void	ConstraintDemo::initPhysics()
{
	setTexturing(true);
	setShadows(true);

	setCameraDistance(26.f);
	m_Time = 0;

	setupEmptyDynamicsWorld();

	//btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(40.),btScalar(50.)));
	btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),40);

	m_collisionShapes.push_back(groundShape);
	btTransform groundTransform;
	groundTransform.setIdentity();
	groundTransform.setOrigin(btVector3(0,-56,0));
	btRigidBody* groundBody;
	groundBody= localCreateRigidBody(0, groundTransform, groundShape);



	btCollisionShape* shape = new btBoxShape(btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS));
	m_collisionShapes.push_back(shape);
	btTransform trans;
	trans.setIdentity();
	trans.setOrigin(btVector3(0,20,0));

	float mass = 1.f;
#if ENABLE_ALL_DEMOS
	//point to point constraint (ball socket)
	{
		btRigidBody* body0 = localCreateRigidBody( mass,trans,shape);
		trans.setOrigin(btVector3(2*CUBE_HALF_EXTENTS,20,0));

		mass = 1.f;
		btRigidBody* body1 = 0;//localCreateRigidBody( mass,trans,shape);
//		btRigidBody* body1 = localCreateRigidBody( 0.0,trans,0);
		//body1->setActivationState(DISABLE_DEACTIVATION);
		//body1->setDamping(0.3,0.3);

		btVector3 pivotInA(CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS);
		btVector3 axisInA(0,0,1);

		btVector3 pivotInB = body1 ? body1->getCenterOfMassTransform().inverse()(body0->getCenterOfMassTransform()(pivotInA)) : pivotInA;
		btVector3 axisInB = body1? 
			(body1->getCenterOfMassTransform().getBasis().inverse()*(body1->getCenterOfMassTransform().getBasis() * axisInA)) : 
		body0->getCenterOfMassTransform().getBasis() * axisInA;

//#define P2P
#ifdef P2P
		btTypedConstraint* p2p = new btPoint2PointConstraint(*body0,pivotInA);
		//btTypedConstraint* p2p = new btPoint2PointConstraint(*body0,*body1,pivotInA,pivotInB);
		//btTypedConstraint* hinge = new btHingeConstraint(*body0,*body1,pivotInA,pivotInB,axisInA,axisInB);
		m_dynamicsWorld->addConstraint(p2p);
		p2p->setDbgDrawSize(btScalar(5.f));
#else
		btHingeConstraint* hinge = new btHingeConstraint(*body0,pivotInA,axisInA);
		
		//use zero targetVelocity and a small maxMotorImpulse to simulate joint friction
		//float	targetVelocity = 0.f;
		//float	maxMotorImpulse = 0.01;
		float	targetVelocity = 1.f;
		float	maxMotorImpulse = 1.0f;
		hinge->enableAngularMotor(true,targetVelocity,maxMotorImpulse);
		m_dynamicsWorld->addConstraint(hinge);
		hinge->setDbgDrawSize(btScalar(5.f));
#endif //P2P
		

		

	}
#endif

#if ENABLE_ALL_DEMOS	
	//create a slider, using the generic D6 constraint
	{
		mass = 1.f;
		btVector3 sliderWorldPos(0,10,0);
		btVector3 sliderAxis(1,0,0);
		btScalar angle=0.f;//SIMD_RADS_PER_DEG * 10.f;
		btMatrix3x3 sliderOrientation(btQuaternion(sliderAxis ,angle));
		trans.setIdentity();
		trans.setOrigin(sliderWorldPos);
		//trans.setBasis(sliderOrientation);
		sliderTransform = trans;

		d6body0 = localCreateRigidBody( mass,trans,shape);
		d6body0->setActivationState(DISABLE_DEACTIVATION);
		btRigidBody* fixedBody1 = localCreateRigidBody(0,trans,0);
		m_dynamicsWorld->addRigidBody(fixedBody1);

		btTransform frameInA, frameInB;
		frameInA = btTransform::getIdentity();
		frameInB = btTransform::getIdentity();
		frameInA.setOrigin(btVector3(0., 5., 0.));
		frameInB.setOrigin(btVector3(0., 5., 0.));

//		bool useLinearReferenceFrameA = false;//use fixed frame B for linear llimits
		bool useLinearReferenceFrameA = true;//use fixed frame A for linear llimits
		spSlider6Dof = new btGeneric6DofConstraint(*fixedBody1, *d6body0,frameInA,frameInB,useLinearReferenceFrameA);
		spSlider6Dof->setLinearLowerLimit(lowerSliderLimit);
		spSlider6Dof->setLinearUpperLimit(hiSliderLimit);

		//range should be small, otherwise singularities will 'explode' the constraint
//		spSlider6Dof->setAngularLowerLimit(btVector3(-1.5,0,0));
//		spSlider6Dof->setAngularUpperLimit(btVector3(1.5,0,0));
//		spSlider6Dof->setAngularLowerLimit(btVector3(0,0,0));
//		spSlider6Dof->setAngularUpperLimit(btVector3(0,0,0));
		spSlider6Dof->setAngularLowerLimit(btVector3(-SIMD_PI,0,0));
		spSlider6Dof->setAngularUpperLimit(btVector3(1.5,0,0));

		spSlider6Dof->getTranslationalLimitMotor()->m_enableMotor[0] = true;
		spSlider6Dof->getTranslationalLimitMotor()->m_targetVelocity[0] = -5.0f;
		spSlider6Dof->getTranslationalLimitMotor()->m_maxMotorForce[0] = 0.1f;


		m_dynamicsWorld->addConstraint(spSlider6Dof);
		spSlider6Dof->setDbgDrawSize(btScalar(5.f));

	}
#endif
#if ENABLE_ALL_DEMOS
	{ // create a door using hinge constraint attached to the world
		btCollisionShape* pDoorShape = new btBoxShape(btVector3(2.0f, 5.0f, 0.2f));
		m_collisionShapes.push_back(pDoorShape);
		btTransform doorTrans;
		doorTrans.setIdentity();
		doorTrans.setOrigin(btVector3(-5.0f, -2.0f, 0.0f));
		btRigidBody* pDoorBody = localCreateRigidBody( 1.0, doorTrans, pDoorShape);
		pDoorBody->setActivationState(DISABLE_DEACTIVATION);
		const btVector3 btPivotA(10.f +  2.1f, -2.0f, 0.0f ); // right next to the door slightly outside
		btVector3 btAxisA( 0.0f, 1.0f, 0.0f ); // pointing upwards, aka Y-axis

		spDoorHinge = new btHingeConstraint( *pDoorBody, btPivotA, btAxisA );

//		spDoorHinge->setLimit( 0.0f, SIMD_PI_2 );
		// test problem values
//		spDoorHinge->setLimit( -SIMD_PI, SIMD_PI*0.8f);

//		spDoorHinge->setLimit( 1.f, -1.f);
//		spDoorHinge->setLimit( -SIMD_PI*0.8f, SIMD_PI);
//		spDoorHinge->setLimit( -SIMD_PI*0.8f, SIMD_PI, 0.9f, 0.3f, 0.0f);
//		spDoorHinge->setLimit( -SIMD_PI*0.8f, SIMD_PI, 0.9f, 0.01f, 0.0f); // "sticky limits"
		spDoorHinge->setLimit( -SIMD_PI * 0.25f, SIMD_PI * 0.25f );
//		spDoorHinge->setLimit( 0.0f, 0.0f );
		m_dynamicsWorld->addConstraint(spDoorHinge);
		spDoorHinge->setDbgDrawSize(btScalar(5.f));

		//doorTrans.setOrigin(btVector3(-5.0f, 2.0f, 0.0f));
		//btRigidBody* pDropBody = localCreateRigidBody( 10.0, doorTrans, shape);
	}
#endif
#if ENABLE_ALL_DEMOS
	{ // create a generic 6DOF constraint

		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(10.), btScalar(6.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
//		btRigidBody* pBodyA = localCreateRigidBody( mass, tr, shape);
		btRigidBody* pBodyA = localCreateRigidBody( 0.0, tr, shape);
//		btRigidBody* pBodyA = localCreateRigidBody( 0.0, tr, 0);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);

		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(0.), btScalar(6.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyB = localCreateRigidBody(mass, tr, shape);
//		btRigidBody* pBodyB = localCreateRigidBody(0.f, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);

		btTransform frameInA, frameInB;
		frameInA = btTransform::getIdentity();
		frameInA.setOrigin(btVector3(btScalar(-5.), btScalar(0.), btScalar(0.)));
		frameInB = btTransform::getIdentity();
		frameInB.setOrigin(btVector3(btScalar(5.), btScalar(0.), btScalar(0.)));

		btGeneric6DofConstraint* pGen6DOF = new btGeneric6DofConstraint(*pBodyA, *pBodyB, frameInA, frameInB, true);
//		btGeneric6DofConstraint* pGen6DOF = new btGeneric6DofConstraint(*pBodyA, *pBodyB, frameInA, frameInB, false);
		pGen6DOF->setLinearLowerLimit(btVector3(-10., -2., -1.));
		pGen6DOF->setLinearUpperLimit(btVector3(10., 2., 1.));
//		pGen6DOF->setLinearLowerLimit(btVector3(-10., 0., 0.));
//		pGen6DOF->setLinearUpperLimit(btVector3(10., 0., 0.));
//		pGen6DOF->setLinearLowerLimit(btVector3(0., 0., 0.));
//		pGen6DOF->setLinearUpperLimit(btVector3(0., 0., 0.));

//		pGen6DOF->getTranslationalLimitMotor()->m_enableMotor[0] = true;
//		pGen6DOF->getTranslationalLimitMotor()->m_targetVelocity[0] = 5.0f;
//		pGen6DOF->getTranslationalLimitMotor()->m_maxMotorForce[0] = 0.1f;


//		pGen6DOF->setAngularLowerLimit(btVector3(0., SIMD_HALF_PI*0.9, 0.));
//		pGen6DOF->setAngularUpperLimit(btVector3(0., -SIMD_HALF_PI*0.9, 0.));
//		pGen6DOF->setAngularLowerLimit(btVector3(0., 0., -SIMD_HALF_PI));
//		pGen6DOF->setAngularUpperLimit(btVector3(0., 0., SIMD_HALF_PI));

		pGen6DOF->setAngularLowerLimit(btVector3(-SIMD_HALF_PI * 0.5f, -0.75, -SIMD_HALF_PI * 0.8f));
		pGen6DOF->setAngularUpperLimit(btVector3(SIMD_HALF_PI * 0.5f, 0.75, SIMD_HALF_PI * 0.8f));
//		pGen6DOF->setAngularLowerLimit(btVector3(0.f, -0.75, SIMD_HALF_PI * 0.8f));
//		pGen6DOF->setAngularUpperLimit(btVector3(0.f, 0.75, -SIMD_HALF_PI * 0.8f));
//		pGen6DOF->setAngularLowerLimit(btVector3(0.f, -SIMD_HALF_PI * 0.8f, SIMD_HALF_PI * 1.98f));
//		pGen6DOF->setAngularUpperLimit(btVector3(0.f, SIMD_HALF_PI * 0.8f,  -SIMD_HALF_PI * 1.98f));

		
		
//		pGen6DOF->setAngularLowerLimit(btVector3(-0.75,-0.5, -0.5));
//		pGen6DOF->setAngularUpperLimit(btVector3(0.75,0.5, 0.5));
//		pGen6DOF->setAngularLowerLimit(btVector3(-0.75,0., 0.));
//		pGen6DOF->setAngularUpperLimit(btVector3(0.75,0., 0.));
//		pGen6DOF->setAngularLowerLimit(btVector3(0., -0.7,0.));
//		pGen6DOF->setAngularUpperLimit(btVector3(0., 0.7, 0.));
//		pGen6DOF->setAngularLowerLimit(btVector3(-1., 0.,0.));
//		pGen6DOF->setAngularUpperLimit(btVector3(1., 0., 0.));

		m_dynamicsWorld->addConstraint(pGen6DOF, true);
		pGen6DOF->setDbgDrawSize(btScalar(5.f));
	}
#endif
#if ENABLE_ALL_DEMOS
	{ // create a ConeTwist constraint

		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-10.), btScalar(5.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyA = localCreateRigidBody( 1.0, tr, shape);
//		btRigidBody* pBodyA = localCreateRigidBody( 0.0, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);

		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-10.), btScalar(-5.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyB = localCreateRigidBody(0.0, tr, shape);
//		btRigidBody* pBodyB = localCreateRigidBody(1.0, tr, shape);

		btTransform frameInA, frameInB;
		frameInA = btTransform::getIdentity();
		frameInA.getBasis().setEulerZYX(0, 0, SIMD_PI_2);
		frameInA.setOrigin(btVector3(btScalar(0.), btScalar(-5.), btScalar(0.)));
		frameInB = btTransform::getIdentity();
		frameInB.getBasis().setEulerZYX(0,0,  SIMD_PI_2);
		frameInB.setOrigin(btVector3(btScalar(0.), btScalar(5.), btScalar(0.)));

		m_ctc = new btConeTwistConstraint(*pBodyA, *pBodyB, frameInA, frameInB);
//		m_ctc->setLimit(btScalar(SIMD_PI_4), btScalar(SIMD_PI_4), btScalar(SIMD_PI) * 0.8f);
//		m_ctc->setLimit(btScalar(SIMD_PI_4*0.6f), btScalar(SIMD_PI_4), btScalar(SIMD_PI) * 0.8f, 1.0f); // soft limit == hard limit
		m_ctc->setLimit(btScalar(SIMD_PI_4*0.6f), btScalar(SIMD_PI_4), btScalar(SIMD_PI) * 0.8f, 0.5f);
		m_dynamicsWorld->addConstraint(m_ctc, true);
		m_ctc->setDbgDrawSize(btScalar(5.f));
		// s_bTestConeTwistMotor = true; // use only with old solver for now
		s_bTestConeTwistMotor = false;
	}
#endif
#if ENABLE_ALL_DEMOS
	{ // Hinge connected to the world, with motor (to hinge motor with new and old constraint solver)
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(0.), btScalar(0.), btScalar(0.)));
		btRigidBody* pBody = localCreateRigidBody( 1.0, tr, shape);
		pBody->setActivationState(DISABLE_DEACTIVATION);
		const btVector3 btPivotA( 10.0f, 0.0f, 0.0f );
		btVector3 btAxisA( 0.0f, 0.0f, 1.0f );

		btHingeConstraint* pHinge = new btHingeConstraint( *pBody, btPivotA, btAxisA );
//		pHinge->enableAngularMotor(true, -1.0, 0.165); // use for the old solver
		pHinge->enableAngularMotor(true, -1.0f, 1.65f); // use for the new SIMD solver
		m_dynamicsWorld->addConstraint(pHinge);
		pHinge->setDbgDrawSize(btScalar(5.f));
	}
#endif

#if ENABLE_ALL_DEMOS
	{ 
		// create a universal joint using generic 6DOF constraint
		// create two rigid bodies
		// static bodyA (parent) on top:
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(20.), btScalar(4.), btScalar(0.)));
		btRigidBody* pBodyA = localCreateRigidBody( 0.0, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);
		// dynamic bodyB (child) below it :
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(20.), btScalar(0.), btScalar(0.)));
		btRigidBody* pBodyB = localCreateRigidBody(1.0, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);
		// add some (arbitrary) data to build constraint frames
		btVector3 parentAxis(1.f, 0.f, 0.f); 
		btVector3 childAxis(0.f, 0.f, 1.f); 
		btVector3 anchor(20.f, 2.f, 0.f);

		btUniversalConstraint* pUniv = new btUniversalConstraint(*pBodyA, *pBodyB, anchor, parentAxis, childAxis);
		pUniv->setLowerLimit(-SIMD_HALF_PI * 0.5f, -SIMD_HALF_PI * 0.5f);
		pUniv->setUpperLimit(SIMD_HALF_PI * 0.5f,  SIMD_HALF_PI * 0.5f);
		// add constraint to world
		m_dynamicsWorld->addConstraint(pUniv, true);
		// draw constraint frames and limits for debugging
		pUniv->setDbgDrawSize(btScalar(5.f));
	}
#endif

#if ENABLE_ALL_DEMOS
	{ // create a generic 6DOF constraint with springs 

		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-20.), btScalar(16.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyA = localCreateRigidBody( 0.0, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);

		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-10.), btScalar(16.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyB = localCreateRigidBody(1.0, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);

		btTransform frameInA, frameInB;
		frameInA = btTransform::getIdentity();
		frameInA.setOrigin(btVector3(btScalar(10.), btScalar(0.), btScalar(0.)));
		frameInB = btTransform::getIdentity();
		frameInB.setOrigin(btVector3(btScalar(0.), btScalar(0.), btScalar(0.)));

		btGeneric6DofSpringConstraint* pGen6DOFSpring = new btGeneric6DofSpringConstraint(*pBodyA, *pBodyB, frameInA, frameInB, true);
		pGen6DOFSpring->setLinearUpperLimit(btVector3(5., 0., 0.));
		pGen6DOFSpring->setLinearLowerLimit(btVector3(-5., 0., 0.));

		pGen6DOFSpring->setAngularLowerLimit(btVector3(0.f, 0.f, -1.5f));
		pGen6DOFSpring->setAngularUpperLimit(btVector3(0.f, 0.f, 1.5f));

		m_dynamicsWorld->addConstraint(pGen6DOFSpring, true);
		pGen6DOFSpring->setDbgDrawSize(btScalar(5.f));
		
		pGen6DOFSpring->enableSpring(0, true);
		pGen6DOFSpring->setStiffness(0, 39.478f);
		pGen6DOFSpring->setDamping(0, 0.5f);
		pGen6DOFSpring->enableSpring(5, true);
		pGen6DOFSpring->setStiffness(5, 39.478f);
		pGen6DOFSpring->setDamping(0, 0.3f);
		pGen6DOFSpring->setEquilibriumPoint();
	}
#endif
#if ENABLE_ALL_DEMOS
	{ 
		// create a Hinge2 joint
		// create two rigid bodies
		// static bodyA (parent) on top:
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-20.), btScalar(4.), btScalar(0.)));
		btRigidBody* pBodyA = localCreateRigidBody( 0.0, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);
		// dynamic bodyB (child) below it :
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-20.), btScalar(0.), btScalar(0.)));
		btRigidBody* pBodyB = localCreateRigidBody(1.0, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);
		// add some data to build constraint frames
		btVector3 parentAxis(0.f, 1.f, 0.f); 
		btVector3 childAxis(1.f, 0.f, 0.f); 
		btVector3 anchor(-20.f, 0.f, 0.f);
		btHinge2Constraint* pHinge2 = new btHinge2Constraint(*pBodyA, *pBodyB, anchor, parentAxis, childAxis);
		pHinge2->setLowerLimit(-SIMD_HALF_PI * 0.5f);
		pHinge2->setUpperLimit( SIMD_HALF_PI * 0.5f);
		// add constraint to world
		m_dynamicsWorld->addConstraint(pHinge2, true);
		// draw constraint frames and limits for debugging
		pHinge2->setDbgDrawSize(btScalar(5.f));
	}
#endif
#if  ENABLE_ALL_DEMOS
	{ 
		// create a Hinge joint between two dynamic bodies
		// create two rigid bodies
		// static bodyA (parent) on top:
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-20.), btScalar(-2.), btScalar(0.)));
		btRigidBody* pBodyA = localCreateRigidBody( 1.0f, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);
		// dynamic bodyB:
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-30.), btScalar(-2.), btScalar(0.)));
		btRigidBody* pBodyB = localCreateRigidBody(10.0, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);
		// add some data to build constraint frames
		btVector3 axisA(0.f, 1.f, 0.f); 
		btVector3 axisB(0.f, 1.f, 0.f); 
		btVector3 pivotA(-5.f, 0.f, 0.f);
		btVector3 pivotB( 5.f, 0.f, 0.f);
		spHingeDynAB = new btHingeConstraint(*pBodyA, *pBodyB, pivotA, pivotB, axisA, axisB);
		spHingeDynAB->setLimit(-SIMD_HALF_PI * 0.5f, SIMD_HALF_PI * 0.5f);
		// add constraint to world
		m_dynamicsWorld->addConstraint(spHingeDynAB, true);
		// draw constraint frames and limits for debugging
		spHingeDynAB->setDbgDrawSize(btScalar(5.f));
	}
#endif

#ifdef TEST_SERIALIZATION

	int maxSerializeBufferSize = 1024*1024*5;

	btDefaultSerializer*	serializer = new btDefaultSerializer(maxSerializeBufferSize);
	m_dynamicsWorld->serialize(serializer);
	
	FILE* f2 = fopen("testFile.bullet","wb");
	fwrite(serializer->getBufferPointer(),serializer->getCurrentBufferSize(),1,f2);
	fclose(f2);


	exitPhysics();
	
	setupEmptyDynamicsWorld();

	btBulletWorldImporter* fileLoader = new btBulletWorldImporter(m_dynamicsWorld);

	fileLoader->loadFile("testFile.bullet");

#endif //TEST_SERIALIZATION

}
ConstraintKitDemo::ConstraintKitDemo(hkDemoEnvironment* env)
:	hkDefaultPhysicsDemo(env)
{
	//
	// Setup the camera
	//
	{
		hkVector4 from(0.0f, 5.0f, 15.0f);
		hkVector4 to  (0.0f, -2.0f, 0.0f);
		hkVector4 up  (0.0f, 1.0f, 0.0f);
		setupDefaultCameras( env, from, to, up );
	}

	//
	// Create the world
	//
	{
		hkpWorldCinfo info;
		info.setupSolverInfo(hkpWorldCinfo::SOLVER_TYPE_4ITERS_MEDIUM); 
		info.setBroadPhaseWorldSize( 100.0f );
		info.m_enableDeactivation = false;
		m_world = new hkpWorld( info );
		m_world->lock();

		setupGraphics();
	}

	//
	// Register the box-box collision agent
	//
	{
		hkpAgentRegisterUtil::registerAllAgents( m_world->getCollisionDispatcher() );
	}

	//
	// Create vectors to be used for setup
	//

	hkVector4 halfSize(0.5f, 0.5f, 0.5f);

	//
	// Create Box Shape
	//
	hkpBoxShape* boxShape;
	{
		boxShape = new hkpBoxShape( halfSize , 0 );
	}

	//
	// Create fixed rigid body
	//
	hkpRigidBody* fixedBody;
	{
		hkpRigidBodyCinfo info;
		info.m_position.set(0.0f, 0.0f, 0.0f);
		info.m_shape = boxShape;
		info.m_motionType = hkpMotion::MOTION_FIXED;
			
		fixedBody = new hkpRigidBody(info);
		m_world->addEntity(fixedBody);
		fixedBody->removeReference();	
	}


	//
	// Create movable rigid body
	//
	hkpRigidBody* moveableBody;
	{

		hkpRigidBodyCinfo info;
		info.m_position.set(2.0f, 2.0f, 0.0f);
		info.m_shape = boxShape;
		
			// Compute the box inertia tensor
		hkpMassProperties massProperties;
		info.m_mass = 10.0f;
		hkpInertiaTensorComputer::computeBoxVolumeMassProperties(halfSize, info.m_mass, massProperties);
		info.m_inertiaTensor = massProperties.m_inertiaTensor;
		info.m_centerOfMass = massProperties.m_centerOfMass;	
		info.m_motionType = hkpMotion::MOTION_BOX_INERTIA;

		moveableBody = new hkpRigidBody(info);

			// Add some damping to this body to allow it to come to rest.
		moveableBody->setAngularDamping(0.1f);
		moveableBody->setLinearDamping(0.1f);

		m_world->addEntity(moveableBody);
		moveableBody->removeReference();	
	}

	// Done with shape - remove reference since bodies have ownership
	boxShape->removeReference();



	//
	// CREATE GENERIC CONSTRAINT
	// 
	{
		
		hkpGenericConstraintData* constraintData = new hkpGenericConstraintData();
		
		hkpConstraintConstructionKit kit;

			// Must always start with this command (the constraintData works like a program, every
			// command being executed sequentially).
		kit.begin(constraintData);
		{
				// Set the pivots. These will be the points which are constrained by any linear constraintData
				// specified later. The fixed body has its pivot in the middle of its base. The movable
				// body has its pivot on one corner.
			hkVector4 pivotB(0.0f, -0.5f, 0.0f);
			m_pivotBIndex = kit.setPivotB(pivotB);
			hkVector4 pivotA(-0.5f, 0.5f, 0.5f);
			m_pivotAIndex = kit.setPivotA(pivotA);

				// Set the axis	in World space. This means we can easily update it
				// to pass through the pivots of the two bodies in our step code. Initially
				// we calculate this using the current location of the bodies and their pivots
			// <programlisting id="setInWorldSpace">
			const int axisId = 0;
			hkVector4 axis0;
			{
				hkVector4 pivotAW, pivotBW;
				pivotAW.setTransformedPos(moveableBody->getTransform(), pivotA);
				pivotBW.setTransformedPos(fixedBody->getTransform(), pivotB);
				axis0.setSub4(pivotBW, pivotAW);
				axis0.normalize3();
			}
				// Record the index we get back when we set this axis so we can query the
				// constraintData later using it as a "parameter ID".
			m_axisIndex = kit.setLinearDofWorld(axis0, axisId);
			

				// Set the limits of this axis ([0, 5])
			
			kit.setLinearLimit(axisId, 0.0f, 5.0f);
			
		}
			// Must always end with this command.
		
		kit.end();
		
				
		hkpConstraintInstance* constraint = new hkpConstraintInstance( moveableBody, fixedBody, constraintData );
		m_world->addConstraint(constraint);
		m_constraintData = constraintData;
		m_constraint = constraint;
	}

	m_world->unlock();
}
// The powerline is a *chain* of constraints and will suffer from the following  artifacts if implemented using a
// series of ball-and-socket constraints:
// 1. Stretching when large accelerations are present.
// 2. Collision artifacts or a perforamcne hit) if we allow the entire chain to collide with the ragdoll, or if we
// allow inter-link collisions.
// To address this we wrap the ball-and-socket constraints in a "Chain" hkpConstraintChainInstance constraint, and
// also increase the inertia tensor and angular damping to further hinding excess motion.
// We also disable inter-link collisions and collisions between the end links and the ragdoll - see details below.
void HK_CALL CharacterAttachmentsHelpers::addPowerline(hkpWorld* world, 
												const hkaRagdollInstance* ragdollInstance,
												const hkQsTransform& currentTransform,
												const char* startBoneName, const char* endBoneName, 
												hkpGroupFilter* filter, 
												const ConstraintStabilityTricks& tricks  )
{
	// We will use two tricks to increase stability:
	const hkReal inertiaToMassRatio = tricks.m_useDamping ? 40.0f : 1.0f;
	const hkReal angularDamping = tricks.m_useDamping ? 4.0f: 0.05f;


	// We are going to add a belt of constrained bodies where the 
	// ends of the chain do not collide with anything in the ragdoll layer (L1), 
	// and the chain does not collide with itself.
	// We do the rb-chain collisions with layers (forcing all chain bodies into a different group than the ragdoll bodies).
	// All chain = G3 => collisions with ragdoll (L1) done by layer
	// Ends == Layer 2
	// All other bodies in chain == Layer 3
	// Disable(Layer 1, Layer 2)
	// Enable(Layer 1, Layer 3)
	// and we do the chain-chain collisions with groups:
	// All chain = Group 3, SGroup 0, SGroup No-Collide 0 => collisions disabled
	filter->disableCollisionsBetween(1, 2);
	filter->enableCollisionsBetween(1, 3);

	const hkReal linkSize = 0.055f;
	const int numLinks = 10;

	
	// Get the relevant RBs to which we attach this belt.
	hkpRigidBody* torso = HK_NULL;
	hkpRigidBody* hand = HK_NULL;
	{
		int torsoIndex = hkaSkeletonUtils::findBoneWithName( *ragdollInstance->m_skeleton, startBoneName);
		HK_ASSERT2( 0, torsoIndex >= 0, "Couldn't find " << startBoneName << " in ragdoll" );
		torso = ragdollInstance->getRigidBodyOfBone( torsoIndex );

		int handIndex = hkaSkeletonUtils::findBoneWithName( *ragdollInstance->m_skeleton, endBoneName );
		HK_ASSERT2( 0, handIndex >= 0, "Couldn't find " << endBoneName << " in ragdoll" );		
		hand = ragdollInstance->getRigidBodyOfBone( handIndex );
	}

	// Get a list of bodies for the chain
	hkArray<hkpRigidBody*> bodies;
	{
		// Start with the torso
		bodies.pushBack( torso );

		// Create a bunch of new bodies for the links in the belt
		hkpRigidBodyCinfo info;
		info.m_shape = new hkpSphereShape( linkSize );

		// Note that we use a scaled mass here to artificially damp the movement
		const hkReal mass = 1.0f;
		hkpInertiaTensorComputer::setShapeVolumeMassProperties( info.m_shape, mass * inertiaToMassRatio, info );
		info.m_mass = mass;

		// Note that we use an increased angular damping to further artificially damp the movement
		info.m_angularDamping = angularDamping;

		for( int i = 0; i < numLinks; i++ )
		{
			// Place roughly behind the character model space - we'll let a short simulation run settle the constraint preoperly.
			hkReal iReal = i / (hkReal) numLinks;
			info.m_position.set( -iReal* 1.0f + 0.2f, 0.2f, 0.2f - iReal* 0.2f );	

			// Move into world space behind character
			info.m_position.setTransformedPos(currentTransform, info.m_position);

			// Filter info, see above. End links have layer 2, othwerwise have layer 3.
			// All links have group 3, and subgroup 0, subgroup-nocollide 0
			if(i ==0 || i == numLinks-1)
			{
				info.m_collisionFilterInfo =  hkpGroupFilter::calcFilterInfo( 2, 3, 0, 0 );
			}
			else
			{
				info.m_collisionFilterInfo =  hkpGroupFilter::calcFilterInfo( 3, 3, 0, 0 );
			}

			hkpRigidBody* body = new hkpRigidBody( info );
			bodies.pushBack( body );
			world->addEntity( body );
			body->removeReference();
		}

		info.m_shape->removeReference();

		// End with the hand
		bodies.pushBack( hand );
	}

	
	// Create the chain constraint. This is the 'core' constraint that will link the bodies together in 
	// a chain. Using a single 'chain' constraint rather than n (unrelated) individual constraints will
	// reduce possible stretching dramatically.
	if( tricks.m_useChain )
	{
		hkpBallSocketChainData* chainData = new hkpBallSocketChainData();
		for( int i=0; i<bodies.getSize()-1; ++i )
		{
			hkVector4 pivotA( 0.0f, 0.0f, linkSize*0.75f );
			hkVector4 pivotB( 0.0f, 0.0f, -linkSize*0.75f );

			if( i == 0 ) // torso
			{
				pivotA.set( 0.0f, -0.1f, 0.0f );
			}
			else if( i == bodies.getSize()-2 ) // hand
			{
				pivotB.set( 0.0f, -0.05f, -0.1f );
			}

			chainData->addConstraintInfoInBodySpace( pivotA, pivotB );
		}

		hkpConstraintChainInstance* chain = new hkpConstraintChainInstance( chainData );
		chainData->removeReference();

		for( int i=0; i<bodies.getSize(); ++i )
		{
			chain->addEntity( bodies[i] );
		}

		world->addConstraint( chain );
		chain->removeReference();
	}
	else
	{
		for( int i=0; i<bodies.getSize()-1; ++i )
		{
			hkVector4 pivotA( 0.0f, 0.0f, linkSize*0.75f );
			hkVector4 pivotB( 0.0f, 0.0f, -linkSize*0.75f );

			if( i == 0 ) // torso
			{
				pivotA.set( 0.0f, -0.1f, 0.0f );
			}
			else if( i == bodies.getSize()-2 ) // hand
			{
				pivotB.set( 0.0f, -0.05f, -0.1f );
			}

			hkpBallAndSocketConstraintData* bscd = new hkpBallAndSocketConstraintData();
			bscd->setInBodySpace(pivotA, pivotB);
			hkpConstraintInstance* constraint = new hkpConstraintInstance(bodies[i], bodies[i+1], bscd );
			world->addConstraint(constraint);
			constraint->removeReference();
			bscd->removeReference();
		}
	}
}
void	AllConstraintDemo::initPhysics()
{
	m_guiHelper->setUpAxis(1);

	m_Time = 0;

	setupEmptyDynamicsWorld();

	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);

	//btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(40.),btScalar(50.)));
	btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),40);

	m_collisionShapes.push_back(groundShape);
	btTransform groundTransform;
	groundTransform.setIdentity();
	groundTransform.setOrigin(btVector3(0,-56,0));
	btRigidBody* groundBody;
	groundBody= createRigidBody(0, groundTransform, groundShape);



	btCollisionShape* shape = new btBoxShape(btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS));
	m_collisionShapes.push_back(shape);
	btTransform trans;
	trans.setIdentity();
	trans.setOrigin(btVector3(0,20,0));

	float mass = 1.f;

#if ENABLE_ALL_DEMOS
///gear constraint demo

#define THETA SIMD_PI/4.f
#define L_1 (2 - tan(THETA))
#define L_2 (1 / cos(THETA))
#define RATIO L_2 / L_1

	btRigidBody* bodyA=0;
	btRigidBody* bodyB=0;

	{
		btCollisionShape* cylA = new btCylinderShape(btVector3(0.2,0.25,0.2));
		btCollisionShape* cylB = new btCylinderShape(btVector3(L_1,0.025,L_1));
		btCompoundShape* cyl0 = new btCompoundShape();
		cyl0->addChildShape(btTransform::getIdentity(),cylA);
		cyl0->addChildShape(btTransform::getIdentity(),cylB);

		btScalar mass = 6.28;
		btVector3 localInertia;
		cyl0->calculateLocalInertia(mass,localInertia);
		btRigidBody::btRigidBodyConstructionInfo ci(mass,0,cyl0,localInertia);
		ci.m_startWorldTransform.setOrigin(btVector3(-8,1,-8));

		btRigidBody* body = new btRigidBody(ci);//1,0,cyl0,localInertia);
		m_dynamicsWorld->addRigidBody(body);
		body->setLinearFactor(btVector3(0,0,0));
		body->setAngularFactor(btVector3(0,1,0));
		bodyA = body;
	}

	{
		btCollisionShape* cylA = new btCylinderShape(btVector3(0.2,0.26,0.2));
		btCollisionShape* cylB = new btCylinderShape(btVector3(L_2,0.025,L_2));
		btCompoundShape* cyl0 = new btCompoundShape();
		cyl0->addChildShape(btTransform::getIdentity(),cylA);
		cyl0->addChildShape(btTransform::getIdentity(),cylB);

		btScalar mass = 6.28;
		btVector3 localInertia;
		cyl0->calculateLocalInertia(mass,localInertia);
		btRigidBody::btRigidBodyConstructionInfo ci(mass,0,cyl0,localInertia);
		ci.m_startWorldTransform.setOrigin(btVector3(-10,2,-8));


		btQuaternion orn(btVector3(0,0,1),-THETA);
		ci.m_startWorldTransform.setRotation(orn);

		btRigidBody* body = new btRigidBody(ci);//1,0,cyl0,localInertia);
		body->setLinearFactor(btVector3(0,0,0));
		btHingeConstraint* hinge = new btHingeConstraint(*body,btVector3(0,0,0),btVector3(0,1,0),true);
		m_dynamicsWorld->addConstraint(hinge);
		bodyB= body;
		body->setAngularVelocity(btVector3(0,3,0));

		m_dynamicsWorld->addRigidBody(body);
	}

	btVector3	axisA(0,1,0);
	btVector3	axisB(0,1,0);
	btQuaternion orn(btVector3(0,0,1),-THETA);
	btMatrix3x3 mat(orn);
	axisB = mat.getRow(1);

	btGearConstraint* gear = new btGearConstraint(*bodyA,*bodyB, axisA,axisB,RATIO);
	m_dynamicsWorld->addConstraint(gear,true);


#endif


#if ENABLE_ALL_DEMOS
	//point to point constraint with a breaking threshold
	{
		trans.setIdentity();
		trans.setOrigin(btVector3(1,30,-5));
		createRigidBody( mass,trans,shape);
		trans.setOrigin(btVector3(0,0,-5));

		btRigidBody* body0 = createRigidBody( mass,trans,shape);
		trans.setOrigin(btVector3(2*CUBE_HALF_EXTENTS,20,0));
		mass = 1.f;
	//	btRigidBody* body1 = 0;//createRigidBody( mass,trans,shape);
		btVector3 pivotInA(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,0);
		btTypedConstraint* p2p = new btPoint2PointConstraint(*body0,pivotInA);
		m_dynamicsWorld->addConstraint(p2p);
		p2p ->setBreakingImpulseThreshold(10.2);
		p2p->setDbgDrawSize(btScalar(5.f));
	}
#endif



#if ENABLE_ALL_DEMOS
	//point to point constraint (ball socket)
	{
		btRigidBody* body0 = createRigidBody( mass,trans,shape);
		trans.setOrigin(btVector3(2*CUBE_HALF_EXTENTS,20,0));

		mass = 1.f;
//		btRigidBody* body1 = 0;//createRigidBody( mass,trans,shape);
//		btRigidBody* body1 = createRigidBody( 0.0,trans,0);
		//body1->setActivationState(DISABLE_DEACTIVATION);
		//body1->setDamping(0.3,0.3);

		btVector3 pivotInA(CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS);
		btVector3 axisInA(0,0,1);

	//	btVector3 pivotInB = body1 ? body1->getCenterOfMassTransform().inverse()(body0->getCenterOfMassTransform()(pivotInA)) : pivotInA;
//		btVector3 axisInB = body1?
//			(body1->getCenterOfMassTransform().getBasis().inverse()*(body1->getCenterOfMassTransform().getBasis() * axisInA)) :
		body0->getCenterOfMassTransform().getBasis() * axisInA;

#define P2P
#ifdef P2P
		btTypedConstraint* p2p = new btPoint2PointConstraint(*body0,pivotInA);
		//btTypedConstraint* p2p = new btPoint2PointConstraint(*body0,*body1,pivotInA,pivotInB);
		//btTypedConstraint* hinge = new btHingeConstraint(*body0,*body1,pivotInA,pivotInB,axisInA,axisInB);
		m_dynamicsWorld->addConstraint(p2p);
		p2p->setDbgDrawSize(btScalar(5.f));
#else
		btHingeConstraint* hinge = new btHingeConstraint(*body0,pivotInA,axisInA);
		
		//use zero targetVelocity and a small maxMotorImpulse to simulate joint friction
		//float	targetVelocity = 0.f;
		//float	maxMotorImpulse = 0.01;
		float	targetVelocity = 1.f;
		float	maxMotorImpulse = 1.0f;
		hinge->enableAngularMotor(true,targetVelocity,maxMotorImpulse);
		m_dynamicsWorld->addConstraint(hinge);
		hinge->setDbgDrawSize(btScalar(5.f));
#endif //P2P
		

		

	}
#endif

	
#if ENABLE_ALL_DEMOS
	{
		btTransform trans;
	trans.setIdentity();
	btVector3 worldPos(-20,0,30);
	trans.setOrigin(worldPos);

	btTransform frameInA, frameInB;
	frameInA = btTransform::getIdentity();
	frameInB = btTransform::getIdentity();

	btRigidBody* pRbA1 = createRigidBody(mass, trans, shape);
//	btRigidBody* pRbA1 = createRigidBody(0.f, trans, shape);
	pRbA1->setActivationState(DISABLE_DEACTIVATION);

	// add dynamic rigid body B1
	worldPos.setValue(-30,0,30);
	trans.setOrigin(worldPos);
	btRigidBody* pRbB1 = createRigidBody(mass, trans, shape);
//	btRigidBody* pRbB1 = createRigidBody(0.f, trans, shape);
	pRbB1->setActivationState(DISABLE_DEACTIVATION);

	// create slider constraint between A1 and B1 and add it to world
	
	btSliderConstraint* spSlider1 = new btSliderConstraint(*pRbA1, *pRbB1, frameInA, frameInB, true);
//	spSlider1 = new btSliderConstraint(*pRbA1, *pRbB1, frameInA, frameInB, false);
	spSlider1->setLowerLinLimit(-15.0F);
	spSlider1->setUpperLinLimit(-5.0F);
//	spSlider1->setLowerLinLimit(5.0F);
//	spSlider1->setUpperLinLimit(15.0F);
//	spSlider1->setLowerLinLimit(-10.0F);
//	spSlider1->setUpperLinLimit(-10.0F);

	spSlider1->setLowerAngLimit(-SIMD_PI / 3.0F);
	spSlider1->setUpperAngLimit( SIMD_PI / 3.0F);


	m_dynamicsWorld->addConstraint(spSlider1, true);
	spSlider1->setDbgDrawSize(btScalar(5.f));
	}
#endif

#if ENABLE_ALL_DEMOS	
	//create a slider, using the generic D6 constraint
	{
		mass = 1.f;
		btVector3 sliderWorldPos(0,10,0);
		btVector3 sliderAxis(1,0,0);
		btScalar angle=0.f;//SIMD_RADS_PER_DEG * 10.f;
		btMatrix3x3 sliderOrientation(btQuaternion(sliderAxis ,angle));
		trans.setIdentity();
		trans.setOrigin(sliderWorldPos);
		//trans.setBasis(sliderOrientation);
		sliderTransform = trans;

		d6body0 = createRigidBody( mass,trans,shape);
		d6body0->setActivationState(DISABLE_DEACTIVATION);
		btRigidBody* fixedBody1 = createRigidBody(0,trans,0);
		m_dynamicsWorld->addRigidBody(fixedBody1);

		btTransform frameInA, frameInB;
		frameInA = btTransform::getIdentity();
		frameInB = btTransform::getIdentity();
		frameInA.setOrigin(btVector3(0., 5., 0.));
		frameInB.setOrigin(btVector3(0., 5., 0.));

//		bool useLinearReferenceFrameA = false;//use fixed frame B for linear llimits
		bool useLinearReferenceFrameA = true;//use fixed frame A for linear llimits
		spSlider6Dof = new btGeneric6DofConstraint(*fixedBody1, *d6body0,frameInA,frameInB,useLinearReferenceFrameA);
		spSlider6Dof->setLinearLowerLimit(lowerSliderLimit);
		spSlider6Dof->setLinearUpperLimit(hiSliderLimit);

		//range should be small, otherwise singularities will 'explode' the constraint
//		spSlider6Dof->setAngularLowerLimit(btVector3(-1.5,0,0));
//		spSlider6Dof->setAngularUpperLimit(btVector3(1.5,0,0));
//		spSlider6Dof->setAngularLowerLimit(btVector3(0,0,0));
//		spSlider6Dof->setAngularUpperLimit(btVector3(0,0,0));
		spSlider6Dof->setAngularLowerLimit(btVector3(-SIMD_PI,0,0));
		spSlider6Dof->setAngularUpperLimit(btVector3(1.5,0,0));

		spSlider6Dof->getTranslationalLimitMotor()->m_enableMotor[0] = true;
		spSlider6Dof->getTranslationalLimitMotor()->m_targetVelocity[0] = -5.0f;
		spSlider6Dof->getTranslationalLimitMotor()->m_maxMotorForce[0] = 6.0f;


		m_dynamicsWorld->addConstraint(spSlider6Dof);
		spSlider6Dof->setDbgDrawSize(btScalar(5.f));

	}
#endif
#if ENABLE_ALL_DEMOS
	{ // create a door using hinge constraint attached to the world
		btCollisionShape* pDoorShape = new btBoxShape(btVector3(2.0f, 5.0f, 0.2f));
		m_collisionShapes.push_back(pDoorShape);
		btTransform doorTrans;
		doorTrans.setIdentity();
		doorTrans.setOrigin(btVector3(-5.0f, -2.0f, 0.0f));
		btRigidBody* pDoorBody = createRigidBody( 1.0, doorTrans, pDoorShape);
		pDoorBody->setActivationState(DISABLE_DEACTIVATION);
		const btVector3 btPivotA(10.f +  2.1f, -2.0f, 0.0f ); // right next to the door slightly outside
		btVector3 btAxisA( 0.0f, 1.0f, 0.0f ); // pointing upwards, aka Y-axis

		spDoorHinge = new btHingeConstraint( *pDoorBody, btPivotA, btAxisA );

//		spDoorHinge->setLimit( 0.0f, SIMD_PI_2 );
		// test problem values
//		spDoorHinge->setLimit( -SIMD_PI, SIMD_PI*0.8f);

//		spDoorHinge->setLimit( 1.f, -1.f);
//		spDoorHinge->setLimit( -SIMD_PI*0.8f, SIMD_PI);
//		spDoorHinge->setLimit( -SIMD_PI*0.8f, SIMD_PI, 0.9f, 0.3f, 0.0f);
//		spDoorHinge->setLimit( -SIMD_PI*0.8f, SIMD_PI, 0.9f, 0.01f, 0.0f); // "sticky limits"
		spDoorHinge->setLimit( -SIMD_PI * 0.25f, SIMD_PI * 0.25f );
//		spDoorHinge->setLimit( 0.0f, 0.0f );
		m_dynamicsWorld->addConstraint(spDoorHinge);
		spDoorHinge->setDbgDrawSize(btScalar(5.f));

		//doorTrans.setOrigin(btVector3(-5.0f, 2.0f, 0.0f));
		//btRigidBody* pDropBody = createRigidBody( 10.0, doorTrans, shape);
	}
#endif
#if ENABLE_ALL_DEMOS
	{ // create a generic 6DOF constraint

		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(10.), btScalar(6.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
//		btRigidBody* pBodyA = createRigidBody( mass, tr, shape);
		btRigidBody* pBodyA = createRigidBody( 0.0, tr, shape);
//		btRigidBody* pBodyA = createRigidBody( 0.0, tr, 0);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);

		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(0.), btScalar(6.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyB = createRigidBody(mass, tr, shape);
//		btRigidBody* pBodyB = createRigidBody(0.f, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);

		btTransform frameInA, frameInB;
		frameInA = btTransform::getIdentity();
		frameInA.setOrigin(btVector3(btScalar(-5.), btScalar(0.), btScalar(0.)));
		frameInB = btTransform::getIdentity();
		frameInB.setOrigin(btVector3(btScalar(5.), btScalar(0.), btScalar(0.)));

		btGeneric6DofConstraint* pGen6DOF = new btGeneric6DofConstraint(*pBodyA, *pBodyB, frameInA, frameInB, true);
//		btGeneric6DofConstraint* pGen6DOF = new btGeneric6DofConstraint(*pBodyA, *pBodyB, frameInA, frameInB, false);
		pGen6DOF->setLinearLowerLimit(btVector3(-10., -2., -1.));
		pGen6DOF->setLinearUpperLimit(btVector3(10., 2., 1.));
//		pGen6DOF->setLinearLowerLimit(btVector3(-10., 0., 0.));
//		pGen6DOF->setLinearUpperLimit(btVector3(10., 0., 0.));
//		pGen6DOF->setLinearLowerLimit(btVector3(0., 0., 0.));
//		pGen6DOF->setLinearUpperLimit(btVector3(0., 0., 0.));

//		pGen6DOF->getTranslationalLimitMotor()->m_enableMotor[0] = true;
//		pGen6DOF->getTranslationalLimitMotor()->m_targetVelocity[0] = 5.0f;
//		pGen6DOF->getTranslationalLimitMotor()->m_maxMotorForce[0] = 6.0f;


//		pGen6DOF->setAngularLowerLimit(btVector3(0., SIMD_HALF_PI*0.9, 0.));
//		pGen6DOF->setAngularUpperLimit(btVector3(0., -SIMD_HALF_PI*0.9, 0.));
//		pGen6DOF->setAngularLowerLimit(btVector3(0., 0., -SIMD_HALF_PI));
//		pGen6DOF->setAngularUpperLimit(btVector3(0., 0., SIMD_HALF_PI));

		pGen6DOF->setAngularLowerLimit(btVector3(-SIMD_HALF_PI * 0.5f, -0.75, -SIMD_HALF_PI * 0.8f));
		pGen6DOF->setAngularUpperLimit(btVector3(SIMD_HALF_PI * 0.5f, 0.75, SIMD_HALF_PI * 0.8f));
//		pGen6DOF->setAngularLowerLimit(btVector3(0.f, -0.75, SIMD_HALF_PI * 0.8f));
//		pGen6DOF->setAngularUpperLimit(btVector3(0.f, 0.75, -SIMD_HALF_PI * 0.8f));
//		pGen6DOF->setAngularLowerLimit(btVector3(0.f, -SIMD_HALF_PI * 0.8f, SIMD_HALF_PI * 1.98f));
//		pGen6DOF->setAngularUpperLimit(btVector3(0.f, SIMD_HALF_PI * 0.8f,  -SIMD_HALF_PI * 1.98f));

		
		
//		pGen6DOF->setAngularLowerLimit(btVector3(-0.75,-0.5, -0.5));
//		pGen6DOF->setAngularUpperLimit(btVector3(0.75,0.5, 0.5));
//		pGen6DOF->setAngularLowerLimit(btVector3(-0.75,0., 0.));
//		pGen6DOF->setAngularUpperLimit(btVector3(0.75,0., 0.));
//		pGen6DOF->setAngularLowerLimit(btVector3(0., -0.7,0.));
//		pGen6DOF->setAngularUpperLimit(btVector3(0., 0.7, 0.));
//		pGen6DOF->setAngularLowerLimit(btVector3(-1., 0.,0.));
//		pGen6DOF->setAngularUpperLimit(btVector3(1., 0., 0.));

		m_dynamicsWorld->addConstraint(pGen6DOF, true);
		pGen6DOF->setDbgDrawSize(btScalar(5.f));
	}
#endif
#if ENABLE_ALL_DEMOS
	{ // create a ConeTwist constraint

		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-10.), btScalar(5.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyA = createRigidBody( 1.0, tr, shape);
//		btRigidBody* pBodyA = createRigidBody( 0.0, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);

		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-10.), btScalar(-5.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyB = createRigidBody(0.0, tr, shape);
//		btRigidBody* pBodyB = createRigidBody(1.0, tr, shape);

		btTransform frameInA, frameInB;
		frameInA = btTransform::getIdentity();
		frameInA.getBasis().setEulerZYX(0, 0, SIMD_PI_2);
		frameInA.setOrigin(btVector3(btScalar(0.), btScalar(-5.), btScalar(0.)));
		frameInB = btTransform::getIdentity();
		frameInB.getBasis().setEulerZYX(0,0,  SIMD_PI_2);
		frameInB.setOrigin(btVector3(btScalar(0.), btScalar(5.), btScalar(0.)));

		m_ctc = new btConeTwistConstraint(*pBodyA, *pBodyB, frameInA, frameInB);
//		m_ctc->setLimit(btScalar(SIMD_PI_4), btScalar(SIMD_PI_4), btScalar(SIMD_PI) * 0.8f);
//		m_ctc->setLimit(btScalar(SIMD_PI_4*0.6f), btScalar(SIMD_PI_4), btScalar(SIMD_PI) * 0.8f, 1.0f); // soft limit == hard limit
		m_ctc->setLimit(btScalar(SIMD_PI_4*0.6f), btScalar(SIMD_PI_4), btScalar(SIMD_PI) * 0.8f, 0.5f);
		m_dynamicsWorld->addConstraint(m_ctc, true);
		m_ctc->setDbgDrawSize(btScalar(5.f));
		// s_bTestConeTwistMotor = true; // use only with old solver for now
		s_bTestConeTwistMotor = false;
	}
#endif
#if ENABLE_ALL_DEMOS
	{ // Hinge connected to the world, with motor (to hinge motor with new and old constraint solver)
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(0.), btScalar(0.), btScalar(0.)));
		btRigidBody* pBody = createRigidBody( 1.0, tr, shape);
		pBody->setActivationState(DISABLE_DEACTIVATION);
		const btVector3 btPivotA( 10.0f, 0.0f, 0.0f );
		btVector3 btAxisA( 0.0f, 0.0f, 1.0f );

		btHingeConstraint* pHinge = new btHingeConstraint( *pBody, btPivotA, btAxisA );
//		pHinge->enableAngularMotor(true, -1.0, 0.165); // use for the old solver
		pHinge->enableAngularMotor(true, -1.0f, 1.65f); // use for the new SIMD solver
		m_dynamicsWorld->addConstraint(pHinge);
		pHinge->setDbgDrawSize(btScalar(5.f));
	}
#endif

#if ENABLE_ALL_DEMOS
	{ 
		// create a universal joint using generic 6DOF constraint
		// create two rigid bodies
		// static bodyA (parent) on top:
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(20.), btScalar(4.), btScalar(0.)));
		btRigidBody* pBodyA = createRigidBody( 0.0, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);
		// dynamic bodyB (child) below it :
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(20.), btScalar(0.), btScalar(0.)));
		btRigidBody* pBodyB = createRigidBody(1.0, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);
		// add some (arbitrary) data to build constraint frames
		btVector3 parentAxis(1.f, 0.f, 0.f); 
		btVector3 childAxis(0.f, 0.f, 1.f); 
		btVector3 anchor(20.f, 2.f, 0.f);

		btUniversalConstraint* pUniv = new btUniversalConstraint(*pBodyA, *pBodyB, anchor, parentAxis, childAxis);
		pUniv->setLowerLimit(-SIMD_HALF_PI * 0.5f, -SIMD_HALF_PI * 0.5f);
		pUniv->setUpperLimit(SIMD_HALF_PI * 0.5f,  SIMD_HALF_PI * 0.5f);
		// add constraint to world
		m_dynamicsWorld->addConstraint(pUniv, true);
		// draw constraint frames and limits for debugging
		pUniv->setDbgDrawSize(btScalar(5.f));
	}
#endif

#if ENABLE_ALL_DEMOS
	{ // create a generic 6DOF constraint with springs 

		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-20.), btScalar(16.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyA = createRigidBody( 0.0, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);

		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-10.), btScalar(16.), btScalar(0.)));
		tr.getBasis().setEulerZYX(0,0,0);
		btRigidBody* pBodyB = createRigidBody(1.0, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);

		btTransform frameInA, frameInB;
		frameInA = btTransform::getIdentity();
		frameInA.setOrigin(btVector3(btScalar(10.), btScalar(0.), btScalar(0.)));
		frameInB = btTransform::getIdentity();
		frameInB.setOrigin(btVector3(btScalar(0.), btScalar(0.), btScalar(0.)));

		btGeneric6DofSpringConstraint* pGen6DOFSpring = new btGeneric6DofSpringConstraint(*pBodyA, *pBodyB, frameInA, frameInB, true);
		pGen6DOFSpring->setLinearUpperLimit(btVector3(5., 0., 0.));
		pGen6DOFSpring->setLinearLowerLimit(btVector3(-5., 0., 0.));

		pGen6DOFSpring->setAngularLowerLimit(btVector3(0.f, 0.f, -1.5f));
		pGen6DOFSpring->setAngularUpperLimit(btVector3(0.f, 0.f, 1.5f));

		m_dynamicsWorld->addConstraint(pGen6DOFSpring, true);
		pGen6DOFSpring->setDbgDrawSize(btScalar(5.f));
		
		pGen6DOFSpring->enableSpring(0, true);
		pGen6DOFSpring->setStiffness(0, 39.478f);
		pGen6DOFSpring->setDamping(0, 0.5f);
		pGen6DOFSpring->enableSpring(5, true);
		pGen6DOFSpring->setStiffness(5, 39.478f);
		pGen6DOFSpring->setDamping(0, 0.3f);
		pGen6DOFSpring->setEquilibriumPoint();
	}
#endif
#if ENABLE_ALL_DEMOS
	{ 
		// create a Hinge2 joint
		// create two rigid bodies
		// static bodyA (parent) on top:
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-20.), btScalar(4.), btScalar(0.)));
		btRigidBody* pBodyA = createRigidBody( 0.0, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);
		// dynamic bodyB (child) below it :
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-20.), btScalar(0.), btScalar(0.)));
		btRigidBody* pBodyB = createRigidBody(1.0, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);
		// add some data to build constraint frames
		btVector3 parentAxis(0.f, 1.f, 0.f); 
		btVector3 childAxis(1.f, 0.f, 0.f); 
		btVector3 anchor(-20.f, 0.f, 0.f);
		btHinge2Constraint* pHinge2 = new btHinge2Constraint(*pBodyA, *pBodyB, anchor, parentAxis, childAxis);
		pHinge2->setLowerLimit(-SIMD_HALF_PI * 0.5f);
		pHinge2->setUpperLimit( SIMD_HALF_PI * 0.5f);
		// add constraint to world
		m_dynamicsWorld->addConstraint(pHinge2, true);
		// draw constraint frames and limits for debugging
		pHinge2->setDbgDrawSize(btScalar(5.f));
	}
#endif
#if  ENABLE_ALL_DEMOS
	{ 
		// create a Hinge joint between two dynamic bodies
		// create two rigid bodies
		// static bodyA (parent) on top:
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-20.), btScalar(-2.), btScalar(0.)));
		btRigidBody* pBodyA = createRigidBody( 1.0f, tr, shape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);
		// dynamic bodyB:
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(-30.), btScalar(-2.), btScalar(0.)));
		btRigidBody* pBodyB = createRigidBody(10.0, tr, shape);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);
		// add some data to build constraint frames
		btVector3 axisA(0.f, 1.f, 0.f); 
		btVector3 axisB(0.f, 1.f, 0.f); 
		btVector3 pivotA(-5.f, 0.f, 0.f);
		btVector3 pivotB( 5.f, 0.f, 0.f);
		spHingeDynAB = new btHingeConstraint(*pBodyA, *pBodyB, pivotA, pivotB, axisA, axisB);
		spHingeDynAB->setLimit(-SIMD_HALF_PI * 0.5f, SIMD_HALF_PI * 0.5f);
		// add constraint to world
		m_dynamicsWorld->addConstraint(spHingeDynAB, true);
		// draw constraint frames and limits for debugging
		spHingeDynAB->setDbgDrawSize(btScalar(5.f));
	}
#endif

#if ENABLE_ALL_DEMOS
	{ // 6DOF connected to the world, with motor
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(btVector3(btScalar(10.), btScalar(-15.), btScalar(0.)));
		btRigidBody* pBody = createRigidBody( 1.0, tr, shape);
		pBody->setActivationState(DISABLE_DEACTIVATION);
		btTransform frameB;
		frameB.setIdentity();
		btGeneric6DofConstraint* pGen6Dof = new btGeneric6DofConstraint( *pBody, frameB, false );
		m_dynamicsWorld->addConstraint(pGen6Dof);
		pGen6Dof->setDbgDrawSize(btScalar(5.f));

		pGen6Dof->setAngularLowerLimit(btVector3(0,0,0));
		pGen6Dof->setAngularUpperLimit(btVector3(0,0,0));
		pGen6Dof->setLinearLowerLimit(btVector3(-10., 0, 0));
		pGen6Dof->setLinearUpperLimit(btVector3(10., 0, 0));

		pGen6Dof->getTranslationalLimitMotor()->m_enableMotor[0] = true;
		pGen6Dof->getTranslationalLimitMotor()->m_targetVelocity[0] = 5.0f;
		pGen6Dof->getTranslationalLimitMotor()->m_maxMotorForce[0] = 6.0f;
	}
#endif

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);


}
/* ----------------------------------------------------------------------- */
void SIMPLE_Agents::addRobotPhysics( const vector <double> &_pos, const vector <double> &_rot ){
     mass = 0.150;
     btQuaternion rotation;
     rotation.setEulerZYX( 0.0, _rot[1], 0.0);
     btVector3 position = btVector3(_pos[0],robot_height * 0.65,_pos[2]);
     btMotionState* motion = new btDefaultMotionState(btTransform(rotation, position));
     btCylinderShape* cylinder1=new btCylinderShape(btVector3(robot_radius,robot_height*0.5,robot_radius));
     cylinder1->setMargin(robot_radius*0.5);
     btVector3 inertia(0.0,0.0,0.0);
     cylinder1->calculateLocalInertia(mass,inertia);
     btRigidBody::btRigidBodyConstructionInfo info(mass,motion,cylinder1,inertia);
     //info.m_restitution = 0.0f;
     info.m_friction = 0.5f;
     //info.m_rollingFriction = 0.1;
     body=new btRigidBody(info);
     body->setLinearFactor(btVector3(1,1,1));
     body->setAngularFactor(btVector3(0,1,0));
     body->setCollisionFlags(body->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK );
     world->addRigidBody(body);



       btCylinderShape* wheel1 = new btCylinderShape(btVector3(wheel_radius,wheel_width,wheel_radius));
       double mass1 = 0.15;
       btVector3 inertia1(0.0,0.0,0.0);
       wheel1->calculateLocalInertia(mass1,inertia1);
       btTransform t1;
       t1.setIdentity();
       t1.setOrigin(btVector3(_pos[0], wheel_radius + pos[1], half_wheel_distance + pos[2]));
       btQuaternion rotation1;
       rotation1.setEulerZYX( 0.0, _rot[1], 1.57072428);
       t1.setRotation(rotation1);
       btMotionState* motion1=new btDefaultMotionState(t1);
       btRigidBody::btRigidBodyConstructionInfo info1(mass1,motion1,wheel1,inertia1);
       //info1.m_restitution = 0.0f;
       info1.m_friction = 0.45f;
       //info1.m_rollingFriction = 10.0;
       right_wheel=new btRigidBody(info1);
       world->addRigidBody(right_wheel);
       right_wheel->setLinearFactor(btVector3(1,1,1));
       right_wheel->setAngularFactor(btVector3(1,1,1));
       btVector3 axisA(0.f, 0.f, 1.0f);
       btVector3 axisB(0.f, 1.f, 0.f);
       btVector3 pivotA(0.f, -robot_height* 0.22, half_wheel_distance);
       btVector3 pivotB(0.0f, 0.0f, 0.0f);
       right_hinge = new btHingeConstraint(*body, *right_wheel, pivotA, pivotB, axisA, axisB);
       btJointFeedback* feedback1 = new btJointFeedback;
       feedback1->m_appliedForceBodyA = btVector3(0, 0, 0);
       feedback1->m_appliedForceBodyB = btVector3(0, 0, 0);
       feedback1->m_appliedTorqueBodyA = btVector3(0, 0, 0);
       feedback1->m_appliedTorqueBodyB = btVector3(0, 0, 0);
       right_hinge->setJointFeedback(feedback1);
       right_hinge->enableFeedback(true);
       right_hinge->setLimit(1,-1,1.0,0.3,1);
       right_hinge->enableAngularMotor(false, 0,0);
       //right_hinge->setOverrideNumSolverIterations(1000);
       world->addConstraint(right_hinge, true);



       btCylinderShape* wheel2 = new btCylinderShape(btVector3(wheel_radius,wheel_width,wheel_radius));
       double mass2 = 0.15;
       btVector3 inertia2(0.0,0.0,0.0);
       wheel2->calculateLocalInertia(mass2,inertia2);
       btTransform t2;
       t2.setIdentity();
       t2.setOrigin(btVector3(pos[0], wheel_radius + pos[1], half_wheel_distance + pos[2]));
       btQuaternion rotation2;
       rotation2.setEulerZYX( 0.0, _rot[1], 1.57072428);
       t2.setRotation(rotation2);
       btMotionState* motion2=new btDefaultMotionState(t2);
       //wheel2->setMargin(0.0);
       btRigidBody::btRigidBodyConstructionInfo info2(mass2,motion2,wheel2,inertia2);
       //info2.m_restitution = 0.0f;
       info2.m_friction = 0.45f;
      // info2.m_rollingFriction = 10.0;
       left_wheel=new btRigidBody(info2);
       right_wheel->setLinearFactor(btVector3(1,1,1));
       right_wheel->setAngularFactor(btVector3(1,1,1));
       world->addRigidBody(left_wheel);
       btVector3 axisA1(0.0f, 0.0f, 1.0f);
       btVector3 axisB1(0.0f, 1.0f, 0.0f);
       btVector3 pivotA1(0.f, -robot_height* 0.22,-half_wheel_distance);
       btVector3 pivotB1(0.0f, 0.0f, 0.0f);
       left_hinge = new btHingeConstraint(*body, *left_wheel, pivotA1, pivotB1, axisA1, axisB1);
       left_hinge->enableFeedback(true);
       btJointFeedback* feedback = new btJointFeedback;
       feedback->m_appliedForceBodyA = btVector3(0, 0, 0);
       feedback->m_appliedForceBodyB = btVector3(0, 0, 0);
       feedback->m_appliedTorqueBodyA = btVector3(0, 0, 0);
       feedback->m_appliedTorqueBodyB = btVector3(0, 0, 0);
       left_hinge->setJointFeedback(feedback);
       left_hinge->setLimit(1,-1,1.0,0.3,1);
       left_hinge->enableAngularMotor(false, 0,0);
       //left_hinge->setOverrideNumSolverIterations(1000);
       world->addConstraint(left_hinge, true);

}