestor (q1, q2), "is_ancestor");
      SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (q2, q1) ==
                      p4est_quadrant_is_ancestor (q2, q1), "is_ancestor");
      SC_CHECK_ABORT (p4est_quadrant_is_next_D (q1, q2) ==
                      p4est_quadrant_is_next (q1, q2), "is_next");
      SC_CHECK_ABORT (p4est_quadrant_is_next_D (q2, q1) ==
                      p4est_quadrant_is_next (q2, q1), "is_next");
      p4est_nearest_common_ancestor_D (q1, q2, &r);
      p4est_nearest_common_ancestor (q1, q2, &s);
      SC_CHECK_ABORT (p4est_quadrant_is_equal (&r, &s), "common_ancestor");
      p4est_nearest_common_ancestor_D (q2, q1, &r);
      p4est_nearest_common_ancestor (q2, q1, &s);
      SC_CHECK_ABORT (p4est_quadrant_is_equal (&r, &s), "common_ancestor");
    }

    /* test t1 against t2 */
    for (jz = 0; jz < t2->quadrants.elem_count; ++jz) {
      q2 = p4est_quadrant_array_index (&t2->quadrants, jz);

      /* test the comparison function */
      SC_CHECK_ABORT (p4est_quadrant_compare (q1, q2) ==
                      -p4est_quadrant_compare (q2, q1), "compare");
      SC_CHECK_ABORT ((p4est_quadrant_compare (q1, q2) == 0) ==
                      p4est_quadrant_is_equal (q1, q2), "is_equal");

      /* test the descriptive versions of functions */
      SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (q1, q2) ==
                      p4est_quadrant_is_sibling (q1, q2), "is_sibling");
      SC_CHECK_ABORT (p4est_quadrant_is_parent_D (q1, q2) ==
                      p4est_quadrant_is_parent (q1, q2), "is_parent");
      SC_CHECK_ABORT (p4est_quadrant_is_parent_D (q2, q1) ==
                      p4est_quadrant_is_parent (q2, q1), "is_parent");
      SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (q1, q2) ==
                      p4est_quadrant_is_ancestor (q1, q2), "is_ancestor");
      SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (q2, q1) ==
                      p4est_quadrant_is_ancestor (q2, q1), "is_ancestor");
      SC_CHECK_ABORT (p4est_quadrant_is_next_D (q1, q2) ==
                      p4est_quadrant_is_next (q1, q2), "is_next");
      SC_CHECK_ABORT (p4est_quadrant_is_next_D (q2, q1) ==
                      p4est_quadrant_is_next (q2, q1), "is_next");
      p4est_nearest_common_ancestor_D (q1, q2, &r);
      p4est_nearest_common_ancestor (q1, q2, &s);
      SC_CHECK_ABORT (p4est_quadrant_is_equal (&r, &s), "common_ancestor");
      p4est_nearest_common_ancestor_D (q2, q1, &r);
      p4est_nearest_common_ancestor (q2, q1, &s);
      SC_CHECK_ABORT (p4est_quadrant_is_equal (&r, &s), "common_ancestor");
    }
  }

  p = NULL;
  for (iz = 0; iz < t2->quadrants.elem_count; ++iz) {
    q1 = p4est_quadrant_array_index (&t2->quadrants, iz);

    /* test the is_next function */
    if (p != NULL) {
      SC_CHECK_ABORT (p4est_quadrant_is_next (p, q1), "is_next");
    }
    p = q1;
  }

  /* test the coarsen function */
  p4est_coarsen (p4est1, 1, coarsen_none, NULL);
  p4est_coarsen (p4est1, 1, coarsen_all, NULL);
  p4est_coarsen (p4est2, 1, coarsen_some, NULL);

  /* test the linearize algorithm */
  incount = t2->quadrants.elem_count;
  (void) p4est_linearize_tree (p4est2, t2);
  SC_CHECK_ABORT (incount == t2->quadrants.elem_count, "linearize");

  /* this is user_data neutral only when p4est1->data_size == 0 */
  sc_array_init (&tree.quadrants, sizeof (p4est_quadrant_t));
  sc_array_resize (&tree.quadrants, 18);
  q1 = p4est_quadrant_array_index (&tree.quadrants, 0);
  q2 = p4est_quadrant_array_index (&t2->quadrants, 0);
  *q1 = *q2;
  q2 = p4est_quadrant_array_index (&t2->quadrants, 1);
  for (k = 0; k < 3; ++k) {
    q1 = p4est_quadrant_array_index (&tree.quadrants, (size_t) (k + 1));
    *q1 = *q2;
    q1->level = (int8_t) (q1->level + k);
  }
  for (k = 0; k < 10; ++k) {
    q1 = p4est_quadrant_array_index (&tree.quadrants, (size_t) (k + 4));
    q2 = p4est_quadrant_array_index (&t2->quadrants, (size_t) (k + 3));
    *q1 = *q2;
    q1->level = (int8_t) (q1->level + k);
  }
  for (k = 0; k < 4; ++k) {
    q1 = p4est_quadrant_array_index (&tree.quadrants, (size_t) (k + 14));
    q2 = p4est_quadrant_array_index (&t2->quadrants, (size_t) (k + 12));
    *q1 = *q2;
    q1->level = (int8_t) (q1->level + 10 + k);
  }
  tree.maxlevel = 0;
  for (k = 0; k <= P4EST_QMAXLEVEL; ++k) {
    tree.quadrants_per_level[k] = 0;
  }
  for (; k <= P4EST_MAXLEVEL; ++k) {
    tree.quadrants_per_level[k] = -1;
  }
  incount = tree.quadrants.elem_count;
  for (iz = 0; iz < incount; ++iz) {
    q1 = p4est_quadrant_array_index (&tree.quadrants, iz);
    ++tree.quadrants_per_level[q1->level];
    tree.maxlevel = (int8_t) SC_MAX (tree.maxlevel, q1->level);
  }
  SC_CHECK_ABORT (!p4est_tree_is_linear (&tree), "is_linear");
  (void) p4est_linearize_tree (p4est1, &tree);
  SC_CHECK_ABORT (incount - 3 == tree.quadrants.elem_count, "linearize");
  sc_array_reset (&tree.quadrants);

  /* create a partial tree and check overlap */
  sc_array_resize (&tree.quadrants, 3);
  q1 = p4est_quadrant_array_index (&tree.quadrants, 0);
  p4est_quadrant_set_morton (q1, 1, 1);
  q1 = p4est_quadrant_array_index (&tree.quadrants, 1);
  p4est_quadrant_set_morton (q1, 2, 8);
  q1 = p4est_quadrant_array_index (&tree.quadrants, 2);
  p4est_quadrant_set_morton (q1, 2, 9);
  for (k = 0; k <= P4EST_QMAXLEVEL; ++k) {
    tree.quadrants_per_level[k] = 0;
  }
  for (; k <= P4EST_MAXLEVEL; ++k) {
    tree.quadrants_per_level[k] = -1;
  }
  tree.quadrants_per_level[1] = 1;
  tree.quadrants_per_level[2] = 2;
  tree.maxlevel = 2;
  p4est_quadrant_first_descendant (p4est_quadrant_array_index
                                   (&tree.quadrants, 0), &tree.first_desc,
                                   P4EST_QMAXLEVEL);
  p4est_quadrant_last_descendant (p4est_quadrant_array_index
                                  (&tree.quadrants,
                                   tree.quadrants.elem_count - 1),
                                  &tree.last_desc, P4EST_QMAXLEVEL);
  SC_CHECK_ABORT (p4est_tree_is_complete (&tree), "is_complete");

  p4est_quadrant_set_morton (&D, 0, 0);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &D), "overlaps 0");

  p4est_quadrant_set_morton (&A, 1, 0);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &A), "overlaps 1");
  p4est_quadrant_set_morton (&A, 1, 1);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &A), "overlaps 2");
  p4est_quadrant_set_morton (&A, 1, 2);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &A), "overlaps 3");
  p4est_quadrant_set_morton (&A, 1, 3);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &A), "overlaps 4");

  p4est_quadrant_set_morton (&B, 3, 13);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &B), "overlaps 5");
  p4est_quadrant_set_morton (&B, 3, 25);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &B), "overlaps 6");
  p4est_quadrant_set_morton (&B, 3, 39);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &B), "overlaps 7");
  p4est_quadrant_set_morton (&B, 3, 40);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &B), "overlaps 8");

  p4est_quadrant_set_morton (&C, 4, 219);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &C), "overlaps 9");

  sc_array_reset (&tree.quadrants);

  /* destroy the p4est and its connectivity structure */
  p4est_destroy (p4est1);
  p4est_destroy (p4est2);
  p4est_connectivity_destroy (connectivity);

  /* This will test the ability to address negative quadrants */
  P4EST_QUADRANT_INIT (&A);
  P4EST_QUADRANT_INIT (&B);
  P4EST_QUADRANT_INIT (&C);
  P4EST_QUADRANT_INIT (&D);
  P4EST_QUADRANT_INIT (&E);
  P4EST_QUADRANT_INIT (&F);
  P4EST_QUADRANT_INIT (&G);
  P4EST_QUADRANT_INIT (&H);
  P4EST_QUADRANT_INIT (&I);
  P4EST_QUADRANT_INIT (&P);
  P4EST_QUADRANT_INIT (&Q);

  A.x = -qone << P4EST_MAXLEVEL;
  A.y = -qone << P4EST_MAXLEVEL;
  A.level = 0;

  B.x = qone << P4EST_MAXLEVEL;
  B.y = -qone << P4EST_MAXLEVEL;
  B.level = 0;

  C.x = -qone << P4EST_MAXLEVEL;
  C.y = qone << P4EST_MAXLEVEL;
  C.level = 0;

  D.x = qone << P4EST_MAXLEVEL;
  D.y = qone << P4EST_MAXLEVEL;
  D.level = 0;

  /* this one is outside the 3x3 box */
  E.x = -qone << (P4EST_MAXLEVEL + 1);
  E.y = -qone;
  E.level = 0;

  F.x = P4EST_ROOT_LEN + (P4EST_ROOT_LEN - mh);
  F.y = P4EST_ROOT_LEN + (P4EST_ROOT_LEN - mh);
  F.level = P4EST_QMAXLEVEL;

  G.x = -mh;
  G.y = -mh;
  G.level = P4EST_QMAXLEVEL;

  H.x = -qone << (P4EST_MAXLEVEL - 1);
  H.y = -qone << (P4EST_MAXLEVEL - 1);
  H.level = 1;

  I.x = -qone << P4EST_MAXLEVEL;
  I.y = -qone << (P4EST_MAXLEVEL - 1);
  I.level = 1;

  check_linear_id (&A, &A);
  check_linear_id (&A, &B);
  check_linear_id (&A, &C);
  check_linear_id (&A, &D);
  /* check_linear_id (&A, &E); */
  check_linear_id (&A, &F);
  check_linear_id (&A, &G);
  check_linear_id (&A, &H);
  check_linear_id (&A, &I);

  check_linear_id (&B, &A);
  check_linear_id (&B, &B);
  check_linear_id (&B, &C);
  check_linear_id (&B, &D);
  /* check_linear_id (&B, &E); */
  check_linear_id (&B, &F);
  check_linear_id (&B, &G);
  check_linear_id (&B, &H);
  check_linear_id (&B, &I);

  check_linear_id (&D, &A);
  check_linear_id (&D, &B);
  check_linear_id (&D, &C);
  check_linear_id (&D, &D);
  /* check_linear_id (&D, &E); */
  check_linear_id (&D, &F);
  check_linear_id (&D, &G);
  check_linear_id (&D, &H);
  check_linear_id (&D, &I);

  check_linear_id (&G, &A);
  check_linear_id (&G, &B);
  check_linear_id (&G, &C);
  check_linear_id (&G, &D);
  /* check_linear_id (&G, &E); */
  check_linear_id (&G, &F);
  check_linear_id (&G, &G);
  check_linear_id (&G, &H);
  check_linear_id (&G, &I);

  check_linear_id (&I, &A);
  check_linear_id (&I, &B);
  check_linear_id (&I, &C);
  check_linear_id (&I, &D);
  /* check_linear_id (&I, &E); */
  check_linear_id (&I, &F);
  check_linear_id (&I, &G);
  check_linear_id (&I, &H);
  check_linear_id (&I, &I);

  SC_CHECK_ABORT (p4est_quadrant_is_extended (&A) == 1, "is_extended A");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&B) == 1, "is_extended B");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&C) == 1, "is_extended C");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&D) == 1, "is_extended D");
  SC_CHECK_ABORT (!p4est_quadrant_is_extended (&E) == 1, "!is_extended E");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&F) == 1, "is_extended F");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&G) == 1, "is_extended G");

  SC_CHECK_ABORT (p4est_quadrant_compare (&A, &A) == 0, "compare");
  SC_CHECK_ABORT (p4est_quadrant_compare (&A, &B) > 0, "compare");
  SC_CHECK_ABORT (p4est_quadrant_compare (&B, &A) < 0, "compare");

  SC_CHECK_ABORT (p4est_quadrant_compare (&F, &F) == 0, "compare");
  SC_CHECK_ABORT (p4est_quadrant_compare (&G, &F) > 0, "compare");
  SC_CHECK_ABORT (p4est_quadrant_compare (&F, &G) < 0, "compare");

  A.p.which_tree = 0;
  B.p.piggy1.which_tree = 0;
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&A, &A) == 0,
                  "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&A, &B) > 0, "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&B, &A) < 0, "compare_piggy");

  F.p.piggy2.which_tree = 0;
  G.p.which_tree = 0;
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&F, &F) == 0,
                  "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&G, &F) > 0, "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&F, &G) < 0, "compare_piggy");

  F.p.piggy1.which_tree = (p4est_topidx_t) P4EST_TOPIDX_MAX - 3;
  G.p.piggy2.which_tree = (p4est_topidx_t) P4EST_TOPIDX_MAX / 2;
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&F, &F) == 0,
                  "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&G, &F) < 0, "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&F, &G) > 0, "compare_piggy");

  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &A) == 1, "is_equal");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&F, &F) == 1, "is_equal");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&G, &G) == 1, "is_equal");

  /* Not sure if these make sense because D, O and A are all level 0 */
#if 0
  SC_CHECK_ABORT (p4est_quadrant_is_sibling (&D, &O) == 1, "is_sibling");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling (&D, &A) == 0, "is_sibling");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (&D, &O) == 1, "is_sibling_D");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (&D, &A) == 0, "is_sibling_D");
#endif

  SC_CHECK_ABORT (p4est_quadrant_is_sibling (&I, &H) == 1, "is_sibling");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling (&I, &G) == 0, "is_sibling");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (&I, &H) == 1, "is_sibling_D");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (&I, &G) == 0, "is_sibling_D");

  SC_CHECK_ABORT (p4est_quadrant_is_parent (&A, &H) == 1, "is_parent");
  SC_CHECK_ABORT (p4est_quadrant_is_parent (&H, &A) == 0, "is_parent");
  SC_CHECK_ABORT (p4est_quadrant_is_parent (&A, &D) == 0, "is_parent");
  SC_CHECK_ABORT (p4est_quadrant_is_parent_D (&A, &H) == 1, "is_parent_D");

  SC_CHECK_ABORT (p4est_quadrant_is_ancestor (&A, &G) == 1, "is_ancestor");
  SC_CHECK_ABORT (p4est_quadrant_is_ancestor (&G, &A) == 0, "is_ancestor");

  SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (&A, &G) == 1,
                  "is_ancestor_D");
  SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (&G, &A) == 0,
                  "is_ancestor_D");

  /* SC_CHECK_ABORT (p4est_quadrant_is_next (&F, &E) == 1, "is_next"); */
  SC_CHECK_ABORT (p4est_quadrant_is_next (&A, &H) == 0, "is_next");
  /* SC_CHECK_ABORT (p4est_quadrant_is_next_D (&F, &E) == 1, "is_next_D"); */
  SC_CHECK_ABORT (p4est_quadrant_is_next_D (&A, &H) == 0, "is_next_D");

  p4est_quadrant_parent (&H, &a);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &a) == 1, "parent");

  p4est_quadrant_sibling (&I, &h, 3);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&H, &h) == 1, "sibling");

  p4est_quadrant_children (&A, &c0, &c1, &c2, &c3);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&c2, &I) == 1, "children");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&c3, &H) == 1, "children");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&c3, &G) == 0, "children");

  SC_CHECK_ABORT (p4est_quadrant_is_family (&c0, &c1, &c2, &c3) == 1,
                  "is_family");
  id0 = p4est_quadrant_child_id (&c0);
  id1 = p4est_quadrant_child_id (&c1);
  id2 = p4est_quadrant_child_id (&c2);
  id3 = p4est_quadrant_child_id (&c3);
  SC_CHECK_ABORT (id0 == 0 && id1 == 1 && id2 == 2 && id3 == 3, "child_id");
  SC_CHECK_ABORT (p4est_quadrant_child_id (&G) == 3, "child_id");

  p4est_quadrant_first_descendant (&A, &c1, 1);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&c0, &c1) == 1,
                  "first_descendant");

  p4est_quadrant_last_descendant (&A, &g, P4EST_QMAXLEVEL);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&G, &g) == 1, "last_descendant");

  Fid = p4est_quadrant_linear_id (&F, P4EST_QMAXLEVEL);
  p4est_quadrant_set_morton (&f, P4EST_QMAXLEVEL, Fid);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&F, &f) == 1,
                  "set_morton/linear_id");

  Aid = p4est_quadrant_linear_id (&A, 0);
  p4est_quadrant_set_morton (&a, 0, Aid);
  SC_CHECK_ABORT (Aid == 15, "linear_id");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &a) == 1,
                  "set_morton/linear_id");

  p4est_nearest_common_ancestor (&I, &H, &a);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &a) == 1, "ancestor");

  p4est_nearest_common_ancestor_D (&I, &H, &a);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &a) == 1, "ancestor_D");

  for (k = 0; k < 16; ++k) {
    if (k != 4 && k != 6 && k != 8 && k != 9 && k != 12 && k != 13 && k != 14) {
      p4est_quadrant_set_morton (&E, 0, (uint64_t) k);
    }
  }
  p4est_quadrant_set_morton (&P, 0, 10);
  p4est_quadrant_set_morton (&Q, 0, 11);
  SC_CHECK_ABORT (p4est_quadrant_is_next (&P, &Q), "is_next");
  SC_CHECK_ABORT (!p4est_quadrant_is_next (&A, &Q), "is_next");

  sc_finalize ();

  mpiret = sc_MPI_Finalize ();
  SC_CHECK_MPI (mpiret);

  return 0;
}
Beispiel #3
0
static void
test_build_local (sc_MPI_Comm mpicomm)
{
  sc_array_t         *points;
  p4est_connectivity_t *conn;
  p4est_t            *p4est, *built, *copy;
  test_build_t        stb, *tb = &stb;

  /* 0. prepare data that we will reuse */
  tb->maxlevel = 7 - P4EST_DIM;
  tb->counter = -1;
  tb->wrapper = 3;
  tb->init_default = -1;
  tb->init_add = -1;
  tb->count_add = -1;
  tb->last_tree = -1;
  tb->build = NULL;
#ifndef P4_TO_P8
  conn = p4est_connectivity_new_moebius ();
#else
  conn = p8est_connectivity_new_rotcubes ();
#endif /* P4_TO_P8 */
  p4est = p4est_new_ext (mpicomm, conn, 0, 0, 2, 0, NULL, tb);
  p4est_refine (p4est, 1, test_build_refine, NULL);
  p4est_partition (p4est, 0, NULL);

  /* TODO: enrich tests with quadrant data */

  /* 1. Create a p4est that shall be identical to the old one. */

  tb->build = p4est_build_new (p4est, 0, NULL, NULL);
  p4est_search_local (p4est, 0, test_search_local_1, NULL, NULL);
  built = p4est_build_complete (tb->build);
  SC_CHECK_ABORT (p4est_is_equal (p4est, built, 0), "Mismatch build_local 1");
  p4est_destroy (built);

  /* 2. Create a p4est that is as coarse as possible.
   *    Coarsen recursively, compare. */

  tb->build = p4est_build_new (p4est, 4, NULL, NULL);
  p4est_search_local (p4est, 0, test_search_local_2, NULL, NULL);
  built = p4est_build_complete (tb->build);
  copy = p4est_copy (p4est, 0);
  p4est_coarsen (copy, 1, test_build_coarsen, NULL);
  SC_CHECK_ABORT (p4est_is_equal (copy, built, 0), "Mismatch build_local 2");
  p4est_destroy (copy);
  p4est_destroy (built);

  /* 3. Create a p4est with some random pattern for demonstration */

  tb->init_default = 0;
  tb->init_add = 0;
  tb->count_add = 0;
  tb->build = p4est_build_new (p4est, 0, test_search_init_3, tb);
  p4est_build_init_add (tb->build, test_search_init_add_3);
  p4est_search_local (p4est, 1, test_search_local_3, NULL, NULL);
  built = p4est_build_complete (tb->build);
  p4est_build_verify_3 (built);
  SC_CHECK_ABORT (p4est_is_valid (built), "Invalid build_local 3");
  p4est_destroy (built);

  /* 4. Create a p4est from a search with one quadrant per tree */

  tb->init_default = 0;
  tb->init_add = 0;
  tb->count_add = 0;
  tb->last_tree = -1;
  tb->build = p4est_build_new (p4est, sizeof (long), test_search_init_4, tb);
  p4est_build_init_add (tb->build, test_search_init_add_4);
  p4est_search_local (p4est, 0, test_search_local_4, NULL, NULL);
  built = p4est_build_complete (tb->build);
  p4est_build_verify_4 (built);
  SC_CHECK_ABORT (p4est_is_valid (built), "Invalid build_local 4");
  p4est_destroy (built);

  /* 5. Create a p4est from a multiple-item search */

  points = sc_array_new_size (sizeof (int8_t), 2);
  *(int8_t *) sc_array_index (points, 0) = 0;
  *(int8_t *) sc_array_index (points, 1) = 1;
  tb->wrapper = 5;
  tb->init_default = 0;
  tb->init_add = 0;
  tb->build = p4est_build_new (p4est, 0, NULL, tb);
  p4est_search_local (p4est, 0, NULL, test_search_point_5, points);
  built = p4est_build_complete (tb->build);
#if 0
  p4est_build_verify_5 (built);
#endif
  SC_CHECK_ABORT (p4est_is_valid (built), "Invalid build_local 5");
  p4est_destroy (built);
  sc_array_destroy (points);

  /* clean up */
  p4est_destroy (p4est);
  p4est_connectivity_destroy (conn);
}
Beispiel #4
0
/** The main step 3 program.
 *
 * Setup of the example parameters; create the forest, with the state variable
 * stored in the quadrant data; refine, balance, and partition the forest;
 * timestep; clean up, and exit.
 */
int
main (int argc, char **argv)
{
  int                 mpiret;
  int                 recursive, partforcoarsen;
  sc_MPI_Comm         mpicomm;
  p4est_t            *p4est;
  p4est_connectivity_t *conn;
  step3_ctx_t         ctx;

  /* Initialize MPI; see sc_mpi.h.
   * If configure --enable-mpi is given these are true MPI calls.
   * Else these are dummy functions that simulate a single-processor run. */
  mpiret = sc_MPI_Init (&argc, &argv);
  SC_CHECK_MPI (mpiret);
  mpicomm = sc_MPI_COMM_WORLD;

  /* These functions are optional.  If called they store the MPI rank as a
   * static variable so subsequent global p4est log messages are only issued
   * from processor zero.  Here we turn off most of the logging; see sc.h. */
  sc_init (mpicomm, 1, 1, NULL, SC_LP_ESSENTIAL);
  p4est_init (NULL, SC_LP_PRODUCTION);
  P4EST_GLOBAL_PRODUCTIONF
    ("This is the p4est %dD demo example/steps/%s_step3\n",
     P4EST_DIM, P4EST_STRING);

  ctx.bump_width = 0.1;
  ctx.max_err = 2.e-2;
  ctx.center[0] = 0.5;
  ctx.center[1] = 0.5;
#ifdef P4_TO_P8
  ctx.center[2] = 0.5;
#endif
#ifndef P4_TO_P8
  /* randomly chosen advection direction */
  ctx.v[0] = -0.445868402501118;
  ctx.v[1] = -0.895098523991131;
#else
  ctx.v[0] = 0.485191768970225;
  ctx.v[1] = -0.427996381877778;
  ctx.v[2] = 0.762501176669961;
#endif
  ctx.refine_period = 2;
  ctx.repartition_period = 4;
  ctx.write_period = 8;

  /* Create a forest that consists of just one periodic quadtree/octree. */
#ifndef P4_TO_P8
  conn = p4est_connectivity_new_periodic ();
#else
  conn = p8est_connectivity_new_periodic ();
#endif

  /* *INDENT-OFF* */
  p4est = p4est_new_ext (mpicomm, /* communicator */
                         conn,    /* connectivity */
                         0,       /* minimum quadrants per MPI process */
                         4,       /* minimum level of refinement */
                         1,       /* fill uniform */
                         sizeof (step3_data_t),         /* data size */
                         step3_init_initial_condition,  /* initializes data */
                         (void *) (&ctx));              /* context */
  /* *INDENT-ON* */

  /* refine and coarsen based on an interpolation error estimate */
  recursive = 1;
  p4est_refine (p4est, recursive, step3_refine_err_estimate,
                step3_init_initial_condition);
  p4est_coarsen (p4est, recursive, step3_coarsen_initial_condition,
                 step3_init_initial_condition);

  /* Partition: The quadrants are redistributed for equal element count.  The
   * partition can optionally be modified such that a family of octants, which
   * are possibly ready for coarsening, are never split between processors. */
  partforcoarsen = 1;

  /* If we call the 2:1 balance we ensure that neighbors do not differ in size
   * by more than a factor of 2.  This can optionally include diagonal
   * neighbors across edges or corners as well; see p4est.h. */
  p4est_balance (p4est, P4EST_CONNECT_FACE, step3_init_initial_condition);
  p4est_partition (p4est, partforcoarsen, NULL);

  /* time step */
  step3_timestep (p4est, 0.1);

  /* Destroy the p4est and the connectivity structure. */
  p4est_destroy (p4est);
  p4est_connectivity_destroy (conn);

  /* Verify that allocations internal to p4est and sc do not leak memory.
   * This should be called if sc_init () has been called earlier. */
  sc_finalize ();

  /* This is standard MPI programs.  Without --enable-mpi, this is a dummy. */
  mpiret = sc_MPI_Finalize ();
  SC_CHECK_MPI (mpiret);
  return 0;
}
/* main */
int
main (int argc, char **argv)
{
  int                 rank, num_procs, mpiret, i;
  sc_MPI_Comm         mpicomm = sc_MPI_COMM_WORLD;
  p4est_t            *p4est_1tree, *p4est_ntrees;
  p4est_connectivity_t *connectivity_1tree, *connectivity_ntrees;

  /* initialize MPI and p4est internals */
  mpiret = sc_MPI_Init (&argc, &argv);
  SC_CHECK_MPI (mpiret);
  mpiret = sc_MPI_Comm_size (mpicomm, &num_procs);
  SC_CHECK_MPI (mpiret);
  mpiret = sc_MPI_Comm_rank (mpicomm, &rank);
  SC_CHECK_MPI (mpiret);

  sc_init (mpicomm, 1, 1, NULL, SC_LP_DEFAULT);
  p4est_init (NULL, SC_LP_DEFAULT);

  /* create connectivity */
#ifdef P4_TO_P8
  connectivity_1tree = p8est_connectivity_new_unitcube ();
  connectivity_ntrees = p8est_connectivity_new_twocubes ();
#else
  connectivity_1tree = p4est_connectivity_new_unitsquare ();
  connectivity_ntrees = p4est_connectivity_new_corner ();
#endif

  /* create p4est structure */
  p4est_1tree = p4est_new_ext (mpicomm, connectivity_1tree, 15, 0, 0,
                               sizeof (user_data_t), init_fn, NULL);

  p4est_ntrees = p4est_new_ext (mpicomm, connectivity_ntrees, 15, 0, 0,
                                sizeof (user_data_t), init_fn, NULL);

  /* write output: new */
  p4est_vtk_write_file (p4est_1tree, NULL,
                        P4EST_STRING "_partition_corr_1tree_new");
  p4est_vtk_write_file (p4est_ntrees, NULL,
                        P4EST_STRING "_partition_corr_ntrees_new");

  /* refine */
  p4est_refine (p4est_1tree, 1, refine_fn, init_fn);
  p4est_refine (p4est_ntrees, 1, refine_fn, init_fn);

  /* write output: refined */
  p4est_vtk_write_file (p4est_1tree, NULL,
                        P4EST_STRING "_partition_corr_1tree_refined");
  p4est_vtk_write_file (p4est_ntrees, NULL,
                        P4EST_STRING "_partition_corr_ntrees_refined");

  /* run partition and coarsen till one quadrant per tree remains */
  i = 0;
  while (p4est_1tree->global_num_quadrants > 1 && i <= P4EST_MAXLEVEL) {
    (void) p4est_partition_ext (p4est_1tree, 1, NULL);
    p4est_coarsen (p4est_1tree, 0, coarsen_fn, init_fn);
    i++;
  }
  SC_CHECK_ABORT (p4est_1tree->global_num_quadrants == 1,
                  "coarsest forest with one tree was not achieved");

  i = 0;
  while (p4est_ntrees->global_num_quadrants > connectivity_ntrees->num_trees
         && i <= P4EST_MAXLEVEL) {
    (void) p4est_partition_ext (p4est_ntrees, 1, NULL);
    p4est_coarsen (p4est_ntrees, 0, coarsen_fn, init_fn);
    i++;
  }
  SC_CHECK_ABORT (p4est_ntrees->global_num_quadrants
                  == connectivity_ntrees->num_trees,
                  "coarsest forest with multiple trees was not achieved");

  /* run partition on coarse forest (one quadrant per tree) once again */
  (void) p4est_partition_ext (p4est_1tree, 1, NULL);
  (void) p4est_partition_ext (p4est_ntrees, 1, NULL);

  /* write output: coarsened */
  p4est_vtk_write_file (p4est_1tree, NULL,
                        P4EST_STRING "_partition_corr_1tree_coarsened");
  p4est_vtk_write_file (p4est_ntrees, NULL,
                        P4EST_STRING "_partition_corr_ntrees_coarsened");

  /* destroy the p4est and its connectivity structure */
  p4est_destroy (p4est_1tree);
  p4est_destroy (p4est_ntrees);
  p4est_connectivity_destroy (connectivity_1tree);
  p4est_connectivity_destroy (connectivity_ntrees);

  /* clean up and exit */
  sc_finalize ();

  mpiret = sc_MPI_Finalize ();
  SC_CHECK_MPI (mpiret);

  return 0;
}