Beispiel #1
0
/*
 * \brief Perform a single ED measurement
 *
 * \return ed_value Result of the measurement
 *         If the build switch TRX_REG_RAW_VALUE is defined, the transceiver's
 *         register value is returned.
 */
uint8_t tfa_ed_sample(void)
{
    uint8_t ed_value;
    tal_trx_status_t trx_status;

    /* Make sure that receiver is switched on. */
    do
    {
        trx_status = set_trx_state(CMD_RX_ON);
    }
    while (trx_status != RX_ON);

    /*
     * Disable the transceiver interrupts to prevent frame reception
     * while performing ED scan.
     */
    pal_trx_irq_dis();

    /*
     * Initiate ED operation by writing any value into transceiver register
     * PHY_ED_LEVEL.
     */
    pal_trx_reg_write(RG_PHY_ED_LEVEL, 0x00);

    /*
     * Start timer for reading ED value from the transceiver after
     * 140 microseconds.
     */
    pal_timer_delay(TAL_CONVERT_SYMBOLS_TO_US(ED_SAMPLE_DURATION_SYM + 1));

    /* Read the ED Value. */
    ed_value = pal_trx_reg_read(RG_PHY_ED_LEVEL);

    /* Clear IRQ register */
    pal_trx_reg_read(RG_IRQ_STATUS);
    /* Enable reception agian */
    pal_trx_irq_flag_clr();
    pal_trx_irq_en();
    /* Switch receiver off again */
    set_trx_state(CMD_TRX_OFF);

#ifndef TRX_REG_RAW_VALUE
    /*
     * Scale ED result.
     * Clip values to 0xFF if > -35dBm
     */
    if (ed_value > CLIP_VALUE_REG)
    {
        ed_value = 0xFF;
    }
    else
    {
        ed_value = (uint8_t)(((uint16_t)ed_value * 0xFF) / CLIP_VALUE_REG);
    }
#endif

    return ed_value;
}
Beispiel #2
0
/**
 * @brief Switches the PLL on
 */
static void switch_pll_on(void)
{
    uint32_t start_time;
    uint32_t current_time;

    /* Check if trx is in TRX_OFF; only from PLL_ON the following procedure is applicable */
    if (pal_trx_bit_read(SR_TRX_STATUS) != TRX_OFF)
    {
        ASSERT("Switch PLL_ON failed, because trx is not in TRX_OFF" == 0);
        return;
    }

    /* Clear all pending trx interrupts */
    pal_trx_reg_read(RG_IRQ_STATUS);
    /* Get current IRQ mask */
    uint8_t trx_irq_mask = pal_trx_reg_read(RG_IRQ_MASK);
    /* Enable transceiver's PLL lock interrupt */
    pal_trx_reg_write(RG_IRQ_MASK, TRX_IRQ_0_PLL_LOCK);
    ENTER_TRX_REGION(); // Disable trx interrupt handling

    /* Switch PLL on */
    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
    pal_get_current_time(&start_time);

    /* Wait for transceiver interrupt: check for IRQ line */
    while (PAL_TRX_IRQ_HIGH() == false)
    {
        /* Handle errata "potential long PLL settling duration". */
        pal_get_current_time(&current_time);
        if (pal_sub_time_us(current_time, start_time) > PLL_LOCK_DURATION_MAX_US)
        {
            uint8_t reg_value;

            reg_value = pal_trx_reg_read(RG_PLL_CF);
            if (reg_value & 0x01)
            {
                reg_value &= 0xFE;
            }
            else
            {
                reg_value |= 0x01;
            }
            pal_trx_reg_write(RG_PLL_CF, reg_value);
            pal_get_current_time(&start_time);
        }
        /* Wait until trx line has been raised. */
    }

    /* Clear PLL lock interrupt at trx */
    pal_trx_reg_read(RG_IRQ_STATUS);
    /* Clear MCU's interrupt flag */
    pal_trx_irq_flag_clr();
    LEAVE_TRX_REGION();    // Enable trx interrupt handling again
    /* Restore transceiver's interrupt mask. */
    pal_trx_reg_write(RG_IRQ_MASK, trx_irq_mask);
}
/**
 * @brief Generates a 16-bit random number used as initial seed for srand()
 *
 * This function generates a 16-bit random number by means of using the
 * Random Number Generator from the transceiver.
 * The Random Number Generator generates 2-bit random values. These 2-bit
 * random values are concatenated to the required 16-bit random seed.
 *
 * The generated random 16-bit number is feed into function srand()
 * as initial seed.
 *
 * The transceiver state is initally set to RX_ON.
 * After the completion of the random seed generation, the
 * trancseiver is set to TRX_OFF.
 *
 * As a prerequisite the preamble detector must not be disabled.
 *
 * Also in case the function is called from a different state than TRX_OFF,
 * additional trx state handling is required, such as reading the original
 * value and restoring this state after finishing the sequence.
 * Since in our case the function is called from TRX_OFF, this is not required
 * here.
 */
void tal_generate_rand_seed(void)
{
    uint16_t seed = 0;
    uint8_t cur_random_val = 0;

    /* RPC could influence the randomness; therefore disable it here. */
    uint8_t previous_RPC_value = pal_trx_reg_read(RG_TRX_RPC);
    pal_trx_reg_write(RG_TRX_RPC, 0xC1);

    /*
     * We need to disable TRX IRQs while generating random values in RX_ON,
     * we do not want to receive frames at this point of time at all.
     */
    ENTER_TRX_REGION();

    /* Ensure that PLL has locked and receive mode is reached. */
    tal_trx_status_t trx_state;
    do
    {
        trx_state = set_trx_state(CMD_RX_ON);
    }
    while (trx_state != RX_ON);

    /* Ensure that register bit RX_PDT_DIS is set to 0. */
    pal_trx_bit_write(SR_RX_PDT_DIS, RX_ENABLE);

    /*
     * The 16-bit random value is generated from various 2-bit random values.
     */
    for (uint8_t i = 0; i < 8; i++)
    {
        /* Now we can safely read the 2-bit random number. */
        cur_random_val = pal_trx_bit_read(SR_RND_VALUE);
        seed = seed << 2;
        seed |= cur_random_val;
        PAL_WAIT_1_US();    // wait that the random value gets updated
    }

    set_trx_state(CMD_FORCE_TRX_OFF);

    /*
     * Now we need to clear potential pending TRX IRQs and
     * enable the TRX IRQs again.
     */
    pal_trx_reg_read(RG_IRQ_STATUS);
    pal_trx_irq_flag_clr();
    LEAVE_TRX_REGION();

    /* Set the seed for the random number generator. */
    srand(seed);

    /* Restore RPC settings. */
    pal_trx_reg_write(RG_TRX_RPC, previous_RPC_value);
}
Beispiel #4
0
/**
 * @brief Switches the PLL on
 */
static void switch_pll_on(void)
{
    trx_irq_reason_t irq_status;
    uint32_t start_time, now;

    /* Check if trx is in TRX_OFF; only from PLL_ON the following procedure is applicable */
    if (pal_trx_bit_read(SR_TRX_STATUS) != TRX_OFF)
    {
        ASSERT("Switch PLL_ON failed, because trx is not in TRX_OFF" == 0);
        return;
    }

    /* use the IRQ status register checking for the actual PLL status */
    pal_trx_irq_dis();
    pal_trx_reg_write(RG_IRQ_MASK, TRX_IRQ_PLL_LOCK);  /* allow PLL lock IRQ only*/
    pal_trx_reg_read(RG_IRQ_STATUS);    /* clear PLL lock bit */

    /* Switch PLL on */
    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);

    /* Check if PLL has been locked. */
    pal_get_current_time(&start_time);
    while (1)
    {
        irq_status = (trx_irq_reason_t)pal_trx_reg_read(RG_IRQ_STATUS);
        if (irq_status & TRX_IRQ_PLL_LOCK)
        {
            break;  // PLL is locked now
        }

        /* Check if polling needs too much time. */
        pal_get_current_time(&now);
        if (pal_sub_time_us(now, start_time) > (10 * PLL_LOCK_TIME_US))
        {
            /* leave poll loop and throw assertion */
#if (DEBUG > 0)
            ASSERT("PLL switch failed" == 0);
#endif
            break;
        }
    }
    pal_trx_irq_flag_clr();
    pal_trx_reg_write(RG_IRQ_MASK, TRX_IRQ_TRX_END); /* enable TRX_END interrupt */

    pal_trx_irq_en();
}
Beispiel #5
0
static void switch_rf_to_txprep(trx_id_t trx_id)
{
	uint16_t reg_offset = RF_BASE_ADDR_OFFSET * trx_id;
	pal_trx_reg_write(RF215_RF, reg_offset + RG_RF09_CMD, RF_TXPREP);
	/* Wait for TXPREP */
	rf_cmd_state_t state;
	do {
		state = (rf_cmd_state_t)pal_trx_reg_read(RF215_RF,
				reg_offset +
				RG_RF09_STATE);
	} while (state != RF_TXPREP);
	/* Clear TRXRDY interrupt */
	uint8_t irqs = pal_trx_reg_read(RF215_RF, trx_id + RG_RF09_IRQS);
	tal_rf_irqs[trx_id] |= irqs & ((uint8_t)(~((uint32_t)RF_IRQ_TRXRDY))); /*
	                                                                        * avoid
	                                                                        * Pa091 */
	pal_trx_irq_flag_clr(RF215_RF);
}
Beispiel #6
0
/**
 * @brief Sets transceiver state
 *
 * @param trx_cmd needs to be one of the trx commands
 *
 * @return current trx state
 */
tal_trx_status_t set_trx_state(trx_cmd_t trx_cmd)
{
    if (tal_trx_status == TRX_SLEEP)
    {
        /*
         * Since the wake-up procedure relies on the Awake IRQ and
         * the global interrupts may be disabled at this point of time,
         * we need to make sure that the global interrupts are enabled
         * during wake-up procedure.
         * Once the TRX is awake, the original state of the global interrupts
         * will be restored.
         */
        /* Reset wake-up interrupt flag. */
        tal_awake_end_flag = false;
        /* Set callback function for the awake interrupt. */
        pal_trx_irq_init(trx_irq_awake_handler_cb);
        /* The pending transceiver interrupts on the microcontroller are cleared. */
        pal_trx_irq_flag_clr();
        pal_trx_irq_en();     /* Enable transceiver main interrupt. */
        /* Save current state of global interrupts. */
        ENTER_CRITICAL_REGION();
        /* Force enabling of global interrupts. */
        ENABLE_GLOBAL_IRQ();
        /* Leave trx sleep mode. */
        PAL_SLP_TR_LOW();
        /* Poll wake-up interrupt flag until set within ISR. */
        while (!tal_awake_end_flag);
        /* Restore original state of global interrupts. */
        LEAVE_CRITICAL_REGION();
        /* Clear existing interrupts */
        pal_trx_reg_read(RG_IRQ_STATUS);
        /* Re-install default IRQ handler for main interrupt. */
        pal_trx_irq_init(trx_irq_handler_cb);
        /* Re-enable TRX_END interrupt */
        pal_trx_reg_write(RG_IRQ_MASK, TRX_IRQ_DEFAULT);
#if (ANTENNA_DIVERSITY == 1)
        /* Enable antenna diversity. */
        pal_trx_bit_write(SR_ANT_EXT_SW_EN, ANT_EXT_SW_ENABLE);
#endif

#ifdef EXT_RF_FRONT_END_CTRL
        /* Enable RF front end control */
        pal_trx_bit_write(SR_PA_EXT_EN, 1);
#endif

        tal_trx_status = TRX_OFF;
        if ((trx_cmd == CMD_TRX_OFF) || (trx_cmd == CMD_FORCE_TRX_OFF))
        {
            return TRX_OFF;
        }
    }
#ifdef ENABLE_DEEP_SLEEP
    else if (tal_trx_status == TRX_DEEP_SLEEP)
    {
        /* Leave trx sleep mode. */
        PAL_SLP_TR_LOW();
        /* Check if trx has left deep sleep. */
        tal_trx_status_t trx_state;
        do
        {
            trx_state = (tal_trx_status_t)pal_trx_reg_read(RG_TRX_STATUS);
        }
        while (trx_state != TRX_OFF);
        tal_trx_status = TRX_OFF;
        /* Using deep sleep, the transceiver's registers need to be restored. */
        trx_config();
        /*
         * Write all PIB values to the transceiver
         * that are needed by the transceiver itself.
         */
        write_all_tal_pib_to_trx(); /* implementation can be found in 'tal_pib.c' */
        if ((trx_cmd == CMD_TRX_OFF) || (trx_cmd == CMD_FORCE_TRX_OFF))
        {
            return TRX_OFF;
        }
    }
#endif

    switch (trx_cmd)    /* requested state */
    {
        case CMD_SLEEP:
#ifdef ENABLE_DEEP_SLEEP
            /* Fall through. */
        case CMD_DEEP_SLEEP:
#endif
            pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);

#if (ANTENNA_DIVERSITY == 1)
            /*
             *  Disable antenna diversity: to reduce the power consumption or
             *  avoid leakage current of an external RF switch during SLEEP.
             */
            pal_trx_bit_write(SR_ANT_EXT_SW_EN, ANT_EXT_SW_DISABLE);
#endif
#ifdef EXT_RF_FRONT_END_CTRL
            /* Disable RF front end control */
            pal_trx_bit_write(SR_PA_EXT_EN, 0);
#endif
            /* Clear existing interrupts */
            pal_trx_reg_read(RG_IRQ_STATUS);
            /*
             * Enable Awake_end interrupt.
             * This is used for save wake-up from sleep later.
             */
            pal_trx_bit_write(SR_IRQ_MASK, TRX_IRQ_4_CCA_ED_DONE);

#ifdef ENABLE_DEEP_SLEEP
            if (trx_cmd == CMD_DEEP_SLEEP)
            {
                pal_trx_reg_write(RG_TRX_STATE, CMD_PREP_DEEP_SLEEP);
                tal_trx_status = TRX_DEEP_SLEEP;
            }
            else
            {
                /*
                 * Enable Awake_end interrupt.
                 * This is used for save wake-up from sleep later.
                 */
                pal_trx_bit_write(SR_IRQ_MASK, TRX_IRQ_4_CCA_ED_DONE);
                tal_trx_status = TRX_SLEEP;
            }
#else
            /*
             * Enable Awake_end interrupt.
             * This is used for save wake-up from sleep later.
             */
            pal_trx_bit_write(SR_IRQ_MASK, TRX_IRQ_4_CCA_ED_DONE);
            tal_trx_status = TRX_SLEEP;
#endif
            PAL_WAIT_1_US();
            PAL_SLP_TR_HIGH();
            pal_timer_delay(TRX_OFF_TO_SLEEP_TIME_CLKM_CYCLES);
            /* Transceiver register cannot be read during TRX_SLEEP or DEEP_SLEEP. */
            return tal_trx_status;

        case CMD_TRX_OFF:
            switch (tal_trx_status)
            {
                case TRX_OFF:
                    break;

                default:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_TRX_OFF);
                    PAL_WAIT_1_US();
                    break;
            }
            break;

        case CMD_FORCE_TRX_OFF:
            switch (tal_trx_status)
            {
                case TRX_OFF:
                    break;

                default:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);
                    PAL_WAIT_1_US();
                    break;
            }
            break;

        case CMD_PLL_ON:
            switch (tal_trx_status)
            {
                case PLL_ON:
                    break;

                case TRX_OFF:
                    switch_pll_on();
                    break;

                case RX_ON:
                case RX_AACK_ON:
                case TX_ARET_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
                    PAL_WAIT_1_US();
                    break;

                case BUSY_RX:
                case BUSY_TX:
                case BUSY_RX_AACK:
                case BUSY_TX_ARET:
                    /* do nothing if trx is busy */
                    break;

                default:
                    ASSERT("state transition not handled" == 0);
                    break;
            }
            break;

        case CMD_FORCE_PLL_ON:
            switch (tal_trx_status)
            {
                case TRX_OFF:
                    switch_pll_on();
                    break;

                case PLL_ON:
                    break;

                default:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_PLL_ON);
                    break;
            }
            break;

        case CMD_RX_ON:
            switch (tal_trx_status)
            {
                case RX_ON:
                    break;

                case PLL_ON:
                case RX_AACK_ON:
                case TX_ARET_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_ON);
                    PAL_WAIT_1_US();
                    break;

                case TRX_OFF:
                    switch_pll_on();
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_ON);
                    PAL_WAIT_1_US();
                    break;

                case BUSY_RX:
                case BUSY_TX:
                case BUSY_RX_AACK:
                case BUSY_TX_ARET:
                    /* do nothing if trx is busy */
                    break;

                default:
                    ASSERT("state transition not handled" == 0);
                    break;
            }
            break;

        case CMD_RX_AACK_ON:
            switch (tal_trx_status)
            {
                case RX_AACK_ON:
                    break;

                case TX_ARET_ON:
                case PLL_ON:
                case RX_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON);
                    PAL_WAIT_1_US();
                    break;

                case TRX_OFF:
                    switch_pll_on(); // state change from TRX_OFF to RX_AACK_ON can be done directly, too
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON);
                    PAL_WAIT_1_US();
                    break;

                case BUSY_RX:
                case BUSY_TX:
                case BUSY_RX_AACK:
                case BUSY_TX_ARET:
                    /* do nothing if trx is busy */
                    break;

                default:
                    ASSERT("state transition not handled" == 0);
                    break;
            }
            break;

        case CMD_TX_ARET_ON:
            switch (tal_trx_status)
            {
                case TX_ARET_ON:
                    break;

                case PLL_ON:
                case RX_ON:
                case RX_AACK_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON);
                    PAL_WAIT_1_US();
                    break;

                case TRX_OFF:
                    switch_pll_on(); // state change from TRX_OFF to TX_ARET_ON can be done directly, too
                    pal_trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON);
                    PAL_WAIT_1_US();
                    break;

                case BUSY_RX:
                case BUSY_TX:
                case BUSY_RX_AACK:
                case BUSY_TX_ARET:
                    /* do nothing if trx is busy */
                    break;

                default:
                    ASSERT("state transition not handled" == 0);
                    break;
            }
            break;

        default:
            /* CMD_NOP, CMD_TX_START */
            ASSERT("trx command not handled" == 0);
            break;
    }

    do
    {
        tal_trx_status = (tal_trx_status_t)pal_trx_bit_read(SR_TRX_STATUS);
    }
    while (tal_trx_status == STATE_TRANSITION_IN_PROGRESS);

    return tal_trx_status;
} /* set_trx_state() */
/*
 * \brief Resets TAL state machine and sets the default PIB values if requested
 *
 * \param set_default_pib Defines whether PIB values need to be set
 *                        to its default values
 *
 * \return MAC_SUCCESS  if the transceiver state is changed to TRX_OFF
 *         FAILURE otherwise
 */
retval_t tal_reset(bool set_default_pib)
{
	/*
	 * Do the reset stuff.
	 * Set the default PIBs depending on the given parameter
	 * set_default_pib.
	 * Do NOT generate random seed again.
	 */
	if (internal_tal_reset(set_default_pib) != MAC_SUCCESS) {
		return FAILURE;
	}

	ENTER_CRITICAL_REGION();
	tal_timers_stop();
	LEAVE_CRITICAL_REGION();

	/* Clear TAL Incoming Frame queue and free used buffers. */
	while (tal_incoming_frame_queue.size > 0) {
		buffer_t *frame = qmm_queue_remove(&tal_incoming_frame_queue,
				NULL);
		if (NULL != frame) {
			bmm_buffer_free(frame);
		}
	}

#ifdef ENABLE_TFA
	tfa_reset(set_default_pib);
#endif

	/*
	 * Configure interrupt handling.
	 * Install a handler for the transceiver interrupt.
	 */
	trx_irq_init((FUNC_PTR)trx_irq_handler_cb);

	/* The pending transceiver interrupts on the microcontroller are
	 * cleared. */
	pal_trx_irq_flag_clr();
	pal_trx_irq_en(); /* Enable transceiver main interrupt. */

#ifdef ENABLE_FTN_PLL_CALIBRATION
	{
		/* Handle PLL calibration and filter tuning. */
		retval_t timer_status;

		/* Calibration timer has already been stopped within this
		 * function. */

		/* Start periodic calibration timer.*/
		timer_status = pal_timer_start(TAL_CALIBRATION,
				TAL_CALIBRATION_TIMEOUT_US,
				TIMEOUT_RELATIVE,
				(FUNC_PTR)calibration_timer_handler_cb,
				NULL);

		if (timer_status != MAC_SUCCESS) {
			Assert("PLL calibration timer start problem" == 0);
		}
	}
#endif  /* ENABLE_FTN_PLL_CALIBRATION */

	return MAC_SUCCESS;
}
/*
 * \brief Sets transceiver state
 *
 * \param trx_cmd needs to be one of the trx commands
 *
 * \return current trx state
 */
tal_trx_status_t set_trx_state(trx_cmd_t trx_cmd)
{
	if (tal_trx_status == TRX_SLEEP) {
		/*
		 * Since the wake-up procedure relies on the Awake IRQ and
		 * the global interrupts may be disabled at this point of time,
		 * we need to make sure that the global interrupts are enabled
		 * during wake-up procedure.
		 * Once the TRX is awake, the original state of the global
		 * interrupts
		 * will be restored.
		 */
		/* Reset wake-up interrupt flag. */
		if (CMD_SLEEP == trx_cmd) {
			return TRX_SLEEP;
		}

		tal_awake_end_flag = false;
		/* Set callback function for the awake interrupt. */
		trx_irq_init((FUNC_PTR)trx_irq_awake_handler_cb);

		/* The pending transceiver interrupts on the microcontroller are
		 * cleared. */
		pal_trx_irq_flag_clr();
		pal_trx_irq_en(); /* Enable transceiver main interrupt. */
		/* Save current state of global interrupts. */
		ENTER_CRITICAL_REGION();
		/* Force enabling of global interrupts. */
		ENABLE_GLOBAL_IRQ();
		/* Leave trx sleep mode. */
		TRX_SLP_TR_LOW();
		/* Poll wake-up interrupt flag until set within ISR. */
		while (!tal_awake_end_flag) {
		}
		/* Restore original state of global interrupts. */
		LEAVE_CRITICAL_REGION();
		/* Clear existing interrupts */
		trx_reg_read(RG_IRQ_STATUS);
		/* Re-install default IRQ handler for main interrupt. */
		trx_irq_init((FUNC_PTR)trx_irq_handler_cb);
		/* Re-enable TRX_END interrupt */
		trx_reg_write(RG_IRQ_MASK, TRX_IRQ_DEFAULT);

#if (ANTENNA_DIVERSITY == 1)
		/* Enable antenna diversity. */
		trx_bit_write(SR_ANT_EXT_SW_EN, ANT_EXT_SW_ENABLE);
#endif

		if ((trx_cmd == CMD_TRX_OFF) ||
				(trx_cmd == CMD_FORCE_TRX_OFF)) {
			tal_trx_status = TRX_OFF;
			return TRX_OFF;
		}
	}

	switch (trx_cmd) { /* requested state */
	case CMD_SLEEP:
		trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);
#if (ANTENNA_DIVERSITY == 1)
		/* Disable antenna diversity: sets pulls */
		trx_bit_write(SR_ANT_EXT_SW_EN, ANT_EXT_SW_DISABLE);
#endif
#ifndef SW_CONTROLLED_CSMA
		{
			uint16_t rand_value;

			/*
			 * Init the SEED value of the CSMA backoff algorithm.
			 */
			rand_value = (uint16_t)rand();
			trx_reg_write(RG_CSMA_SEED_0, (uint8_t)rand_value);
			trx_bit_write(SR_CSMA_SEED_1,
					(uint8_t)(rand_value >> 8));
		}
#endif
		/* Clear existing interrupts */
		trx_reg_read(RG_IRQ_STATUS);

		/*
		 * Enable Awake_end interrupt.
		 * This is used for save wake-up from sleep later.
		 */
		trx_bit_write(SR_IRQ_MASK, TRX_IRQ_4_CCA_ED_DONE);
		PAL_WAIT_1_US();
		TRX_SLP_TR_HIGH();
		pal_timer_delay(TRX_OFF_TO_SLEEP_TIME_CLKM_CYCLES);
		tal_trx_status = TRX_SLEEP;
		return TRX_SLEEP; /* transceiver register cannot be read during
		                   * TRX_SLEEP */

	case CMD_TRX_OFF:
		switch (tal_trx_status) {
		case TRX_OFF:
			break;

		default:
			trx_reg_write(RG_TRX_STATE, CMD_TRX_OFF);
			PAL_WAIT_1_US();
			break;
		}
		break;

	case CMD_FORCE_TRX_OFF:
		switch (tal_trx_status) {
		case TRX_OFF:
			break;

		default:
			trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);
			PAL_WAIT_1_US();
			break;
		}
		break;

	case CMD_PLL_ON:
		switch (tal_trx_status) {
		case PLL_ON:
			break;

		case TRX_OFF:
			switch_pll_on();
			break;

		case RX_ON:
		case RX_AACK_ON:
		case TX_ARET_ON:
			trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
			PAL_WAIT_1_US();
			break;

		case BUSY_RX:
		case BUSY_TX:
		case BUSY_RX_AACK:
		case BUSY_TX_ARET:
			/* do nothing if trx is busy */
			break;

		default:
			Assert("state transition not handled" == 0);
			break;
		}
		break;

	case CMD_FORCE_PLL_ON:
		switch (tal_trx_status) {
		case TRX_OFF:
			switch_pll_on();
			break;

		case PLL_ON:
			break;

		default:
			trx_reg_write(RG_TRX_STATE, CMD_FORCE_PLL_ON);
			break;
		}
		break;

	case CMD_RX_ON:
		switch (tal_trx_status) {
		case RX_ON:
			break;

		case PLL_ON:
		case RX_AACK_ON:
		case TX_ARET_ON:
			trx_reg_write(RG_TRX_STATE, CMD_RX_ON);
			PAL_WAIT_1_US();
			break;

		case TRX_OFF:
			switch_pll_on();
			trx_reg_write(RG_TRX_STATE, CMD_RX_ON);
			PAL_WAIT_1_US();
			break;

		case BUSY_RX:
		case BUSY_TX:
		case BUSY_RX_AACK:
		case BUSY_TX_ARET:
			/* do nothing if trx is busy */
			break;

		default:
			Assert("state transition not handled" == 0);
			break;
		}
		break;

	case CMD_RX_AACK_ON:
		switch (tal_trx_status) {
		case RX_AACK_ON:
			break;

		case TX_ARET_ON:
		case PLL_ON:
			trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON);
			PAL_WAIT_1_US();
			break;

		case TRX_OFF:
			switch_pll_on(); /* state change from TRX_OFF to
			                  * RX_AACK_ON can be done directly, too
			                  **/
			trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON);
			PAL_WAIT_1_US();
			break;

		case RX_ON:
			trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
			PAL_WAIT_1_US();
			/* check if state change could be applied */
			tal_trx_status = (tal_trx_status_t)trx_bit_read(
					SR_TRX_STATUS);
			if (tal_trx_status != PLL_ON) {
				return tal_trx_status;
			}

			trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON);
			PAL_WAIT_1_US();
			break;

		case BUSY_RX:
		case BUSY_TX:
		case BUSY_RX_AACK:
		case BUSY_TX_ARET:
			/* do nothing if trx is busy */
			break;

		default:
			Assert("state transition not handled" == 0);
			break;
		}
		break;

	case CMD_TX_ARET_ON:
		switch (tal_trx_status) {
		case TX_ARET_ON:
			break;

		case PLL_ON:
			trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON);
			PAL_WAIT_1_US();
			break;

		case RX_ON:
		case RX_AACK_ON:
			trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
			PAL_WAIT_1_US();
			/* check if state change could be applied */
			tal_trx_status = (tal_trx_status_t)trx_bit_read(
					SR_TRX_STATUS);
			if (tal_trx_status != PLL_ON) {
				return tal_trx_status;
			}

			trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON);
			PAL_WAIT_1_US();
			break;

		case TRX_OFF:
			switch_pll_on(); /* state change from TRX_OFF to
			                  * TX_ARET_ON can be done directly, too
			                  **/
			trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON);
			PAL_WAIT_1_US();
			break;

		case BUSY_RX:
		case BUSY_TX:
		case BUSY_RX_AACK:
		case BUSY_TX_ARET:
			/* do nothing if trx is busy */
			break;

		default:
			Assert("state transition not handled" == 0);
			break;
		}
		break;

	default:
		/* CMD_NOP, CMD_TX_START */
		Assert("trx command not handled" == 0);
		break;
	}

	do {
		tal_trx_status = (tal_trx_status_t)trx_bit_read(
				SR_TRX_STATUS);
	} while (tal_trx_status == STATE_TRANSITION_IN_PROGRESS);

	return tal_trx_status;
} /* set_trx_state() */
Beispiel #9
0
/**
 * @brief Sets transceiver state
 *
 * @param trx_cmd needs to be one of the trx commands
 *
 * @return current trx state
 */
tal_trx_status_t set_trx_state(trx_cmd_t trx_cmd)
{
    if (tal_trx_status == TRX_SLEEP)
    {
        uint8_t bit_status;

        PAL_SLP_TR_LOW();
        do
        {
            bit_status = pal_trx_bit_read(SR_TRX_STATUS);
        } while (bit_status != TRX_OFF);

        if ((trx_cmd == CMD_TRX_OFF) || (trx_cmd == CMD_FORCE_TRX_OFF))
        {
            tal_trx_status = TRX_OFF;
            return TRX_OFF;
        }
    }

    tal_trx_status = (tal_trx_status_t)pal_trx_bit_read(SR_TRX_STATUS);

    switch (trx_cmd)    /* new state */
    {
        case CMD_TRX_SLEEP:
            pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);

            {
                uint16_t rand_value;

                /*
                 * Init the SEED value of the CSMA backoff algorithm.
                 */
                rand_value = (uint16_t)rand();
                pal_trx_reg_write(RG_CSMA_SEED_0, (uint8_t)rand_value);
                pal_trx_bit_write(SR_CSMA_SEED_1, (uint8_t)(rand_value >> 8));
            }

            PAL_WAIT_1_US();
            PAL_SLP_TR_HIGH();
            pal_timer_delay(TRX_OFF_TO_SLEEP_TIME);
            tal_trx_status = TRX_SLEEP;
            return TRX_SLEEP;   /* transceiver register cannot be read during TRX_SLEEP */
            //break; // do not use break, since it is unreachable

        case CMD_TRX_OFF:
            switch (tal_trx_status)
            {
                case TRX_OFF:
                    break;

                default:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_TRX_OFF);
                    PAL_WAIT_1_US();
                    break;
            }
            break;

        case CMD_FORCE_TRX_OFF:
            switch (tal_trx_status)
            {
                case TRX_OFF:
                    break;

                case TX_ARET_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);
                    PAL_SLP_TR_HIGH();
                    pal_timer_delay(2);
                    PAL_SLP_TR_LOW();
                    break;

                default:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);
                    PAL_WAIT_1_US();
                    break;
            }
            break;

        case CMD_PLL_ON:
            switch (tal_trx_status)
            {
                case PLL_ON:
                    break;

                case TRX_OFF:
                    switch_pll_on();
                    break;

                case RX_ON:
                case RX_AACK_ON:
                case TX_ARET_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
                    PAL_WAIT_1_US();
                    break;

                case BUSY_RX:
                case BUSY_TX:
                case BUSY_RX_AACK:
                case BUSY_TX_ARET:
                    /* do nothing if trx is busy */
                    break;

                default:
                    ASSERT("state transition not handled" == 0);
                    break;
            }
            break;

        case CMD_FORCE_PLL_ON:  /* software state */
            switch (tal_trx_status)
            {
                case RX_ON:
                case BUSY_RX:
                case RX_AACK_ON:
                case BUSY_RX_AACK:
                    ENTER_TRX_REGION();
                    pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);
                    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
                    // clear trx irq in case a frame is received meanwhile
                    pal_trx_reg_read(RG_IRQ_STATUS);
                    pal_trx_irq_flag_clr();
                    LEAVE_TRX_REGION();
                    PAL_WAIT_1_US();
                    break;

                case BUSY_TX:
                    ENTER_TRX_REGION();
                    pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);
                    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
                    LEAVE_TRX_REGION();
                    PAL_WAIT_1_US();
                    break;

                case BUSY_TX_ARET:
                    ENTER_TRX_REGION();
                    pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF);
                    PAL_SLP_TR_LOW();
                    pal_timer_delay(SLP_TR_TOGGLE_US);
                    PAL_SLP_TR_HIGH();
                    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
                    LEAVE_TRX_REGION();
                    PAL_WAIT_1_US();
                    break;

                case TRX_OFF:
                    switch_pll_on();
                    break;

                case PLL_ON:
                    break;

                default:
                    ASSERT("state transition not handled" == 0);
                    break;
            }
            break;

        case CMD_RX_ON:
            switch (tal_trx_status)
            {
                case RX_ON:
                    break;

                case PLL_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_ON);
                    PAL_WAIT_1_US();
                    break;

                case TRX_OFF:
                    switch_pll_on();
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_ON);
                    PAL_WAIT_1_US();
                    break;

                case RX_AACK_ON:
                case TX_ARET_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
                    PAL_WAIT_1_US();
                    // check if state change could be applied
                    tal_trx_status = (tal_trx_status_t)pal_trx_bit_read(SR_TRX_STATUS);
                    if (tal_trx_status != PLL_ON)
                    {
                        return tal_trx_status;
                    }
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_ON);
                    PAL_WAIT_1_US();
                    break;

                case BUSY_RX:
                case BUSY_TX:
                case BUSY_RX_AACK:
                case BUSY_TX_ARET:
                    /* do nothing if trx is busy */
                    break;

                default:
                    ASSERT("state transition not handled" == 0);
                    break;
            }
            break;

        case CMD_RX_AACK_ON:
            switch (tal_trx_status)
            {
                case RX_AACK_ON:
                    break;

                case PLL_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON);
                    PAL_WAIT_1_US();
                    break;

                case TRX_OFF:
                    switch_pll_on();// state change from TRX_OFF to RX_AACK_ON can be done directly, too
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON);
                    PAL_WAIT_1_US();
                    break;

                case TX_ARET_ON:
                case RX_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
                    PAL_WAIT_1_US();
                    // check if state change could be applied
                    tal_trx_status = (tal_trx_status_t)pal_trx_bit_read(SR_TRX_STATUS);
                    if (tal_trx_status != PLL_ON)
                    {
                        return tal_trx_status;
                    }
                    pal_trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON);
                    PAL_WAIT_1_US();
                    break;

                case BUSY_RX:
                case BUSY_TX:
                case BUSY_RX_AACK:
                case BUSY_TX_ARET:
                    /* do nothing if trx is busy */
                    break;

                default:
                    ASSERT("state transition not handled" == 0);
                    break;
            }
            break;

        case CMD_TX_ARET_ON:
            switch (tal_trx_status)
            {
                case TX_ARET_ON:
                    break;

                case PLL_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON);
                    PAL_WAIT_1_US();
                    break;

                case RX_ON:
                case RX_AACK_ON:
                    pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON);
                    PAL_WAIT_1_US();
                    // check if state change could be applied
                    tal_trx_status = (tal_trx_status_t)pal_trx_bit_read(SR_TRX_STATUS);
                    if (tal_trx_status != PLL_ON)
                    {
                        return tal_trx_status;
                    }
                    pal_trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON);
                    PAL_WAIT_1_US();
                    break;

                case TRX_OFF:
                    switch_pll_on();// state change from TRX_OFF to TX_ARET_ON can be done directly, too
                    pal_trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON);
                    PAL_WAIT_1_US();
                    break;

                case BUSY_RX:
                case BUSY_TX:
                case BUSY_RX_AACK:
                case BUSY_TX_ARET:
                    /* do nothing if trx is busy */
                    break;

                default:
                    ASSERT("state transition not handled" == 0);
                    break;
            }
            break;

        default:
            /* CMD_NOP, CMD_TX_START */
            ASSERT("trx command not handled" == 0);
            break;
    }

    do
    {
        tal_trx_status = (tal_trx_status_t)pal_trx_bit_read(SR_TRX_STATUS);
    } while (tal_trx_status == STATE_TRANSITION_IN_PROGRESS);

    return tal_trx_status;
} /* set_trx_state() */
Beispiel #10
0
/**
 * \brief Performs CCA twice
 */
static uint8_t perform_cca_twice(void)
{
	tal_trx_status_t trx_status;
	uint8_t cca_status;
	uint8_t CW = 2;
	uint32_t now_time_us;

	do {
		pal_get_current_time(&now_time_us);
	} while (pal_add_time_us(now_time_us,
			(SLEEP_TO_TRX_OFF_US + CCA_PREPARATION_DURATION_US)) <
			cca_starttime_us);

	/* Ensure that trx is at least in TRX_OFF mode at this time. */
	if (tal_trx_status == TRX_SLEEP) {
		set_trx_state(CMD_TRX_OFF);
	}

	do {
		pal_get_current_time(&now_time_us);
	} while (pal_add_time_us(now_time_us,
			(PLL_LOCK_TIME_US + CCA_PREPARATION_DURATION_US)) <
			cca_starttime_us);

	/*
	 * Set trx to PLL_ON.
	 * If trx is busy and trx cannot be set to PLL_ON, assess channel as
	 *busy.
	 */
	if (set_trx_state(CMD_PLL_ON) != PLL_ON) {
		return PHY_BUSY;
	}

	/* no interest in trx interrupts while doing CCA */
	pal_trx_irq_dis();

	/* do CCA twice */
	do {
		/* wait here until 16us before backoff boundary */
		/* assume TRX is in PLL_ON */
		do {
			pal_get_current_time(&now_time_us);
		} while (pal_add_time_us(now_time_us,
				CCA_PRE_START_DURATION_US) <
				cca_starttime_us);

		set_trx_state(CMD_RX_ON);

		/* debug pin to switch on: define ENABLE_DEBUG_PINS,
		 *pal_config.h */
		PIN_CCA_START();

		/* Start CCA by writing any dummy value to this register */
		pal_trx_bit_write(SR_CCA_REQUEST, 1);

		/* wait until CCA is done and get status */
		pal_timer_delay(TAL_CONVERT_SYMBOLS_TO_US(CCA_DURATION_SYM));

		do {
			/* poll until CCA is really done; */
			trx_status = (tal_trx_status_t)pal_trx_reg_read(
					RG_TRX_STATUS);
		} while ((trx_status & CCA_DONE_BIT) != CCA_DONE_BIT);

		/* between both CCA switch trx to PLL_ON to reduce power
		 *consumption */
		set_trx_state(CMD_PLL_ON);

		/* debug pin to switch on: define ENABLE_DEBUG_PINS,
		 *pal_config.h */
		PIN_CCA_END();

		/* check if channel was idle or busy */
		if (trx_status & CCA_STATUS_BIT) {
			/* do next CCA at next backoff boundary */
			cca_starttime_us = pal_add_time_us(cca_starttime_us,
					TAL_CONVERT_SYMBOLS_TO_US(
					aUnitBackoffPeriod));
			CW--;
			cca_status = PHY_IDLE;
		} else { /* PHY busy */
			cca_status = PHY_BUSY;
			set_trx_state(CMD_RX_AACK_ON);
			break; /* if channel is busy do no do CCA for the second
			        * time */
		}
	} while (CW > 0);

	/*
	 * Keep trx ready for transmission if channel is idle.
	 * The transceiver is still in PLL_ON.
	 * If the channel is not idle, the trx handling is done in
	 *csma_backoff().
	 */

	/*
	 * Since we are not interested in any frames that might be received
	 * during CCA, reject any information that indicates a previous frame
	 * reception.
	 */
	pal_trx_reg_read(RG_IRQ_STATUS);
	pal_trx_irq_flag_clr();
	pal_trx_irq_en();

	return cca_status;
}
Beispiel #11
0
/*
 * \brief Perform a CCA
 *
 * This function performs a CCA request.
 *
 * \return phy_enum_t PHY_IDLE or PHY_BUSY
 */
phy_enum_t tfa_cca_perform(void)
{
    tal_trx_status_t trx_status;
    uint8_t cca_status;

    /* Ensure that trx is not in SLEEP for register access */
    do
    {
        trx_status = set_trx_state(CMD_TRX_OFF);
    }
    while (trx_status != TRX_OFF);

    // no interest in trx interrupts while doing CCA
    pal_trx_irq_dis();

    /* Set trx to rx mode. */
    do
    {
        trx_status = set_trx_state(CMD_RX_ON);
    }
    while (trx_status != RX_ON);

    /* Start CCA by writing any dummy value to this register */
    pal_trx_bit_write(SR_CCA_REQUEST, 1);

    /* wait until CCA is done */
    pal_timer_delay(TAL_CONVERT_SYMBOLS_TO_US(CCA_DURATION_SYM));

    do
    {
        /*
         * Poll until CCA is really done.
         * Do NOT use bit read here!
         */
        trx_status = (tal_trx_status_t)pal_trx_reg_read(RG_TRX_STATUS);
    }
    while ((trx_status & CCA_DONE_BIT) != CCA_DONE_BIT);

    set_trx_state(CMD_TRX_OFF);

    /* Check if channel was idle or busy. */
    if (trx_status & CCA_STATUS_BIT)
    {
        cca_status = PHY_IDLE;
    }
    else
    {
        cca_status = PHY_BUSY;
    }

    /*
     * Since we are not interested in any frames that might be received
     * during CCA, reject any information that indicates a previous frame
     * reception.
     */
    pal_trx_reg_read(RG_IRQ_STATUS);
    pal_trx_irq_flag_clr();
    pal_trx_irq_en();

    return (phy_enum_t)cca_status;
}
Beispiel #12
0
/**
 * @brief Resets transceiver(s)
 *
 * @param trx_id Transceiver identifier
 *
 * @return MAC_SUCCESS  if the transceiver returns TRX_OFF
 *         FAILURE otherwise
 */
retval_t trx_reset(trx_id_t trx_id)
{
	ENTER_TRX_REGION();

	uint32_t start_time;
	uint32_t current_time;
	pal_get_current_time(&start_time);

	if (trx_id == RFBOTH) {
		TAL_RF_IRQ_CLR_ALL(RF09);
		TAL_RF_IRQ_CLR_ALL(RF24);
		tal_state[RF09] = TAL_RESET;
		tal_state[RF24] = TAL_RESET;

		/* Apply reset pulse; low active */
#ifdef IQ_RADIO
		RST_LOW();
		PAL_WAIT_1_US();
		PAL_WAIT_1_US();
		RST_HIGH();
#if (BOARD_TYPE == EVAL215_FPGA)
		pal_timer_delay(10000);
#endif
		RST_LOW();
		PAL_WAIT_1_US();
		RST_HIGH();
#else
		RST_LOW();
		PAL_WAIT_1_US();
		RST_HIGH();
#endif

		/* Wait for IRQ line */
		while (1) {
			/*
			 * @ToDo: Use a different macro for IRQ line; the
			 *polarity might be
			 * different after reset
			 */
#ifdef IQ_RADIO
			if ((PAL_DEV_IRQ_GET(RF215_BB) == HIGH) &&
					(PAL_DEV_IRQ_GET(RF215_RF) == HIGH)) {
				break;
			}

#else
			if (TRX_IRQ_GET() == HIGH) {
				break;
			}

#endif

			/* Handle timeout */
			pal_get_current_time(&current_time);
			/* @ToDo: Remove magic number */
			if (pal_sub_time_us(current_time, start_time) > 1000) {
				return FAILURE;
			}
		}
#ifdef IQ_RADIO
		trx_state[RF09] = (rf_cmd_state_t)pal_dev_reg_read(RF215_RF,
				RG_RF09_STATE);
		trx_state[RF24] = (rf_cmd_state_t)pal_dev_reg_read(RF215_RF,
				RG_RF24_STATE);
		rf_cmd_state_t bb_trx_state[NUM_TRX];
		bb_trx_state[RF09] = (rf_cmd_state_t)pal_dev_reg_read(RF215_BB,
				RG_RF09_STATE);
		bb_trx_state[RF24] = (rf_cmd_state_t)pal_dev_reg_read(RF215_BB,
				RG_RF24_STATE);
		if ((bb_trx_state[RF09] != RF_TRXOFF) ||
				(bb_trx_state[RF24] != RF_TRXOFF)) {
			return FAILURE;
		}

#else
		trx_state[RF09] = trx_reg_read(RG_RF09_STATE);
		trx_state[RF24] = trx_reg_read(RG_RF24_STATE);
#endif
		if ((trx_state[RF09] != RF_TRXOFF) ||
				(trx_state[RF24] != RF_TRXOFF)) {
			return FAILURE;
		}

		/* Get all IRQ status information */
#ifdef IQ_RADIO
		bb_irq_handler_cb();
		rf_irq_handler_cb();
#else
		trx_irq_handler_cb();
#endif
		TAL_RF_IRQ_CLR(RF09, RF_IRQ_WAKEUP);
		TAL_RF_IRQ_CLR(RF24, RF_IRQ_WAKEUP);
	} else {
		TAL_RF_IRQ_CLR_ALL(trx_id);
		tal_state[trx_id] = TAL_RESET;

		/* Trigger reset of device */
		uint16_t reg_offset = RF_BASE_ADDR_OFFSET * trx_id;

#ifdef IQ_RADIO
		pal_trx_reg_write(RF215_RF, reg_offset + RG_RF09_CMD, RF_RESET);
		pal_trx_reg_write(RF215_BB, reg_offset + RG_RF09_CMD, RF_RESET);
#else
		trx_reg_write(reg_offset + RG_RF09_CMD, RF_RESET);
#endif

		/* Wait for IRQ line */
		while (1) {
#ifdef IQ_RADIO
			if ((PAL_DEV_IRQ_GET(RF215_BB) == HIGH) &&
					(PAL_DEV_IRQ_GET(RF215_RF) == HIGH)) {
				break;
			}

#else
			if (TRX_IRQ_GET() == HIGH) {
				break;
			}

#endif

			/* Handle timeout */
			pal_get_current_time(&current_time);
			/* @ToDo: Remove magic number */
			if (pal_sub_time_us(current_time, start_time) > 1000) {
				return FAILURE;
			}
		}
		trx_state[trx_id] = RF_TRXOFF;
		/* Get all IRQ status information */
#ifdef IQ_RADIO
		bb_irq_handler_cb();
		rf_irq_handler_cb();
#else
		trx_irq_handler_cb();
#endif
		TAL_RF_IRQ_CLR(trx_id, RF_IRQ_WAKEUP);
	}

#ifdef IQ_RADIO
	pal_trx_irq_flag_clr(RF215_BB);
	pal_trx_irq_flag_clr(RF215_RF);
#else
	pal_trx_irq_flag_clr();
#endif
	LEAVE_TRX_REGION();

	return MAC_SUCCESS;
}
Beispiel #13
0
/**
 * @brief Initializes the TAL
 *
 * This function is called to initialize the TAL. The transceiver is
 * initialized, the TAL PIBs are set to their default values, and the TAL state
 * machine is set to TAL_IDLE state.
 *
 * @return MAC_SUCCESS  if the transceiver state is changed to TRX_OFF and the
 *                 current device part number and version number are correct;
 *         FAILURE otherwise
 */
retval_t tal_init(void)
{
	/* Init the PAL and by this means also the transceiver interface */
	if (pal_init() != MAC_SUCCESS) {
		return FAILURE;
	}

	/* Reset trx */
	if (trx_reset(RFBOTH) != MAC_SUCCESS) {
		return FAILURE;
	}

	/* Check if RF215 is connected */
	if ((trx_reg_read( RG_RF_PN) != 0x34) ||
			(trx_reg_read( RG_RF_VN) != 0x01)) {
		return FAILURE;
	}

	/* Initialize trx */
	trx_init();

	if (tal_timer_init() != MAC_SUCCESS) {
		return FAILURE;
	}

	/* Initialize the buffer management */
	bmm_buffer_init();

	/* Configure both trx and set default PIB values */
	for (uint8_t trx_id = 0; trx_id < NUM_TRX; trx_id++) {
		/* Configure transceiver */
		trx_config((trx_id_t)trx_id);
#ifdef RF215V1
		/* Calibrate LO */
		calibrate_LO((trx_id_t)trx_id);
#endif

		/* Set the default PIB values */
		init_tal_pib((trx_id_t)trx_id); /* see 'tal_pib.c' */
		calculate_pib_values((trx_id_t)trx_id);

		/*
		 * Write all PIB values to the transceiver
		 * that are needed by the transceiver itself.
		 */
		write_all_tal_pib_to_trx((trx_id_t)trx_id); /* see 'tal_pib.c'
		                                             **/
		config_phy((trx_id_t)trx_id);

		tal_rx_buffer[trx_id] = bmm_buffer_alloc(LARGE_BUFFER_SIZE);
		if (tal_rx_buffer[trx_id] == NULL) {
			return FAILURE;
		}

		/* Init incoming frame queue */
		qmm_queue_init(&tal_incoming_frame_queue[trx_id]);

		tal_state[trx_id] = TAL_IDLE;
		tx_state[trx_id] = TX_IDLE;
	}

	/* Init seed of rand() */
	tal_generate_rand_seed();

#ifndef DISABLE_IEEE_ADDR_CHECK
	for (uint8_t trx_id = 0; trx_id < 2; trx_id++) {
		/* Check if a valid IEEE address is available. */

		/*
		 * This while loop is on purpose, since just in the
		 * rare case that such an address is randomly
		 * generated again, we must repeat this.
		 */
		while ((tal_pib[trx_id].IeeeAddress == 0x0000000000000000) ||
				(tal_pib[trx_id].IeeeAddress ==
				((uint64_t)-1))) {
			/*
			 * In case no valid IEEE address is available, a random
			 * IEEE address will be generated to be able to run the
			 * applications for demonstration purposes.
			 * In production code this can be omitted.
			 */

			/*
			 * The proper seed for function rand() has already been
			 *generated
			 * in function tal_generate_rand_seed().
			 */
			uint8_t *ptr_pib
				= (uint8_t *)&tal_pib[trx_id].IeeeAddress;

			for (uint8_t i = 0; i < 8; i++) {
				*ptr_pib++ = (uint8_t)rand();

				/*
				 * Note:
				 * Even if casting the 16 bit rand value back to
				 *8 bit,
				 * and running the loop 8 timers (instead of
				 *only 4 times)
				 * may look cumbersome, it turns out that the
				 *code gets
				 * smaller using 8-bit here.
				 * And timing is not an issue at this place...
				 */
			}
		}
	}
#endif

#ifdef IQ_RADIO
	/* Init BB IRQ handler */
	pal_trx_irq_flag_clr(RF215_BB);
	trx_irq_init(RF215_BB, bb_irq_handler_cb);
	pal_trx_irq_en(RF215_BB);

	/* Init RF IRQ handler */
	pal_trx_irq_flag_clr(RF215_RF);
	trx_irq_init(RF215_RF, rf_irq_handler_cb);
	pal_trx_irq_en(RF215_RF);
#else

	/*
	 * Configure interrupt handling.
	 * Install a handler for the radio and the baseband interrupt.
	 */
	pal_trx_irq_flag_clr();
	trx_irq_init((FUNC_PTR)trx_irq_handler_cb);
	pal_trx_irq_en(); /* Enable transceiver main interrupt. */
#endif

#if ((defined SUPPORT_FSK) && (defined SUPPORT_MODE_SWITCH))
	init_mode_switch();
#endif

	return MAC_SUCCESS;
} /* tal_init() */