Beispiel #1
0
static l_int32
test_8bpp_trans(L_REGPARAMS  *rp)
{
l_int32   same, transp;
FILE     *fp;
PIX      *pix1, *pix2, *pix3;
PIXCMAP  *cmap;

    pix1 = pixRead("wyom.jpg");
    pix2 = pixColorSegment(pix1, 75, 10, 8, 7);
    cmap = pixGetColormap(pix2);
    pixcmapSetAlpha(cmap, 0, 0);  /* set blueish sky color to transparent */
    pixWrite("/tmp/regout/8bpp-trans.png", pix2, IFF_PNG);
    pix3 = pixRead("/tmp/regout/8bpp-trans.png");
    pixEqual(pix2, pix3, &same);
    if (same)
        fprintf(stderr, "8bpp_trans: success\n");
    else
        fprintf(stderr, "8bpp_trans: bad output\n");
    pixDisplayWithTitle(pix3, 700, 0, NULL, rp->display);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    fp = fopenReadStream("/tmp/regout/8bpp-trans.png");
    fgetPngColormapInfo(fp, &cmap, &transp);
    fclose(fp);
    if (transp)
        fprintf(stderr, "8bpp_trans: correct -- transparency found\n");
    else
        fprintf(stderr, "8bpp_trans: error -- no transparency found!\n");
    if (rp->display) pixcmapWriteStream(stderr, cmap);
    pixcmapDestroy(&cmap);
    return same;
}
Beispiel #2
0
static l_int32
test_1bpp_color(L_REGPARAMS  *rp)
{
l_int32   same, transp;
FILE     *fp;
PIX      *pix1, *pix2;
PIXCMAP  *cmap;

    pix1 = pixRead("feyn-fract2.tif");
    cmap = pixcmapCreate(1);
    pixSetColormap(pix1, cmap);
    pixcmapAddRGBA(cmap, 180, 130, 220, 255);  /* color, opaque */
    pixcmapAddRGBA(cmap, 20, 120, 0, 255);  /* color, opaque */
    pixWrite("/tmp/regout/1bpp-color.png", pix1, IFF_PNG);
    pix2 = pixRead("/tmp/regout/1bpp-color.png");
    pixEqual(pix1, pix2, &same);
    if (same)
        fprintf(stderr, "1bpp_color: success\n");
    else
        fprintf(stderr, "1bpp_color: bad output\n");
    pixDisplayWithTitle(pix2, 700, 100, NULL, rp->display);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    fp = fopenReadStream("/tmp/regout/1bpp-color.png");
    fgetPngColormapInfo(fp, &cmap, &transp);
    fclose(fp);
    if (transp)
        fprintf(stderr, "1bpp_color: error -- transparency found!\n");
    else
        fprintf(stderr, "1bpp_color: correct -- no transparency found\n");
    if (rp->display) pixcmapWriteStream(stderr, cmap);
    pixcmapDestroy(&cmap);
    return same;
}
/*!
 *  pixDestroyColormap()
 *
 *      Input:  pix
 *      Return: 0 if OK, 1 on error
 */
l_int32
pixDestroyColormap(PIX  *pix)
{
PIXCMAP  *cmap;

    PROCNAME("pixDestroyColormap");

    if (!pix)
        return ERROR_INT("pix not defined", procName, 1);

    if ((cmap = pix->colormap) != NULL) {
        pixcmapDestroy(&cmap);
        pix->colormap = NULL;
    }
    return 0;
}
int main(int    argc,
         char **argv)
{
l_uint8      *data;
l_int32       w, h, n1, n2, n, i, minval, maxval;
l_int32       ncolors, rval, gval, bval, equal;
l_int32      *rmap, *gmap, *bmap;
l_uint32      color;
l_float32     gamma;
BOX          *box;
FILE         *fp;
PIX          *pix1, *pix2, *pix3, *pix4, *pix5, *pix6;
PIX          *pixs, *pixb, *pixg, *pixc, *pixd;
PIX          *pixg2, *pixcs1, *pixcs2, *pixd1, *pixd2;
PIXA         *pixa, *pixa2, *pixa3;
PIXCMAP      *cmap, *cmap2;
RGBA_QUAD    *cta;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    /* ------------------------ (1) ----------------------------*/
        /* Blend with a white background */
    pix1 = pixRead("books_logo.png");
    pixDisplayWithTitle(pix1, 100, 0, NULL, rp->display);
    pix2 = pixAlphaBlendUniform(pix1, 0xffffff00);
    pixDisplayWithTitle(pix2, 100, 150, NULL, rp->display);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 0 */
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 1 */

        /* Generate an alpha layer based on the white background */
    pix3 = pixSetAlphaOverWhite(pix2);
    pixSetSpp(pix3, 3);
    pixWrite("/tmp/alphaops.2.png", pix3, IFF_PNG);  /* without alpha */
    regTestCheckFile(rp, "/tmp/alphaops.2.png");   /* 2 */
    pixSetSpp(pix3, 4);
    regTestWritePixAndCheck(rp, pix3, IFF_PNG);  /* 3, with alpha */
    pixDisplayWithTitle(pix3, 100, 300, NULL, rp->display);

        /* Render on a light yellow background */
    pix4 = pixAlphaBlendUniform(pix3, 0xffffe000);
    regTestWritePixAndCheck(rp, pix4, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(pix4, 100, 450, NULL, rp->display);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);

    /* ------------------------ (2) ----------------------------*/
    lept_rmdir("alpha");
    lept_mkdir("alpha");
        /* Make the transparency (alpha) layer.
         * pixs is the mask.  We turn it into a transparency (alpha)
         * layer by converting to 8 bpp.  A small convolution fuzzes
         * the mask edges so that you don't see the pixels. */
    pixs = pixRead("feyn-fract.tif");
    pixGetDimensions(pixs, &w, &h, NULL);
    pixg = pixConvert1To8(NULL, pixs, 0, 255);
    pixg2 = pixBlockconvGray(pixg, NULL, 1, 1);
    regTestWritePixAndCheck(rp, pixg2, IFF_JFIF_JPEG);  /* 5 */
    pixDisplayWithTitle(pixg2, 0, 0, "alpha", rp->display);

        /* Make the viewable image.
         * pixc is the image that we see where the alpha layer is
         * opaque -- i.e., greater than 0.  Scale it to the same
         * size as the mask.  To visualize what this will look like
         * when displayed over a black background, create the black
         * background image, pixb, and do the blending with pixcs1
         * explicitly using the alpha layer pixg2. */
    pixc = pixRead("tetons.jpg");
    pixcs1 = pixScaleToSize(pixc, w, h);
    regTestWritePixAndCheck(rp, pixcs1, IFF_JFIF_JPEG);  /* 6 */
    pixDisplayWithTitle(pixcs1, 300, 0, "viewable", rp->display);
    pixb = pixCreateTemplate(pixcs1);  /* black */
    pixd1 = pixBlendWithGrayMask(pixb, pixcs1, pixg2, 0, 0);
    regTestWritePixAndCheck(rp, pixd1, IFF_JFIF_JPEG);  /* 7 */
    pixDisplayWithTitle(pixd1, 600, 0, "alpha-blended 1", rp->display);

        /* Embed the alpha layer pixg2 into the color image pixc.
         * Write it out as is.  Then clean pixcs1 (to 0) under the fully
         * transparent part of the alpha layer, and write that result
         * out as well. */
    pixSetRGBComponent(pixcs1, pixg2, L_ALPHA_CHANNEL);
    pixWrite("/tmp/alpha/pixcs1.png", pixcs1, IFF_PNG);
    pixcs2 = pixSetUnderTransparency(pixcs1, 0, 0);
    pixWrite("/tmp/alpha/pixcs2.png", pixcs2, IFF_PNG);

        /* What will this look like over a black background?
         * Do the blending explicitly and display.  It should
         * look identical to the blended result pixd1 before cleaning. */
    pixd2 = pixBlendWithGrayMask(pixb, pixcs2, pixg2, 0, 0);
    regTestWritePixAndCheck(rp, pixd2, IFF_JFIF_JPEG);  /* 8 */
    pixDisplayWithTitle(pixd2, 0, 400, "alpha blended 2", rp->display);

        /* Read the two images back, ignoring the transparency layer.
         * The uncleaned image will come back identical to pixcs1.
         * However, the cleaned image will be black wherever
         * the alpha layer was fully transparent.  It will
         * look the same when viewed through the alpha layer,
         * but have much better compression. */
    pix1 = pixRead("/tmp/alpha/pixcs1.png");  /* just pixcs1 */
    pix2 = pixRead("/tmp/alpha/pixcs2.png");  /* cleaned under transparent */
    n1 = nbytesInFile("/tmp/alpha/pixcs1.png");
    n2 = nbytesInFile("/tmp/alpha/pixcs2.png");
    fprintf(stderr, " Original: %d bytes\n Cleaned: %d bytes\n", n1, n2);
    regTestWritePixAndCheck(rp, pix1, IFF_JFIF_JPEG);  /* 9 */
    regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 10 */
    pixDisplayWithTitle(pix1, 300, 400, "without alpha", rp->display);
    pixDisplayWithTitle(pix2, 600, 400, "cleaned under transparent",
                        rp->display);

    pixa = pixaCreate(0);
    pixSaveTiled(pixg2, pixa, 1.0, 1, 20, 32);
    pixSaveTiled(pixcs1, pixa, 1.0, 1, 20, 0);
    pixSaveTiled(pix1, pixa, 1.0, 0, 20, 0);
    pixSaveTiled(pixd1, pixa, 1.0, 1, 20, 0);
    pixSaveTiled(pixd2, pixa, 1.0, 0, 20, 0);
    pixSaveTiled(pix2, pixa, 1.0, 1, 20, 0);
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 11 */
    pixDisplayWithTitle(pixd, 200, 200, "composite", rp->display);
    pixWrite("/tmp/alpha/alpha.png", pixd, IFF_JFIF_JPEG);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);
    pixDestroy(&pixs);
    pixDestroy(&pixb);
    pixDestroy(&pixg);
    pixDestroy(&pixg2);
    pixDestroy(&pixc);
    pixDestroy(&pixcs1);
    pixDestroy(&pixcs2);
    pixDestroy(&pixd);
    pixDestroy(&pixd1);
    pixDestroy(&pixd2);
    pixDestroy(&pix1);
    pixDestroy(&pix2);

    /* ------------------------ (3) ----------------------------*/
    color = 0xffffa000;
    gamma = 1.0;
    minval = 0;
    maxval = 200;
    box = boxCreate(0, 85, 600, 100);
    pixa = pixaCreate(6);
    pix1 = pixRead("blend-green1.jpg");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-green2.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-green3.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-orange.jpg");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-yellow.jpg");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-red.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    n = pixaGetCount(pixa);
    pixa2 = pixaCreate(n);
    pixa3 = pixaCreate(n);
    for (i = 0; i < n; i++) {
        pix1 = pixaGetPix(pixa, i, L_CLONE);
        pix2 = DoBlendTest(pix1, box, color, gamma, minval, maxval, 1);
        regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 12, 14, ... 22 */
        pixDisplayWithTitle(pix2, 150 * i, 0, NULL, rp->display);
        pixaAddPix(pixa2, pix2, L_INSERT);
        pix2 = DoBlendTest(pix1, box, color, gamma, minval, maxval, 2);
        regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 13, 15, ... 23 */
        pixDisplayWithTitle(pix2, 150 * i, 200, NULL, rp->display);
        pixaAddPix(pixa3, pix2, L_INSERT);
        pixDestroy(&pix1);
    }
    if (rp->display) {
        pixaConvertToPdf(pixa2, 0, 0.75, L_FLATE_ENCODE, 0, "blend 1 test",
                         "/tmp/alpha/blending1.pdf");
        pixaConvertToPdf(pixa3, 0, 0.75, L_FLATE_ENCODE, 0, "blend 2 test",
                         "/tmp/alpha/blending2.pdf");
    }
    pixaDestroy(&pixa);
    pixaDestroy(&pixa2);
    pixaDestroy(&pixa3);
    boxDestroy(&box);

    /* ------------------------ (4) ----------------------------*/
        /* Use one image as the alpha component for a second image */
    pix1 = pixRead("test24.jpg");
    pix2 = pixRead("marge.jpg");
    pix3 = pixScale(pix2, 1.9, 2.2);
    pix4 = pixConvertTo8(pix3, 0);
    pixSetRGBComponent(pix1, pix4, L_ALPHA_CHANNEL);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 24 */
    pixDisplayWithTitle(pix1, 600, 0, NULL, rp->display);

        /* Set the alpha value in a colormap to bval */
    pix5 = pixOctreeColorQuant(pix1, 128, 0);
    cmap = pixGetColormap(pix5);
    pixcmapToArrays(cmap, &rmap, &gmap, &bmap, NULL);
    n = pixcmapGetCount(cmap);
    for (i = 0; i < n; i++) {
        pixcmapGetColor(cmap, i, &rval, &gval, &bval);
        cta = (RGBA_QUAD *)cmap->array;
        cta[i].alpha = bval;
    }

        /* Test binary serialization/deserialization of colormap with alpha */
    pixcmapSerializeToMemory(cmap, 4, &ncolors, &data);
    cmap2 = pixcmapDeserializeFromMemory(data, 4, ncolors);
    CmapEqual(cmap, cmap2, &equal);
    regTestCompareValues(rp, TRUE, equal, 0.0);  /* 25 */
    pixcmapDestroy(&cmap2);
    lept_free(data);

        /* Test ascii serialization/deserialization of colormap with alpha */
    fp = fopenWriteStream("/tmp/alpha/cmap.4", "w");
    pixcmapWriteStream(fp, cmap);
    fclose(fp);
    fp = fopenReadStream("/tmp/alpha/cmap.4");
    cmap2 = pixcmapReadStream(fp);
    fclose(fp);
    CmapEqual(cmap, cmap2, &equal);
    regTestCompareValues(rp, TRUE, equal, 0.0);  /* 26 */
    pixcmapDestroy(&cmap2);

        /* Test r/w for cmapped pix with non-opaque alpha */
    pixDisplayWithTitle(pix5, 900, 0, NULL, rp->display);
    regTestWritePixAndCheck(rp, pix5, IFF_PNG);  /* 27 */
    pixWrite("/tmp/alpha/fourcomp.png", pix5, IFF_PNG);
    pix6 = pixRead("/tmp/alpha/fourcomp.png");
    regTestComparePix(rp, pix5, pix6);  /* 28 */
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    lept_free(rmap);
    lept_free(gmap);
    lept_free(bmap);
    return regTestCleanup(rp);
}
Beispiel #5
0
/*!
 * \brief   gifToPix()
 *
 * \param[in]    gif  opened gif stream
 * \return  pix, or NULL on error
 *
 * <pre>
 * Notes:
 *      (1) This decodes the pix from the compressed gif stream and
 *          closes the stream.
 *      (2) It is static so that the stream is not exposed to clients.
 * </pre>
 */
static PIX *
gifToPix(GifFileType  *gif)
{
l_int32          wpl, i, j, w, h, d, cindex, ncolors;
l_int32          rval, gval, bval;
l_uint32        *data, *line;
PIX             *pixd, *pixdi;
PIXCMAP         *cmap;
ColorMapObject  *gif_cmap;
SavedImage       si;
#if (GIFLIB_MAJOR == 5 && GIFLIB_MINOR >= 1) || GIFLIB_MAJOR > 5
int              giferr;
#endif  /* 5.1 and beyond */

    PROCNAME("gifToPix");

        /* Read all the data, but use only the first image found */
    if (DGifSlurp(gif) != GIF_OK) {
        DGifCloseFile(gif, &giferr);
        return (PIX *)ERROR_PTR("failed to read GIF data", procName, NULL);
    }

    if (gif->SavedImages == NULL) {
        DGifCloseFile(gif, &giferr);
        return (PIX *)ERROR_PTR("no images found in GIF", procName, NULL);
    }

    si = gif->SavedImages[0];
    w = si.ImageDesc.Width;
    h = si.ImageDesc.Height;
    if (w <= 0 || h <= 0) {
        DGifCloseFile(gif, &giferr);
        return (PIX *)ERROR_PTR("invalid image dimensions", procName, NULL);
    }

    if (si.RasterBits == NULL) {
        DGifCloseFile(gif, &giferr);
        return (PIX *)ERROR_PTR("no raster data in GIF", procName, NULL);
    }

    if (si.ImageDesc.ColorMap) {
            /* private cmap for this image */
        gif_cmap = si.ImageDesc.ColorMap;
    } else if (gif->SColorMap) {
            /* global cmap for whole picture */
        gif_cmap = gif->SColorMap;
    } else {
            /* don't know where to take cmap from */
        DGifCloseFile(gif, &giferr);
        return (PIX *)ERROR_PTR("color map is missing", procName, NULL);
    }

    ncolors = gif_cmap->ColorCount;
    if (ncolors <= 2)
        d = 1;
    else if (ncolors <= 4)
        d = 2;
    else if (ncolors <= 16)
        d = 4;
    else
        d = 8;
    if ((cmap = pixcmapCreate(d)) == NULL) {
        DGifCloseFile(gif, &giferr);
        return (PIX *)ERROR_PTR("cmap creation failed", procName, NULL);
    }

    for (cindex = 0; cindex < ncolors; cindex++) {
        rval = gif_cmap->Colors[cindex].Red;
        gval = gif_cmap->Colors[cindex].Green;
        bval = gif_cmap->Colors[cindex].Blue;
        pixcmapAddColor(cmap, rval, gval, bval);
    }

    if ((pixd = pixCreate(w, h, d)) == NULL) {
        DGifCloseFile(gif, &giferr);
        pixcmapDestroy(&cmap);
        return (PIX *)ERROR_PTR("failed to allocate pixd", procName, NULL);
    }
    pixSetInputFormat(pixd, IFF_GIF);
    pixSetColormap(pixd, cmap);

    wpl = pixGetWpl(pixd);
    data = pixGetData(pixd);
    for (i = 0; i < h; i++) {
        line = data + i * wpl;
        if (d == 1) {
            for (j = 0; j < w; j++) {
                if (si.RasterBits[i * w + j])
                    SET_DATA_BIT(line, j);
            }
        } else if (d == 2) {
            for (j = 0; j < w; j++)
                SET_DATA_DIBIT(line, j, si.RasterBits[i * w + j]);
        } else if (d == 4) {
            for (j = 0; j < w; j++)
                SET_DATA_QBIT(line, j, si.RasterBits[i * w + j]);
        } else {  /* d == 8 */
            for (j = 0; j < w; j++)
                SET_DATA_BYTE(line, j, si.RasterBits[i * w + j]);
        }
    }

        /* If the image has been interlaced (for viewing in a browser),
         * this restores the raster lines to normal order. */
    if (gif->Image.Interlace) {
        pixdi = pixUninterlaceGIF(pixd);
        pixTransferAllData(pixd, &pixdi, 0, 0);
    }

    DGifCloseFile(gif, &giferr);
    return pixd;
}
Beispiel #6
0
/*!
 *  pixColorGrayCmap()
 *
 *      Input:  pixs (2, 4 or 8 bpp, with colormap)
 *              box (<optional> region to set color; can be NULL)
 *              type (L_PAINT_LIGHT, L_PAINT_DARK)
 *              rval, gval, bval (target color)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This is an in-place operation.
 *      (2) If type == L_PAINT_LIGHT, it colorizes non-black pixels,
 *          preserving antialiasing.
 *          If type == L_PAINT_DARK, it colorizes non-white pixels,
 *          preserving antialiasing.
 *      (3) If box is NULL, applies function to the entire image; otherwise,
 *          clips the operation to the intersection of the box and pix.
 *      (4) This can also be called through pixColorGray().
 *      (5) This increases the colormap size by the number of
 *          different gray (non-black or non-white) colors in the
 *          input colormap.  If there is not enough room in the colormap
 *          for this expansion, it returns 1 (error), and the caller
 *          should check the return value.  If an error is returned
 *          and the cmap is only 2 or 4 bpp, the pix can be converted
 *          to 8 bpp and this function will succeed if run again on
 *          a larger colormap.
 *      (6) Using the darkness of each original pixel in the rect,
 *          it generates a new color (based on the input rgb values).
 *          If type == L_PAINT_LIGHT, the new color is a (generally)
 *          darken-to-black version of the  input rgb color, where the
 *          amount of darkening increases with the darkness of the
 *          original pixel color.
 *          If type == L_PAINT_DARK, the new color is a (generally)
 *          faded-to-white version of the  input rgb color, where the
 *          amount of fading increases with the brightness of the
 *          original pixel color.
 */
l_int32
pixColorGrayCmap(PIX     *pixs,
                 BOX     *box,
                 l_int32  type,
                 l_int32  rval,
                 l_int32  gval,
                 l_int32  bval)
{
l_int32    i, j, w, h, d, x1, y1, x2, y2, bw, bh, wpl;
l_int32    val, nval;
l_int32   *map;
l_uint32  *line, *data;
NUMA      *na;
PIX       *pixt;
PIXCMAP   *cmap, *cmapc;

    PROCNAME("pixColorGrayCmap");

    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 1);
    if ((cmap = pixGetColormap(pixs)) == NULL)
        return ERROR_INT("no colormap", procName, 1);
    d = pixGetDepth(pixs);
    if (d != 2 && d != 4 && d != 8)
        return ERROR_INT("depth not in {2, 4, 8}", procName, 1);
    if (type != L_PAINT_DARK && type != L_PAINT_LIGHT)
        return ERROR_INT("invalid type", procName, 1);

        /* If 2 bpp or 4 bpp, see if the new colors will fit into
         * the existing colormap.  If not, convert in-place to 8 bpp. */
    if (d == 2 || d == 4) {
        cmapc = pixcmapCopy(cmap);  /* experiment with a copy */
        if (addColorizedGrayToCmap(cmapc, type, rval, gval, bval, NULL)) {
            pixt = pixConvertTo8(pixs, 1);
            pixTransferAllData(pixs, &pixt, 0, 0);
        }
        pixcmapDestroy(&cmapc);
    }

        /* Find gray colors, add the corresponding new colors,
         * and set up a mapping table from gray to new.
         * That table has the value 256 for all colors that are
         * not to be mapped. */
    cmap = pixGetColormap(pixs);
    if (addColorizedGrayToCmap(cmap, type, rval, gval, bval, &na)) {
        numaDestroy(&na);
        return ERROR_INT("no room; cmap full", procName, 1);
    }
    map = numaGetIArray(na);
    
        /* Determine the region of substitution */
    pixGetDimensions(pixs, &w, &h, &d);  /* d may be different */
    data = pixGetData(pixs);
    wpl = pixGetWpl(pixs);
    if (!box) {
        x1 = y1 = 0;
        x2 = w;
        y2 = h;
    }
    else {
        boxGetGeometry(box, &x1, &y1, &bw, &bh);
        x2 = x1 + bw - 1;
        y2 = y1 + bh - 1;
    }

        /* Remap gray pixels in the region */
    for (i = y1; i <= y2; i++) {
        if (i < 0 || i >= h)  /* clip */
            continue;
        line = data + i * wpl;
        for (j = x1; j <= x2; j++) {
            if (j < 0 || j >= w)  /* clip */
                continue;
            switch (d)
            {
            case 2:
                val = GET_DATA_DIBIT(line, j);
                nval = map[val];
                if (nval != 256)
                    SET_DATA_DIBIT(line, j, nval);
                break;
            case 4:
                val = GET_DATA_QBIT(line, j);
                nval = map[val];
                if (nval != 256)
                    SET_DATA_QBIT(line, j, nval);
                break;
            case 8:
                val = GET_DATA_BYTE(line, j);
                nval = map[val];
                if (nval != 256)
                    SET_DATA_BYTE(line, j, nval);
                break;
            }
        }
    }

    FREE(map);
    numaDestroy(&na);
    return 0;
}
Beispiel #7
0
/*!
 *  pixReadStreamGif()
 *
 *      Input:  stream
 *      Return: pix, or null on error
 */
PIX *
pixReadStreamGif(FILE  *fp)
{
l_int32          fd, wpl, i, j, w, h, d, cindex, ncolors;
l_int32          rval, gval, bval;
l_uint32        *data, *line;
GifFileType     *gif;
PIX             *pixd, *pixdi;
PIXCMAP         *cmap;
ColorMapObject  *gif_cmap;
SavedImage       si;

    PROCNAME("pixReadStreamGif");

    if ((fd = fileno(fp)) < 0)
        return (PIX *)ERROR_PTR("invalid file descriptor", procName, NULL);
#ifndef _MSC_VER
    lseek(fd, 0, SEEK_SET);
#else
    _lseek(fd, 0, SEEK_SET);
#endif  /* _MSC_VER */

    if ((gif = DGifOpenFileHandle(fd)) == NULL)
        return (PIX *)ERROR_PTR("invalid file or file not found",
                                procName, NULL);

        /* Read all the data, but use only the first image found */
    if (DGifSlurp(gif) != GIF_OK) {
        DGifCloseFile(gif);
        return (PIX *)ERROR_PTR("failed to read GIF data", procName, NULL);
    }

    if (gif->SavedImages == NULL) {
        DGifCloseFile(gif);
        return (PIX *)ERROR_PTR("no images found in GIF", procName, NULL);
    }

    si = gif->SavedImages[0];
    w = si.ImageDesc.Width;
    h = si.ImageDesc.Height;
    if (w <= 0 || h <= 0) {
        DGifCloseFile(gif);
        return (PIX *)ERROR_PTR("invalid image dimensions", procName, NULL);
    }

    if (si.RasterBits == NULL) {
        DGifCloseFile(gif);
        return (PIX *)ERROR_PTR("no raster data in GIF", procName, NULL);
    }

    if (si.ImageDesc.ColorMap) {
            /* private cmap for this image */
        gif_cmap = si.ImageDesc.ColorMap;
    }
    else if (gif->SColorMap) {
            /* global cmap for whole picture */
        gif_cmap = gif->SColorMap;
    }
    else {
            /* don't know where to take cmap from */
        DGifCloseFile(gif);
        return (PIX *)ERROR_PTR("color map is missing", procName, NULL);
    }

    ncolors = gif_cmap->ColorCount;
    if (ncolors <= 2)
        d = 1;
    else if (ncolors <= 4)
        d = 2;
    else if (ncolors <= 16)
        d = 4;
    else
        d = 8;
    if ((cmap = pixcmapCreate(d)) == NULL)
        return (PIX *)ERROR_PTR("cmap creation failed", procName, NULL);

    for (cindex = 0; cindex < ncolors; cindex++) {
        rval = gif_cmap->Colors[cindex].Red;
        gval = gif_cmap->Colors[cindex].Green;
        bval = gif_cmap->Colors[cindex].Blue;
        pixcmapAddColor(cmap, rval, gval, bval);
    }

    if ((pixd = pixCreate(w, h, d)) == NULL) {
        DGifCloseFile(gif);
        pixcmapDestroy(&cmap);
        return (PIX *)ERROR_PTR("failed to allocate pixd", procName, NULL);
    }
    pixSetColormap(pixd, cmap);

    wpl = pixGetWpl(pixd);
    data = pixGetData(pixd);
    for (i = 0; i < h; i++) {
        line = data + i * wpl;
        if (d == 1) {
            for (j = 0; j < w; j++) {
                if (si.RasterBits[i * w + j])
                    SET_DATA_BIT(line, j);
            }
        }
        else if (d == 2) {
            for (j = 0; j < w; j++)
                SET_DATA_DIBIT(line, j, si.RasterBits[i * w + j]);
        }
        else if (d == 4) {
            for (j = 0; j < w; j++)
                SET_DATA_QBIT(line, j, si.RasterBits[i * w + j]);
        }
        else {  /* d == 8 */
            for (j = 0; j < w; j++)
                SET_DATA_BYTE(line, j, si.RasterBits[i * w + j]);
        }
    }

    if (gif->Image.Interlace) {
        pixdi = pixInterlaceGIF(pixd);
        pixTransferAllData(pixd, &pixdi, 0, 0);
    }

    DGifCloseFile(gif);
    return pixd;
}
Beispiel #8
0
main(int    argc,
     char **argv)
{
l_int32      w, h, d, wpl, count, i, format, xres, yres;
FILE        *fp;
PIX         *pix, *pixt1, *pixt2;
PIXCMAP     *cmap;
char        *filein;
char        *fileout = NULL;
static char  mainName[] = "iotest";

    if (argc != 2 && argc != 3)
	exit(ERROR_INT(" Syntax:  iotest filein [fileout]", mainName, 1));

    filein = argv[1];
    if (argc == 3)
        fileout = argv[2];

#if 1
    if ((pix = pixRead(filein)) == NULL)
	exit(ERROR_INT("pix not made", mainName, 1));
#else
    if ((pix = pixReadJpeg(filein, 0, 4, NULL)) == NULL)
	exit(ERROR_INT("pix not made", mainName, 1));
#endif

    pixGetDimensions(pix, &w, &h, &d);
    wpl = pixGetWpl(pix);
    fprintf(stderr, "w = %d, h = %d, d = %d, wpl = %d\n", w, h, d, wpl);
    xres = pixGetXRes(pix);
    yres = pixGetXRes(pix);
    if (xres != 0 && yres != 0)
        fprintf(stderr, "xres = %d, yres = %d\n", xres, yres);
    if (pixGetColormap(pix)) {
	    /* Write and read back the colormap */
        pixcmapWriteStream(stderr, pixGetColormap(pix));
        fp = lept_fopen("/tmp/junkcmap1", "wb");
        pixcmapWriteStream(fp, pixGetColormap(pix));
        lept_fclose(fp);
        fp = lept_fopen("/tmp/junkcmap1", "rb");
        cmap = pixcmapReadStream(fp);
        lept_fclose(fp);
        fp = lept_fopen("/tmp/junkcmap2", "wb");
        pixcmapWriteStream(fp, cmap);
        lept_fclose(fp);
        pixcmapDestroy(&cmap);

            /* Remove and regenerate colormap */
        pixt1 = pixRemoveColormap(pix, REMOVE_CMAP_BASED_ON_SRC);
	if (pixGetDepth(pixt1) == 8) {
            fprintf(stderr, "Colormap: represents grayscale image\n");
            pixt2 = pixConvertGrayToColormap(pixt1);
	}
	else {  /* 32 bpp */
            fprintf(stderr, "Colormap: represents RGB image\n");
            pixt2 = pixConvertRGBToColormap(pixt1, 1);
	}
        pixWrite("/tmp/junkpixt2.png", pixt2, IFF_PNG);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
    }
    else {
        fprintf(stderr, "no colormap\n");
    }
    format = pixGetInputFormat(pix);
    fprintf(stderr, "Input format extension: %s\n",
            ImageFileFormatExtensions[format]);
    if (format == IFF_JFIF_JPEG)
        fprintf(stderr, "Jpeg comment: %s\n", pixGetText(pix));

    if (d == 1) {
        pixCountPixels(pix, &count, NULL);
        fprintf(stderr, "pixel ratio ON/OFF = %6.3f\n",
          (l_float32)count / (l_float32)(pixGetWidth(pix) * pixGetHeight(pix)));
    }

    if (argc == 3) {
#if 1
        d = pixGetDepth(pix);
        if (d == 16 || d < 8 || pixGetColormap(pix))
            pixWrite(fileout, pix, IFF_PNG);
        else
            pixWriteJpeg(fileout, pix, 75, 0);
#elif 0
        pixWrite(fileout, pix, IFF_BMP);
#elif 0
        pixWrite(fileout, pix, IFF_PNG);
#elif 0
        pixWrite(fileout, pix, IFF_TIFF);
        fprintTiffInfo(stderr, fileout);
#elif 0
        pixWrite(fileout, pix, IFF_TIFF_PACKBITS);
        fprintTiffInfo(stderr, fileout);
#elif 0
        pixWrite(fileout, pix, IFF_TIFF_G3);
        fprintTiffInfo(stderr, fileout);
#elif 0
        pixWrite(fileout, pix, IFF_TIFF_G4);
        fprintTiffInfo(stderr, fileout);
#elif 0
        pixWrite(fileout, pix, IFF_JFIF_JPEG);
#elif 0
        pixWriteJpeg(fileout, pix, 75, 0);
#elif 0
        pixWrite(fileout, pix, IFF_PNM);
#elif 0
        pixWrite(fileout, pix, IFF_PS);
#endif 
    }

    pixDestroy(&pix);

#if 0   /* test tiff header reader */
{ l_int32 w, h, bps, spp, res, cmap;
    if (readHeaderTiff(filein, 0, &w, &h, &bps, &spp, &res, &cmap) == 0)
        fprintf(stderr,
        "w = %d, h = %d, bps = %d, spp = %d, res = %d, cmap = %d\n",
        w, h, bps, spp, res, cmap);
}
#endif

    return 0;
}