Beispiel #1
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t_Tile
 *
 *  PLASMA_zgetri_Tile - Computes the inverse of a matrix using the LU factorization
 *  computed by PLASMA_zgetrf.
 *  This method inverts U and then computes inv(A) by solving the system
 *  inv(A)*L = inv(U) for inv(A).
 *  Tile equivalent of PLASMA_zgetri().
 *  Operates on matrices stored by tiles.
 *  All matrices are passed through descriptors.
 *  All dimensions are taken from the descriptors.
 *
 *******************************************************************************
 *
 * @param[in,out] A
 *          On entry, the triangular factor L or U from the
 *          factorization A = P*L*U as computed by PLASMA_zgetrf.
 *          On exit, if return value = 0, the inverse of the original
 *          matrix A.
 *
 * @param[in] IPIV
 *          The pivot indices that define the permutations
 *          as returned by PLASMA_zgetrf.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval >0 if i, the (i,i) element of the factor U is
 *                exactly zero; The matrix is singular
 *                and its inverse could not be computed.
 *
 *******************************************************************************
 *
 * @sa PLASMA_zgetri
 * @sa PLASMA_zgetri_Tile_Async
 * @sa PLASMA_cgetri_Tile
 * @sa PLASMA_dgetri_Tile
 * @sa PLASMA_sgetri_Tile
 * @sa PLASMA_zgetrf_Tile
 *
 ******************************************************************************/
int PLASMA_zgetri_Tile(PLASMA_desc *A, int *IPIV)
{
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descW;
    int status;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zgetri_Tile", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    plasma_sequence_create(plasma, &sequence);

    /* Allocate workspace */
    PLASMA_Alloc_Workspace_zgetri_Tile_Async(A, &descW);

    PLASMA_zgetri_Tile_Async(A, IPIV, &descW, sequence, &request);
    plasma_dynamic_sync();
    plasma_desc_mat_free(&(descW));

    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);
    return status;
}
Beispiel #2
0
/** ****************************************************************************
 *
 * @ingroup InPlaceTransformation
 *
 *  PLASMA_dgecfi convert the matrice A in place from format f_in to
 *  format f_out
 *
 *******************************************************************************
 *
 * @param[in] m
 *         Number of rows of matrix A
 *
 * @param[in] n
 *         Number of columns of matrix A
 *
 * @param[in,out] A
 *         Matrix of size L*m*n
 *
 * @param[in] f_in
 *         Original format of the matrix A. Must be part of (PlasmaCM, PlasmaRM,
 *         PlasmaCCRB, PlasmaCRRB, PlasmaRCRB, PlasmaRRRB)
 *
 * @param[in] imb
 *         Number of rows of each block in original format
 *
 * @param[in] inb
 *         Number of columns of each block in original format
 *
 * @param[in] f_out
 *         Format requested for the matrix A. Must be part of (PlasmaCM, PlasmaRM,
 *         PlasmaCCRB, PlasmaCRRB, PlasmaRCRB, PlasmaRRRB)
 *
 * @param[in] omb
 *         Number of rows of each block in requested format
 *
 * @param[in] onb
 *         Number of columns of each block in requested format
 *
 *******************************************************************************
 *
 * @sa PLASMA_dgecfi_Async
 *
 ******************************************************************************/
int PLASMA_dgecfi(int m, int n, double *A,
                  PLASMA_enum f_in,  int imb, int inb,
                  PLASMA_enum f_out, int omb, int onb) 
{
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    int status;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error(__func__, "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }

    plasma_sequence_create(plasma, &sequence);

    PLASMA_dgecfi_Async( m, n, A,
                         f_in,  imb, inb,
                         f_out, omb, onb,
                         sequence, &request);
    plasma_dynamic_sync();
    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);

    return status;
}
Beispiel #3
0
/***************************************************************************//**
 *
 * @ingroup float
 *
 *  PLASMA_sgesv - Computes the solution to a system of linear equations A * X = B,
 *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
 *  The tile LU decomposition with partial tile pivoting and row interchanges is used to factor A.
 *  The factored form of A is then used to solve the system of equations A * X = B.
 *
 *******************************************************************************
 *
 * @param[in] N
 *          The number of linear equations, i.e., the order of the matrix A. N >= 0.
 *
 * @param[in] NRHS
 *          The number of right hand sides, i.e., the number of columns of the matrix B.
 *          NRHS >= 0.
 *
 * @param[in,out] A
 *          On entry, the N-by-N coefficient matrix A.
 *          On exit, the tile L and U factors from the factorization.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[out] IPIV
 *          On exit, the pivot indices that define the permutations.
 *
 * @param[in,out] B
 *          On entry, the N-by-NRHS matrix of right hand side matrix B.
 *          On exit, if return value = 0, the N-by-NRHS solution matrix X.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= max(1,N).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *          \retval >0 if i, U(i,i) is exactly zero. The factorization has been completed,
 *               but the factor U is exactly singular, so the solution could not be computed.
 *
 *******************************************************************************
 *
 * @sa PLASMA_sgesv_Tile
 * @sa PLASMA_sgesv_Tile_Async
 * @sa PLASMA_cgesv
 * @sa PLASMA_dgesv
 * @sa PLASMA_sgesv
 *
 ******************************************************************************/
int PLASMA_sgesv(int N, int NRHS,
                 float *A, int LDA,
                 int *IPIV,
                 float *B, int LDB)
{
    int NB, IB, IBNB, NT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descB;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_error("PLASMA_sgesv", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (N < 0) {
        plasma_error("PLASMA_sgesv", "illegal value of N");
        return -1;
    }
    if (NRHS < 0) {
        plasma_error("PLASMA_sgesv", "illegal value of NRHS");
        return -2;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_sgesv", "illegal value of LDA");
        return -4;
    }
    if (LDB < max(1, N)) {
        plasma_error("PLASMA_sgesv", "illegal value of LDB");
        return -8;
    }
    /* Quick return */
    if (min(N, NRHS) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB & IB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_SGESV, N, N, NRHS);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_sgesv", "plasma_tune() failed");
        return status;
    }

    /* Set NT & NTRHS */
    NB    = PLASMA_NB;
    IB    = PLASMA_IB;
    IBNB  = IB*NB;
    NT    = (N%NB==0) ? (N/NB) : (N/NB+1);

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_sooplap2tile( descA, A, NB, NB, LDA, N,    0, 0, N, N   , plasma_desc_mat_free(&(descA)) );
        plasma_sooplap2tile( descB, B, NB, NB, LDB, NRHS, 0, 0, N, NRHS, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)));
    } else {
Beispiel #4
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t
 *
 *  PLASMA_zpotrs - Solves a system of linear equations A * X = B with a symmetric positive
 *  definite (or Hermitian positive definite in the complex case) matrix A using the Cholesky
 *  factorization A = U**H*U or A = L*L**H computed by PLASMA_zpotrf.
 *
 *******************************************************************************
 *
 * @param[in] uplo
 *          = PlasmaUpper: Upper triangle of A is stored;
 *          = PlasmaLower: Lower triangle of A is stored.
 *
 * @param[in] N
 *          The order of the matrix A. N >= 0.
 *
 * @param[in] NRHS
 *          The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
 *
 * @param[in] A
 *          The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H,
 *          computed by PLASMA_zpotrf.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[in,out] B
 *          On entry, the N-by-NRHS right hand side matrix B.
 *          On exit, if return value = 0, the N-by-NRHS solution matrix X.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= max(1,N).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_zpotrs_Tile
 * @sa PLASMA_zpotrs_Tile_Async
 * @sa PLASMA_cpotrs
 * @sa PLASMA_dpotrs
 * @sa PLASMA_spotrs
 * @sa PLASMA_zpotrf
 *
 ******************************************************************************/
int PLASMA_zpotrs(PLASMA_enum uplo, int N, int NRHS,
                  PLASMA_Complex64_t *A, int LDA,
                  PLASMA_Complex64_t *B, int LDB)
{
    int NB;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descB;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zpotrs", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (uplo != PlasmaUpper && uplo != PlasmaLower) {
        plasma_error("PLASMA_zpotrs", "illegal value of uplo");
        return -1;
    }
    if (N < 0) {
        plasma_error("PLASMA_zpotrs", "illegal value of N");
        return -2;
    }
    if (NRHS < 0) {
        plasma_error("PLASMA_zpotrs", "illegal value of NRHS");
        return -3;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_zpotrs", "illegal value of LDA");
        return -5;
    }
    if (LDB < max(1, N)) {
        plasma_error("PLASMA_zpotrs", "illegal value of LDB");
        return -7;
    }
    /* Quick return */
    if (min(N, NRHS) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_ZPOSV, N, N, NRHS);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_zpotrs", "plasma_tune() failed");
        return status;
    }

    /* Set NT & NTRHS */
    NB    = PLASMA_NB;

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_zooplap2tile( descA, A, NB, NB, LDA, N,    0, 0, N, N   , plasma_desc_mat_free(&(descA)) );
        plasma_zooplap2tile( descB, B, NB, NB, LDB, NRHS, 0, 0, N, NRHS, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)));
    } else {
Beispiel #5
0
/***************************************************************************//**
 *
 * @ingroup float
 *
 *  PLASMA_splgsy - Generate a random hermitian matrix by tiles.
 *
 *******************************************************************************
 *
 * @param[in] bump
 *          The value to add to the diagonal to be sure 
 *          to have a positive definite matrix.
 *
 * @param[in] N
 *          The order of the matrix A. N >= 0.
 *
 * @param[out] A
 *          On exit, The random hermitian matrix A generated.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,M).
 *
 * @param[in] seed
 *          The seed used in the random generation.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_splgsy_Tile
 * @sa PLASMA_splgsy_Tile_Async
 * @sa PLASMA_cplgsy
 * @sa PLASMA_dplgsy
 * @sa PLASMA_splgsy
 * @sa PLASMA_splrnt
 * @sa PLASMA_splgsy
 *
 ******************************************************************************/
int PLASMA_splgsy( float bump, int N,
                   float *A, int LDA,
                   unsigned long long int seed )
{
    int NB;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_splgsy", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (N < 0) {
        plasma_error("PLASMA_splgsy", "illegal value of N");
        return -2;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_splgsy", "illegal value of LDA");
        return -4;
    }
    /* Quick return */
    if (max(0, N) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_SGEMM, N, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_splgsy", "plasma_tune() failed");
        return status;
    }
    
    /* Set NT */
    NB = PLASMA_NB;
    plasma_sequence_create(plasma, &sequence);
    
    descA = plasma_desc_init(
        PlasmaRealFloat, NB, NB, NB*NB,
        LDA, N, 0, 0, N, N);
    descA.mat = A;

    /* Call the tile interface */
    PLASMA_splgsy_Tile_Async( bump, &descA, seed, sequence, &request );

    plasma_siptile2lap( descA, A, NB, NB, LDA, N );
    plasma_dynamic_sync();

    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);

    return status;
}
Beispiel #6
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t_Tile
 *
 *  PLASMA_zlansy_Tile - Tile equivalent of PLASMA_zlansy().
 *  Operates on matrices stored by tiles.
 *  All matrices are passed through descriptors.
 *  All dimensions are taken from the descriptors.
 *
 *******************************************************************************
 *
 * @param[in] norm
 *          = PlasmaMaxNorm: Max norm
 *          = PlasmaOneNorm: One norm
 *          = PlasmaInfNorm: Infinity norm
 *          = PlasmaFrobeniusNorm: Frobenius norm
 *
 * @param[in] uplo
 *          = PlasmaUpper: Upper triangle of A is stored;
 *          = PlasmaLower: Lower triangle of A is stored.
 *
 * @param[in] A
 *          On entry, the triangular factor U or L.
 *          On exit, if UPLO = 'U', the upper triangle of A is
 *          overwritten with the upper triangle of the product U * U';
 *          if UPLO = 'L', the lower triangle of A is overwritten with
 *          the lower triangle of the product L' * L.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *
 *******************************************************************************
 *
 * @sa PLASMA_zlansy
 * @sa PLASMA_zlansy_Tile_Async
 * @sa PLASMA_clansy_Tile
 * @sa PLASMA_dlansy_Tile
 * @sa PLASMA_slansy_Tile
 *
 ******************************************************************************/
double PLASMA_zlansy_Tile(PLASMA_enum norm, PLASMA_enum uplo, PLASMA_desc *A)
{
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    double value;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zlansy_Tile", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    plasma_sequence_create(plasma, &sequence);
    PLASMA_zlansy_Tile_Async(norm, uplo, A, &value, sequence, &request);
    plasma_dynamic_sync();
    plasma_sequence_destroy(plasma, sequence);
    return value;
}
Beispiel #7
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t_Tile
 *
 *  PLASMA_zlaswp_Tile - performs a series of row interchanges on the matrix A.
 *  One row interchange is initiated for each of rows K1 through K2 of A.
 *  Tile equivalent of PLASMA_zlaswp().
 *  Operates on matrices stored by tiles.
 *  All matrices are passed through descriptors.
 *  All dimensions are taken from the descriptors.
 *
 *******************************************************************************
 *
 * @param[in] A
 *          The tile factors L and U from the factorization, computed by PLASMA_zgetrf.
 *
 * @param[in] K1
 *          The first element of IPIV for which a row interchange will
 *          be done.
 *
 * @param[in] K2
 *          The last element of IPIV for which a row interchange will
 *          be done.
 *
 * @param[in] IPIV
 *          The pivot indices from PLASMA_zgetrf.
 *
 * @param[in] INCX
 *          The increment between successive values of IPIV. If IPIV
 *          is negative, the pivots are applied in reverse order.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *
 *******************************************************************************
 *
 * @sa PLASMA_zlaswp
 * @sa PLASMA_zlaswp_Tile_Async
 * @sa PLASMA_claswp_Tile
 * @sa PLASMA_dlaswp_Tile
 * @sa PLASMA_slaswp_Tile
 * @sa PLASMA_zgetrf_Tile
 *
 ******************************************************************************/
int PLASMA_zlaswp_Tile(PLASMA_desc *A, int K1, int K2, int *IPIV, int INCX)
{
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    int status;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zlaswp_Tile", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    plasma_sequence_create(plasma, &sequence);
    PLASMA_zlaswp_Tile_Async(A, K1, K2, IPIV, INCX, sequence, &request);
    plasma_dynamic_sync();
    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);
    return status;
}
Beispiel #8
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex32_t_Tile
 *
 *  PLASMA_cpotrf_Tile - Computes the Cholesky factorization of a symmetric positive definite
 *  or Hermitian positive definite matrix.
 *  Tile equivalent of PLASMA_cpotrf().
 *  Operates on matrices stored by tiles.
 *  All matrices are passed through descriptors.
 *  All dimensions are taken from the descriptors.
 *
 *******************************************************************************
 *
 * @param[in] uplo
 *          = PlasmaUpper: Upper triangle of A is stored;
 *          = PlasmaLower: Lower triangle of A is stored.
 *
 * @param[in] A
 *          On entry, the symmetric positive definite (or Hermitian) matrix A.
 *          If uplo = PlasmaUpper, the leading N-by-N upper triangular part of A
 *          contains the upper triangular part of the matrix A, and the strictly lower triangular
 *          part of A is not referenced.
 *          If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower
 *          triangular part of the matrix A, and the strictly upper triangular part of A is not
 *          referenced.
 *          On exit, if return value = 0, the factor U or L from the Cholesky factorization
 *          A = U**H*U or A = L*L**H.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval >0 if i, the leading minor of order i of A is not positive definite, so the
 *               factorization could not be completed, and the solution has not been computed.
 *
 *******************************************************************************
 *
 * @sa PLASMA_cpotrf
 * @sa PLASMA_cpotrf_Tile_Async
 * @sa PLASMA_cpotrf_Tile
 * @sa PLASMA_dpotrf_Tile
 * @sa PLASMA_spotrf_Tile
 * @sa PLASMA_cpotrs_Tile
 *
 ******************************************************************************/
int PLASMA_cpotrf_Tile(PLASMA_enum uplo, PLASMA_desc *A)
{
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    int status;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_cpotrf_Tile", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    plasma_sequence_create(plasma, &sequence);
    PLASMA_cpotrf_Tile_Async(uplo, A, sequence, &request);
    plasma_dynamic_sync();
    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);
    return status;
}
Beispiel #9
0
/***************************************************************************//**
 *
 * @ingroup float_Tile
 *
 *  PLASMA_splgsy_Tile - Generate a random hermitian matrix by tiles.
 *  Tile equivalent of PLASMA_splgsy().
 *  Operates on matrices stored by tiles.
 *  All matrices are passed through descriptors.
 *  All dimensions are taken from the descriptors.
 *
 *******************************************************************************
 *
 * @param[in] bump
 *          The value to add to the diagonal to be sure 
 *          to have a positive definite matrix.
 *
 * @param[in] A
 *          On exit, The random hermitian matrix A generated.
 *
 * @param[in] seed
 *          The seed used in the random generation.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *
 *******************************************************************************
 *
 * @sa PLASMA_splgsy
 * @sa PLASMA_splgsy_Tile_Async
 * @sa PLASMA_cplgsy_Tile
 * @sa PLASMA_dplgsy_Tile
 * @sa PLASMA_splgsy_Tile
 * @sa PLASMA_splrnt_Tile
 * @sa PLASMA_splgsy_Tile
 *
 ******************************************************************************/
int PLASMA_splgsy_Tile( float bump, PLASMA_desc *A,
                        unsigned long long int seed )
{
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    int status;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_splgsy_Tile", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    plasma_sequence_create(plasma, &sequence);
    PLASMA_splgsy_Tile_Async( bump, A, seed, sequence, &request );
    plasma_dynamic_sync();
    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);
    return status;
}
Beispiel #10
0
/***************************************************************************//**
 *
 * @ingroup double
 *
 *  PLASMA_dormlq - overwrites the general M-by-N matrix C with Q*C, where Q is an orthogonal
 *  matrix (unitary in the complex case) defined as the product of elementary reflectors returned
 *  by PLASMA_dgelqf. Q is of order M.
 *
 *******************************************************************************
 *
 * @param[in] side
 *          Intended usage:
 *          = PlasmaLeft:  apply Q or Q**T from the left;
 *          = PlasmaRight: apply Q or Q**T from the right.
 *          Currently only PlasmaLeft is supported.
 *
 * @param[in] trans
 *          Intended usage:
 *          = PlasmaNoTrans:   no transpose, apply Q;
 *          = PlasmaTrans: ugate transpose, apply Q**T.
 *          Currently only PlasmaTrans is supported.
 *
 * @param[in] M
 *          The number of rows of the matrix C. M >= 0.
 *
 * @param[in] N
 *          The number of columns of the matrix C. N >= 0.
 *
 * @param[in] K
 *          The number of rows of elementary tile reflectors whose product defines the matrix Q.
 *          M >= K >= 0.
 *
 * @param[in] A
 *          Details of the LQ factorization of the original matrix A as returned by PLASMA_dgelqf.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,K).
 *
 * @param[in] T
 *          Auxiliary factorization data, computed by PLASMA_dgelqf.
 *
 * @param[in,out] B
 *          On entry, the M-by-N matrix B.
 *          On exit, B is overwritten by Q*B or Q**T*B.
 *
 * @param[in] LDB
 *          The leading dimension of the array C. LDC >= max(1,M).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_dormlq_Tile
 * @sa PLASMA_dormlq_Tile_Async
 * @sa PLASMA_cunmlq
 * @sa PLASMA_dormlq
 * @sa PLASMA_sormlq
 * @sa PLASMA_dgelqf
 *
 ******************************************************************************/
int PLASMA_dormlq(PLASMA_enum side, PLASMA_enum trans, int M, int N, int K,
                  double *A, int LDA,
                  double *T,
                  double *B, int LDB)
{
    int NB, IB, IBNB, KT, NT, An;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descB, descT;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_dormlq", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }

    if (side == PlasmaLeft)
        An = M;
    else 
        An = N;

    /* Check input arguments */
    if ( (side != PlasmaLeft) && (side != PlasmaRight) ) {
        plasma_error("PLASMA_dormlq", "illegal value of side");
        return -1;
    }
    if ( (trans != PlasmaTrans) && (trans != PlasmaNoTrans) ){
        plasma_error("PLASMA_dormlq", "illegal value of trans");
        return -2;
    }
    if (M < 0) {
        plasma_error("PLASMA_dormlq", "illegal value of M");
        return -3;
    }
    if (N < 0) {
        plasma_error("PLASMA_dormlq", "illegal value of N");
        return -4;
    }
    if ((K < 0) || (K > An)) {
        plasma_error("PLASMA_dormlq", "illegal value of K");
        return -5;
    }
    if (LDA < max(1, K)) {
        plasma_error("PLASMA_dormlq", "illegal value of LDA");
        return -7;
    }
    if (LDB < max(1, M)) {
        plasma_error("PLASMA_dormlq", "illegal value of LDB");
        return -10;
    }
    /* Quick return - currently NOT equivalent to LAPACK's:
     * CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) */
    if (min(M, min(N, K)) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB & IB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_DGELS, M, K, N);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_dormlq", "plasma_tune() failed");
        return status;
    }

    /* Set MT, NT & NTRHS */
    NB   = PLASMA_NB;
    IB   = PLASMA_IB;
    IBNB = IB*NB;
    KT   = ( K%NB==0) ? (K /NB) : (K /NB+1);
    NT   = (An%NB==0) ? (An/NB) : (An/NB+1);

    plasma_sequence_create(plasma, &sequence);

    if (plasma->householder == PLASMA_FLAT_HOUSEHOLDER) {
        descT = plasma_desc_init(
            PlasmaRealDouble,
            IB, NB, IBNB,
            KT*IB, NT*NB, 0, 0, KT*IB, NT*NB);
    }
    else {
        /* Double the size of T to accomodate the tree reduction phase */
        descT = plasma_desc_init(
            PlasmaRealDouble,
            IB, NB, IBNB,
            KT*IB, 2*NT*NB, 0, 0, KT*IB, 2*NT*NB);
    }
    descT.mat = T;

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_dooplap2tile( descA, A, NB, NB, LDA, An, 0, 0, K, An, plasma_desc_mat_free(&(descA)) );
        plasma_dooplap2tile( descB, B, NB, NB, LDB, N,  0, 0, M, N,  plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)));
    } else {
Beispiel #11
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex32_t
 *
 *  PLASMA_cgelqs - Compute a minimum-norm solution min || A*X - B || using the LQ factorization
 *  A = L*Q computed by PLASMA_cgelqf.
 *
 *******************************************************************************
 *
 * @param[in] M
 *          The number of rows of the matrix A. M >= 0.
 *
 * @param[in] N
 *          The number of columns of the matrix A. N >= M >= 0.
 *
 * @param[in] NRHS
 *          The number of columns of B. NRHS >= 0.
 *
 * @param[in] A
 *          Details of the LQ factorization of the original matrix A as returned by PLASMA_cgelqf.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= M.
 *
 * @param[in] T
 *          Auxiliary factorization data, computed by PLASMA_cgelqf.
 *
 * @param[in,out] B
 *          On entry, the M-by-NRHS right hand side matrix B.
 *          On exit, the N-by-NRHS solution matrix X.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= N.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_cgelqs_Tile
 * @sa PLASMA_cgelqs_Tile_Async
 * @sa PLASMA_cgelqs
 * @sa PLASMA_dgelqs
 * @sa PLASMA_sgelqs
 * @sa PLASMA_cgelqf
 *
 ******************************************************************************/
int PLASMA_cgelqs(int M, int N, int NRHS,
                  PLASMA_Complex32_t *A, int LDA,
                  PLASMA_Complex32_t *T,
                  PLASMA_Complex32_t *B, int LDB)
{
    int NB, IB, IBNB, MT, NT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descB, descT;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_cgelqs", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (M < 0) {
        plasma_error("PLASMA_cgelqs", "illegal value of M");
        return -1;
    }
    if (N < 0 || M > N) {
        plasma_error("PLASMA_cgelqs", "illegal value of N");
        return -2;
    }
    if (NRHS < 0) {
        plasma_error("PLASMA_cgelqs", "illegal value of N");
        return -3;
    }
    if (LDA < max(1, M)) {
        plasma_error("PLASMA_cgelqs", "illegal value of LDA");
        return -5;
    }
    if (LDB < max(1, max(1, N))) {
        plasma_error("PLASMA_cgelqs", "illegal value of LDB");
        return -8;
    }
    /* Quick return */
    if (min(M, min(N, NRHS)) == 0) {
        return PLASMA_SUCCESS;
    }

    /* Tune NB & IB depending on M, N & NRHS; Set NBNBSIZE */
    status = plasma_tune(PLASMA_FUNC_CGELS, M, N, NRHS);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_cgelqs", "plasma_tune() failed");
        return status;
    }

    /* Set MT, NT & NTRHS */
    NB    = PLASMA_NB;
    IB    = PLASMA_IB;
    IBNB  = IB*NB;
    MT    = (M%NB==0) ? (M/NB) : (M/NB+1);
    NT    = (N%NB==0) ? (N/NB) : (N/NB+1);

    plasma_sequence_create(plasma, &sequence);

    if (plasma->householder == PLASMA_FLAT_HOUSEHOLDER) {
        descT = plasma_desc_init(
                    PlasmaComplexFloat,
                    IB, NB, IBNB,
                    MT*IB, NT*NB, 0, 0, MT*IB, NT*NB);
    }
    else {
        /* Double the size of T to accomodate the tree reduction phase */
        descT = plasma_desc_init(
                    PlasmaComplexFloat,
                    IB, NB, IBNB,
                    MT*IB, 2*NT*NB, 0, 0, MT*IB, 2*NT*NB);
    }
    descT.mat = T;

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_cooplap2tile( descA, A, NB, NB, LDA, N,    0, 0, M, N   , plasma_desc_mat_free(&(descA)) );
        plasma_cooplap2tile( descB, B, NB, NB, LDB, NRHS, 0, 0, N, NRHS, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)));
    } else {
Beispiel #12
0
/***************************************************************************//**
 *
 * @ingroup float
 *
 *  PLASMA_sgemm - Performs one of the matrix-matrix operations
 *
 *    \f[ C = \alpha [op( A )\times op( B )] + \beta C \f],
 *
 *  where op( X ) is one of
 *
 *    op( X ) = X  or op( X ) = X' or op( X ) = g( X' )
 *
 *  alpha and beta are scalars, and A, B and C  are matrices, with op( A )
 *  an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
 *
 *******************************************************************************
 *
 * @param[in] transA
 *          Specifies whether the matrix A is transposed, not transposed or ugate transposed:
 *          = PlasmaNoTrans:   A is not transposed;
 *          = PlasmaTrans:     A is transposed;
 *          = PlasmaTrans: A is ugate transposed.
 *
 * @param[in] transB
 *          Specifies whether the matrix B is transposed, not transposed or ugate transposed:
 *          = PlasmaNoTrans:   B is not transposed;
 *          = PlasmaTrans:     B is transposed;
 *          = PlasmaTrans: B is ugate transposed.
 *
 * @param[in] M
 *          M specifies the number of rows of the matrix op( A ) and of the matrix C. M >= 0.
 *
 * @param[in] N
 *          N specifies the number of columns of the matrix op( B ) and of the matrix C. N >= 0.
 *
 * @param[in] K
 *          K specifies the number of columns of the matrix op( A ) and the number of rows of
 *          the matrix op( B ). K >= 0.
 *
 * @param[in] alpha
 *          alpha specifies the scalar alpha
 *
 * @param[in] A
 *          A is a LDA-by-ka matrix, where ka is K when  transA = PlasmaNoTrans,
 *          and is  M  otherwise.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,M).
 *
 * @param[in] B
 *          B is a LDB-by-kb matrix, where kb is N when  transB = PlasmaNoTrans,
 *          and is  K  otherwise.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= max(1,N).
 *
 * @param[in] beta
 *          beta specifies the scalar beta
 *
 * @param[in,out] C
 *          C is a LDC-by-N matrix.
 *          On exit, the array is overwritten by the M by N matrix ( alpha*op( A )*op( B ) + beta*C )
 *
 * @param[in] LDC
 *          The leading dimension of the array C. LDC >= max(1,M).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *
 *******************************************************************************
 *
 * @sa PLASMA_sgemm_Tile
 * @sa PLASMA_cgemm
 * @sa PLASMA_dgemm
 * @sa PLASMA_sgemm
 *
 ******************************************************************************/
int PLASMA_sgemm(PLASMA_enum transA, PLASMA_enum transB, int M, int N, int K,
                 float alpha, float *A, int LDA,
                 float *B, int LDB,
                 float beta,  float *C, int LDC)
{
    int NB;
    int Am, An, Bm, Bn;
    int status;
    PLASMA_desc descA, descB, descC;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_sgemm", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }

    /* Check input arguments */
    if ((transA != PlasmaNoTrans) && (transA != PlasmaTrans) && (transA != PlasmaTrans)) {
        plasma_error("PLASMA_sgemm", "illegal value of transA");
        return -1;
    }
    if ((transB != PlasmaNoTrans) && (transB != PlasmaTrans) && (transB != PlasmaTrans)) {
        plasma_error("PLASMA_sgemm", "illegal value of transB");
        return -2;
    }
    if ( transA == PlasmaNoTrans ) {
        Am = M;
        An = K;
    } else {
        Am = K;
        An = M;
    }
    if ( transB == PlasmaNoTrans ) {
        Bm = K;
        Bn = N;
    } else {
        Bm = N;
        Bn = K;
    }
    if (M < 0) {
        plasma_error("PLASMA_sgemm", "illegal value of M");
        return -3;
    }
    if (N < 0) {
        plasma_error("PLASMA_sgemm", "illegal value of N");
        return -4;
    }
    if (K < 0) {
        plasma_error("PLASMA_sgemm", "illegal value of N");
        return -5;
    }
    if (LDA < max(1, Am)) {
        plasma_error("PLASMA_sgemm", "illegal value of LDA");
        return -8;
    }
    if (LDB < max(1, Bm)) {
        plasma_error("PLASMA_sgemm", "illegal value of LDB");
        return -10;
    }
    if (LDC < max(1, M)) {
        plasma_error("PLASMA_sgemm", "illegal value of LDC");
        return -13;
    }

    /* Quick return */
    if (M == 0 || N == 0 ||
            ((alpha == (float)0.0 || K == 0) && beta == (float)1.0))
        return PLASMA_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNBSIZE */
    status = plasma_tune(PLASMA_FUNC_SGEMM, M, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_sgemm", "plasma_tune() failed");
        return status;
    }

    /* Set MT & NT & KT */
    NB = PLASMA_NB;

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_sooplap2tile( descA, A, NB, NB, LDA, An, 0, 0, Am, An, plasma_desc_mat_free(&(descA)) );
        plasma_sooplap2tile( descB, B, NB, NB, LDB, Bn, 0, 0, Bm, Bn, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)));
        plasma_sooplap2tile( descC, C, NB, NB, LDC, N,  0, 0, M,  N,  plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)); plasma_desc_mat_free(&(descC)));
    } else {
Beispiel #13
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex32_t
 *
 *  PLASMA_cpotrf - Computes the Cholesky factorization of a symmetric positive definite
 *  (or Hermitian positive definite in the complex case) matrix A.
 *  The factorization has the form
 *
 *    \f[ A = \{_{L\times L^H, if uplo = PlasmaLower}^{U^H\times U, if uplo = PlasmaUpper} \f]
 *
 *  where U is an upper triangular matrix and L is a lower triangular matrix.
 *
 *******************************************************************************
 *
 * @param[in] uplo
 *          = PlasmaUpper: Upper triangle of A is stored;
 *          = PlasmaLower: Lower triangle of A is stored.
 *
 * @param[in] N
 *          The order of the matrix A. N >= 0.
 *
 * @param[in,out] A
 *          On entry, the symmetric positive definite (or Hermitian) matrix A.
 *          If uplo = PlasmaUpper, the leading N-by-N upper triangular part of A
 *          contains the upper triangular part of the matrix A, and the strictly lower triangular
 *          part of A is not referenced.
 *          If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower
 *          triangular part of the matrix A, and the strictly upper triangular part of A is not
 *          referenced.
 *          On exit, if return value = 0, the factor U or L from the Cholesky factorization
 *          A = U**H*U or A = L*L**H.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *          \retval >0 if i, the leading minor of order i of A is not positive definite, so the
 *               factorization could not be completed, and the solution has not been computed.
 *
 *******************************************************************************
 *
 * @sa PLASMA_cpotrf_Tile
 * @sa PLASMA_cpotrf_Tile_Async
 * @sa PLASMA_cpotrf
 * @sa PLASMA_dpotrf
 * @sa PLASMA_spotrf
 * @sa PLASMA_cpotrs
 *
 ******************************************************************************/
int PLASMA_cpotrf(PLASMA_enum uplo, int N,
                  PLASMA_Complex32_t *A, int LDA)
{
    int NB;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_cpotrf", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (uplo != PlasmaUpper && uplo != PlasmaLower) {
        plasma_error("PLASMA_cpotrf", "illegal value of uplo");
        return -1;
    }
    if (N < 0) {
        plasma_error("PLASMA_cpotrf", "illegal value of N");
        return -2;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_cpotrf", "illegal value of LDA");
        return -4;
    }
    /* Quick return */
    if (max(N, 0) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_CPOSV, N, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_cpotrf", "plasma_tune() failed");
        return status;
    }

    /* Set NT */
    NB   = PLASMA_NB;

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_cooplap2tile( descA, A, NB, NB, LDA, N, 0, 0, N, N, plasma_desc_mat_free(&(descA)) );
    } else {
        plasma_ciplap2tile(  descA, A, NB, NB, LDA, N, 0, 0, N, N);
    }

    /* Call the tile interface */
    PLASMA_cpotrf_Tile_Async(uplo, &descA, sequence, &request);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_cooptile2lap( descA, A, NB, NB, LDA, N );
        plasma_dynamic_sync();
        plasma_desc_mat_free(&descA);
    } else {
        plasma_ciptile2lap( descA, A, NB, NB, LDA, N );
        plasma_dynamic_sync();
    }

    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);

    return status;
}
Beispiel #14
0
/***************************************************************************//**
 *
 * @ingroup float
 *
 *  PLASMA_sgelqf - Computes the tile LQ factorization of a complex M-by-N matrix A: A = L * Q.
 *
 *******************************************************************************
 *
 * @param[in] M
 *          The number of rows of the matrix A. M >= 0.
 *
 * @param[in] N
 *          The number of columns of the matrix A. N >= 0.
 *
 * @param[in,out] A
 *          On entry, the M-by-N matrix A.
 *          On exit, the elements on and below the diagonal of the array contain the m-by-min(M,N)
 *          lower trapezoidal matrix L (L is lower triangular if M <= N); the elements above the
 *          diagonal represent the unitary matrix Q as a product of elementary reflectors, stored
 *          by tiles.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,M).
 *
 * @param[out] T
 *          On exit, auxiliary factorization data, required by PLASMA_sgelqs to solve the system
 *          of equations.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_sgelqf_Tile
 * @sa PLASMA_sgelqf_Tile_Async
 * @sa PLASMA_cgelqf
 * @sa PLASMA_dgelqf
 * @sa PLASMA_sgelqf
 * @sa PLASMA_sgelqs
 *
 ******************************************************************************/
int PLASMA_sgelqf(int M, int N,
                  float *A, int LDA,
                  float *T)
{
    int NB, IB, IBNB, MT, NT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descT;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_sgelqf", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (M < 0) {
        plasma_error("PLASMA_sgelqf", "illegal value of M");
        return -1;
    }
    if (N < 0) {
        plasma_error("PLASMA_sgelqf", "illegal value of N");
        return -2;
    }
    if (LDA < max(1, M)) {
        plasma_error("PLASMA_sgelqf", "illegal value of LDA");
        return -4;
    }
    /* Quick return */
    if (min(M, N) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB & IB depending on M, N & NRHS; Set NBNBSIZE */
    status = plasma_tune(PLASMA_FUNC_SGELS, M, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_sgelqf", "plasma_tune() failed");
        return status;
    }

    /* Set MT & NT */
    NB   = PLASMA_NB;
    IB   = PLASMA_IB;
    IBNB = IB*NB;
    MT   = (M%NB==0) ? (M/NB) : (M/NB+1);
    NT   = (N%NB==0) ? (N/NB) : (N/NB+1);

    plasma_sequence_create(plasma, &sequence);

     if (plasma->householder == PLASMA_FLAT_HOUSEHOLDER) {
        descT = plasma_desc_init(
            PlasmaRealFloat,
            IB, NB, IBNB,
            MT*IB, NT*NB, 0, 0, MT*IB, NT*NB);
    }
    else {
        /* Double the size of T to accomodate the tree reduction phase */
        descT = plasma_desc_init(
            PlasmaRealFloat,
            IB, NB, IBNB,
            MT*IB, 2*NT*NB, 0, 0, MT*IB, 2*NT*NB);
    }
    descT.mat = T;

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_sooplap2tile( descA, A, NB, NB, LDA, N, 0, 0, M, N, plasma_desc_mat_free(&(descA)) );
    } else {
        plasma_siplap2tile( descA, A, NB, NB, LDA, N, 0, 0, M, N);
    }

    /* Call the tile interface */
    PLASMA_sgelqf_Tile_Async(&descA, &descT, sequence, &request);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_sooptile2lap( descA, A, NB, NB, LDA, N );
        plasma_dynamic_sync();
        plasma_desc_mat_free(&descA);
    } else {
        plasma_siptile2lap( descA, A, NB, NB, LDA, N );
        plasma_dynamic_sync();
    }

    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);
    return status;
}
Beispiel #15
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t
 *
 *  PLASMA_zgetrs_incpiv - Solves a system of linear equations A * X = B, with a general N-by-N matrix A
 *  using the tile LU factorization computed by PLASMA_zgetrf_incpiv.
 *
 *******************************************************************************
 *
 * @param[in] trans
 *          Intended to specify the the form of the system of equations:
 *          = PlasmaNoTrans:   A * X = B     (No transpose)
 *          = PlasmaTrans:     A**T * X = B  (Transpose)
 *          = PlasmaConjTrans: A**H * X = B  (Conjugate transpose)
 *          Currently only PlasmaNoTrans is supported.
 *
 * @param[in] N
 *          The order of the matrix A.  N >= 0.
 *
 * @param[in] NRHS
 *          The number of right hand sides, i.e., the number of columns of the matrix B.
 *          NRHS >= 0.
 *
 * @param[in] A
 *          The tile factors L and U from the factorization, computed by PLASMA_zgetrf_incpiv.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[in] L
 *          Auxiliary factorization data, related to the tile L factor, computed by PLASMA_zgetrf_incpiv.
 *
 * @param[in] IPIV
 *          The pivot indices from PLASMA_zgetrf_incpiv (not equivalent to LAPACK).
 *
 * @param[in,out] B
 *          On entry, the N-by-NRHS matrix of right hand side matrix B.
 *          On exit, the solution matrix X.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= max(1,N).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \return <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_zgetrs_incpiv_Tile
 * @sa PLASMA_zgetrs_incpiv_Tile_Async
 * @sa PLASMA_cgetrs_incpiv
 * @sa PLASMA_dgetrs_incpiv
 * @sa PLASMA_sgetrs_incpiv
 * @sa PLASMA_zgetrf_incpiv
 *
 ******************************************************************************/
int PLASMA_zgetrs_incpiv(PLASMA_enum trans, int N, int NRHS,
                        PLASMA_Complex64_t *A, int LDA,
                        PLASMA_Complex64_t *L, int *IPIV,
                        PLASMA_Complex64_t *B, int LDB)
{
    int NB, IB, IBNB, NT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descB, descL;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zgetrs_incpiv", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (trans != PlasmaNoTrans) {
        plasma_error("PLASMA_zgetrs_incpiv", "only PlasmaNoTrans supported");
        return PLASMA_ERR_NOT_SUPPORTED;
    }
    if (N < 0) {
        plasma_error("PLASMA_zgetrs_incpiv", "illegal value of N");
        return -2;
    }
    if (NRHS < 0) {
        plasma_error("PLASMA_zgetrs_incpiv", "illegal value of NRHS");
        return -3;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_zgetrs_incpiv", "illegal value of LDA");
        return -5;
    }
    if (LDB < max(1, N)) {
        plasma_error("PLASMA_zgetrs_incpiv", "illegal value of LDB");
        return -9;
    }
    /* Quick return */
    if (min(N, NRHS) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB & IB depending on N & NRHS; Set NBNBSIZE */
    status = plasma_tune(PLASMA_FUNC_ZGESV, N, N, NRHS);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_zgetrs_incpiv", "plasma_tune() failed");
        return status;
    }

    /* Set NT & NTRHS */
    NB    = PLASMA_NB;
    IB    = PLASMA_IB;
    IBNB  = IB*NB;
    NT    = (N%NB==0) ? (N/NB) : (N/NB+1);

    plasma_sequence_create(plasma, &sequence);

    descL = plasma_desc_init(
        PlasmaComplexDouble,
        IB, NB, IBNB,
        NT*IB, NT*NB, 0, 0, NT*IB, NT*NB);
    descL.mat = L;

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_zooplap2tile( descA, A, NB, NB, LDA, N,    0, 0, N, N   , plasma_desc_mat_free(&(descA)) );
        plasma_zooplap2tile( descB, B, NB, NB, LDB, NRHS, 0, 0, N, NRHS, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)));
    } else {
Beispiel #16
0
/***************************************************************************//**
 *
 * @ingroup double
 *
 *  PLASMA_dtrmm - Computes B = alpha*op( A )*B or B = alpha*B*op( A ).
 *
 *******************************************************************************
 *
 * @param[in] side
 *          Specifies whether A appears on the left or on the right of X:
 *          = PlasmaLeft:  A*X = B
 *          = PlasmaRight: X*A = B
 *
 * @param[in] uplo
 *          Specifies whether the matrix A is upper triangular or lower triangular:
 *          = PlasmaUpper: Upper triangle of A is stored;
 *          = PlasmaLower: Lower triangle of A is stored.
 *
 * @param[in] transA
 *          Specifies whether the matrix A is transposed, not transposed or ugate transposed:
 *          = PlasmaNoTrans:   A is transposed;
 *          = PlasmaTrans:     A is not transposed;
 *          = PlasmaTrans: A is ugate transposed.
 *
 * @param[in] diag
 *          Specifies whether or not A is unit triangular:
 *          = PlasmaNonUnit: A is non unit;
 *          = PlasmaUnit:    A us unit.
 *
 * @param[in] N
 *          The order of the matrix A. N >= 0.
 *
 * @param[in] NRHS
 *          The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
 *
 * @param[in] alpha
 *          alpha specifies the scalar alpha.
 *
 * @param[in] A
 *          The triangular matrix A. If uplo = PlasmaUpper, the leading N-by-N upper triangular
 *          part of the array A contains the upper triangular matrix, and the strictly lower
 *          triangular part of A is not referenced. If uplo = PlasmaLower, the leading N-by-N
 *          lower triangular part of the array A contains the lower triangular matrix, and the
 *          strictly upper triangular part of A is not referenced. If diag = PlasmaUnit, the
 *          diagonal elements of A are also not referenced and are assumed to be 1.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[in,out] B
 *          On entry, the N-by-NRHS right hand side matrix B.
 *          On exit, if return value = 0, the N-by-NRHS solution matrix X.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= max(1,N).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_dtrmm_Tile
 * @sa PLASMA_dtrmm_Tile_Async
 * @sa PLASMA_ctrmm
 * @sa PLASMA_dtrmm
 * @sa PLASMA_strmm
 *
 ******************************************************************************/
int PLASMA_dtrmm(PLASMA_enum side, PLASMA_enum uplo,
                 PLASMA_enum transA, PLASMA_enum diag,
                 int N, int NRHS, double alpha,
                 double *A, int LDA,
                 double *B, int LDB)
{
    int NB, NA;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descB;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_dtrmm", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (side != PlasmaLeft && side != PlasmaRight) {
        plasma_error("PLASMA_dtrmm", "illegal value of side");
        return -1;
    }
    if (uplo != PlasmaUpper && uplo != PlasmaLower) {
        plasma_error("PLASMA_dtrmm", "illegal value of uplo");
        return -2;
    }
    if (transA != PlasmaTrans && transA != PlasmaNoTrans && transA != PlasmaTrans ) {
        plasma_error("PLASMA_dtrmm", "illegal value of transA");
        return -3;
    }
    if (diag != PlasmaUnit && diag != PlasmaNonUnit) {
        plasma_error("PLASMA_dtrmm", "illegal value of diag");
        return -4;
    }
    if (N < 0) {
        plasma_error("PLASMA_dtrmm", "illegal value of N");
        return -5;
    }
    if (NRHS < 0) {
        plasma_error("PLASMA_dtrmm", "illegal value of NRHS");
        return -6;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_dtrmm", "illegal value of LDA");
        return -8;
    }
    if (LDB < max(1, N)) {
        plasma_error("PLASMA_dtrmm", "illegal value of LDB");
        return -10;
    }
    /* Quick return */
    if (min(N, NRHS) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_DPOSV, N, N, NRHS);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_dtrmm", "plasma_tune() failed");
        return status;
    }

    /* Set NT & NTRHS */
    NB = PLASMA_NB;
    if (side == PlasmaLeft) {
      NA = N;
    } else {
      NA = NRHS;
    }

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_dooplap2tile( descA, A, NB, NB, LDA, NA,   0, 0, NA, NA,   plasma_desc_mat_free(&(descA)) );
        plasma_dooplap2tile( descB, B, NB, NB, LDB, NRHS, 0, 0, N,  NRHS, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)));
    } else {
Beispiel #17
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t
 *
 *  PLASMA_zlansy returns the value
 *
 *     zlansy = ( max(abs(A(i,j))), NORM = PlasmaMaxNorm
 *              (
 *              ( norm1(A),         NORM = PlasmaOneNorm
 *              (
 *              ( normI(A),         NORM = PlasmaInfNorm
 *              (
 *              ( normF(A),         NORM = PlasmaFrobeniusNorm
 *
 *  where norm1 denotes the one norm of a matrix (maximum column sum),
 *  normI denotes the infinity norm of a matrix (maximum row sum) and
 *  normF denotes the Frobenius norm of a matrix (square root of sum
 *  of squares). Note that max(abs(A(i,j))) is not a consistent matrix
 *  norm.
 *
 *******************************************************************************
 *
 * @param[in] norm
 *          = PlasmaMaxNorm: Max norm
 *          = PlasmaOneNorm: One norm
 *          = PlasmaInfNorm: Infinity norm
 *          = PlasmaFrobeniusNorm: Frobenius norm
 *
 * @param[in] uplo
 *          = PlasmaUpper: Upper triangle of A is stored;
 *          = PlasmaLower: Lower triangle of A is stored.
 *
 * @param[in] N
 *          The number of columns/rows of the matrix A. N >= 0. When N = 0,
 *          the returned value is set to zero.
 *
 * @param[in] A
 *          The N-by-N matrix A.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 *******************************************************************************
 *
 * @return
 *          \retval the norm described above.
 *
 *******************************************************************************
 *
 * @sa PLASMA_zlansy_Tile
 * @sa PLASMA_zlansy_Tile_Async
 * @sa PLASMA_clansy
 * @sa PLASMA_dlansy
 * @sa PLASMA_slansy
 *
 ******************************************************************************/
double PLASMA_zlansy(PLASMA_enum norm, PLASMA_enum uplo, int N,
                     PLASMA_Complex64_t *A, int LDA)
{
    int NB;
    int status;
    double value;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zlansy", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if ( (norm != PlasmaMaxNorm) && (norm != PlasmaOneNorm)
        && (norm != PlasmaInfNorm) && (norm != PlasmaFrobeniusNorm) ) {
        plasma_error("PLASMA_zlansy", "illegal value of norm");
        return -1;
    }
    if ( (uplo != PlasmaUpper) && (uplo != PlasmaLower) ) {
        plasma_error("PLASMA_zlansy", "illegal value of uplo");
        return -2;
    }
    if (N < 0) {
        plasma_error("PLASMA_zlansy", "illegal value of N");
        return -3;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_zlansy", "illegal value of LDA");
        return -5;
    }

    /* Quick return */
    if ( N == 0)
      return (double)0.0;

    /* Tune NB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_ZGEMM, N, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_zlansy", "plasma_tune() failed");
        return status;
    }

    /* Set NT */
    NB   = PLASMA_NB;

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_zooplap2tile( descA, A, NB, NB, LDA, N, 0, 0, N, N, sequence, &request,
                             plasma_desc_mat_free(&(descA)) );
    } else {
        plasma_ziplap2tile(  descA, A, NB, NB, LDA, N, 0, 0, N, N,
                            sequence, &request);
    }

    /* Call the tile interface */
    PLASMA_zlansy_Tile_Async(norm, uplo, &descA, &value, sequence, &request);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_dynamic_sync();
        plasma_desc_mat_free(&descA);
    } else {
        plasma_ziptile2lap( descA, A, NB, NB, LDA, N,  sequence, &request);
        plasma_dynamic_sync();
    }

    plasma_sequence_destroy(plasma, sequence);
    return value;
}
Beispiel #18
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t
 *
 *  PLASMA_zunglq - Generates an M-by-N matrix Q with orthonormal rows, which is defined as the
 *  first M rows of a product of the elementary reflectors returned by PLASMA_zgelqf.
 *
 *******************************************************************************
 *
 * @param[in] M
 *          The number of rows of the matrix Q. M >= 0.
 *
 * @param[in] N
 *          The number of columns of the matrix Q. N >= M.
 *
 * @param[in] K
 *          The number of rows of elementary tile reflectors whose product defines the matrix Q.
 *          M >= K >= 0.
 *
 * @param[in] A
 *          Details of the LQ factorization of the original matrix A as returned by PLASMA_zgelqf.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,M).
 *
 * @param[in] T
 *          Auxiliary factorization data, computed by PLASMA_zgelqf.
 *
 * @param[out] Q
 *          On exit, the M-by-N matrix Q.
 *
 * @param[in] LDQ
 *          The leading dimension of the array Q. LDQ >= max(1,M).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval PLASMA_SUCCESS <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_zunglq_Tile
 * @sa PLASMA_zunglq_Tile_Async
 * @sa PLASMA_cunglq
 * @sa PLASMA_dorglq
 * @sa PLASMA_sorglq
 * @sa PLASMA_zgelqf
 *
 ******************************************************************************/
int PLASMA_zunglq(int M, int N, int K,
                  PLASMA_Complex64_t *A, int LDA,
                  PLASMA_Complex64_t *T,
                  PLASMA_Complex64_t *Q, int LDQ)
{
    int NB, IB, IBNB, KT, NT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descQ, descT;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zunglq", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    if (M < 0) {
        plasma_error("PLASMA_zunglq", "illegal value of M");
        return -1;
    }
    if (N < M) {
        plasma_error("PLASMA_zunglq", "illegal value of N");
        return -2;
    }
    if (K < 0 || K > M) {
        plasma_error("PLASMA_zunglq", "illegal value of K");
        return -3;
    }
    if (LDA < max(1, M)) {
        plasma_error("PLASMA_zunglq", "illegal value of LDA");
        return -5;
    }
    if (LDQ < max(1, M)) {
        plasma_error("PLASMA_zunglq", "illegal value of LDQ");
        return -8;
    }
    /* Quick return - currently NOT equivalent to LAPACK's:
     * CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDQ ) */
    if (min(M, min(N, K)) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB & IB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_ZGELS, M, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_zunglq", "plasma_tune() failed");
        return status;
    }

    /* Set MT & NT */
    NB   = PLASMA_NB;
    IB   = PLASMA_IB;
    IBNB = IB*NB;
    NT   = (N%NB==0) ? (N/NB) : (N/NB+1);
    KT   = (K%NB==0) ? (K/NB) : (K/NB+1);

    plasma_sequence_create(plasma, &sequence);

    if (plasma->householder == PLASMA_FLAT_HOUSEHOLDER) {
        descT = plasma_desc_init(
            PlasmaComplexDouble,
            IB, NB, IBNB,
            KT*IB, NT*NB, 0, 0, KT*IB, NT*NB);
    }
    else {
        /* Double the size of T to accomodate the tree reduction phase */
        descT = plasma_desc_init(
            PlasmaComplexDouble,
            IB, NB, IBNB,
            KT*IB, 2*NT*NB, 0, 0, KT*IB, 2*NT*NB);
    }
    descT.mat = T;

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_zooplap2tile( descA, A, NB, NB, LDA, N, 0, 0, K, N, plasma_desc_mat_free(&(descA)) );
        plasma_zooplap2tile( descQ, Q, NB, NB, LDQ, N, 0, 0, M, N, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descQ)));
    } else {
Beispiel #19
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t
 *
 * PLASMA_zgetri - Computes the inverse of a matrix using the LU factorization
 * computed by PLASMA_zgetrf.
 * This method inverts U and then computes inv(A) by solving the system
 * inv(A)*L = inv(U) for inv(A).
 *
 *******************************************************************************
 *
 * @param[in] N
 *          The order of the matrix A. N >= 0.
 *
 * @param[in,out] A
 *          On entry, the triangular factor L or U from the
 *          factorization A = P*L*U as computed by PLASMA_zgetrf.
 *          On exit, if return value = 0, the inverse of the original
 *          matrix A.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[in] IPIV
 *          The pivot indices that define the permutations
 *          as returned by PLASMA_zgetrf.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *          \retval >0 if i, the (i,i) element of the factor U is
 *                exactly zero; The matrix is singular
 *                and its inverse could not be computed.
 *
 *******************************************************************************
 *
 * @sa PLASMA_zgetri_Tile
 * @sa PLASMA_zgetri_Tile_Async
 * @sa PLASMA_cgetri
 * @sa PLASMA_dgetri
 * @sa PLASMA_sgetri
 * @sa PLASMA_zgetrf
 *
 ******************************************************************************/
int PLASMA_zgetri(int N,
                  PLASMA_Complex64_t *A, int LDA,
                  int *IPIV)
{
    int NB;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA;
    PLASMA_desc descW;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zgetri", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (N < 0) {
        plasma_error("PLASMA_zgetri", "illegal value of N");
        return -1;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_zgetri", "illegal value of LDA");
        return -3;
    }
    /* Quick return */
    if (max(N, 0) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_ZGESV, N, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_zgetri", "plasma_tune() failed");
        return status;
    }

    /* Set NT */
    NB   = PLASMA_NB;

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_zooplap2tile( descA, A, NB, NB, LDA, N, 0, 0, N, N, sequence, &request,
                             plasma_desc_mat_free(&(descA)) );
    } else {
        plasma_ziplap2tile(  descA, A, NB, NB, LDA, N, 0, 0, N, N,
                            sequence, &request);
    }

    /* Allocate workspace */
    PLASMA_Alloc_Workspace_zgetri_Tile_Async(&descA, &descW);

    /* Call the tile interface */
    PLASMA_zgetri_Tile_Async(&descA, IPIV, &descW, sequence, &request);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_zooptile2lap( descA, A, NB, NB, LDA, N,  sequence, &request);
        plasma_dynamic_sync();
        plasma_desc_mat_free(&descA);
    } else {
        plasma_ziptile2lap( descA, A, NB, NB, LDA, N,  sequence, &request);
        plasma_dynamic_sync();
    }
    plasma_desc_mat_free(&(descW));

    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);
    return status;
}
Beispiel #20
0
/***************************************************************************//**
 *
 * @ingroup double
 *
 *  PLASMA_dgels - solves overdetermined or underdetermined linear systems involving an M-by-N
 *  matrix A using the QR or the LQ factorization of A.  It is assumed that A has full rank.
 *  The following options are provided:
 *
 *  # trans = PlasmaNoTrans and M >= N: find the least squares solution of an overdetermined
 *    system, i.e., solve the least squares problem: minimize || B - A*X ||.
 *
 *  # trans = PlasmaNoTrans and M < N:  find the minimum norm solution of an underdetermined
 *    system A * X = B.
 *
 *  Several right hand side vectors B and solution vectors X can be handled in a single call;
 *  they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 *  solution matrix X.
 *
 *******************************************************************************
 *
 * @param[in] trans
 *          Intended usage:
 *          = PlasmaNoTrans:   the linear system involves A;
 *          = PlasmaTrans: the linear system involves A**T.
 *          Currently only PlasmaNoTrans is supported.
 *
 * @param[in] M
 *          The number of rows of the matrix A. M >= 0.
 *
 * @param[in] N
 *          The number of columns of the matrix A. N >= 0.
 *
 * @param[in] NRHS
 *          The number of right hand sides, i.e., the number of columns of the matrices B and X.
 *          NRHS >= 0.
 *
 * @param[in,out] A
 *          On entry, the M-by-N matrix A.
 *          On exit,
 *          if M >= N, A is overwritten by details of its QR factorization as returned by
 *                     PLASMA_dgeqrf;
 *          if M < N, A is overwritten by details of its LQ factorization as returned by
 *                      PLASMA_dgelqf.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,M).
 *
 * @param[out] T
 *          On exit, auxiliary factorization data.
 *
 * @param[in,out] B
 *          On entry, the M-by-NRHS matrix B of right hand side vectors, stored columnwise;
 *          On exit, if return value = 0, B is overwritten by the solution vectors, stored
 *          columnwise:
 *          if M >= N, rows 1 to N of B contain the least squares solution vectors; the residual
 *          sum of squares for the solution in each column is given by the sum of squares of the
 *          modulus of elements N+1 to M in that column;
 *          if M < N, rows 1 to N of B contain the minimum norm solution vectors;
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= MAX(1,M,N).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_dgels_Tile
 * @sa PLASMA_dgels_Tile_Async
 * @sa PLASMA_cgels
 * @sa PLASMA_dgels
 * @sa PLASMA_sgels
 *
 ******************************************************************************/
int PLASMA_dgels(PLASMA_enum trans, int M, int N, int NRHS,
                 double *A, int LDA,
                 double *T,
                 double *B, int LDB)
{
    int i, j;
    int NB, IB, IBNB, MT, NT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descB, descT;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_dgels", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (trans != PlasmaNoTrans) {
        plasma_error("PLASMA_dgels", "only PlasmaNoTrans supported");
        return PLASMA_ERR_NOT_SUPPORTED;
    }
    if (M < 0) {
        plasma_error("PLASMA_dgels", "illegal value of M");
        return -2;
    }
    if (N < 0) {
        plasma_error("PLASMA_dgels", "illegal value of N");
        return -3;
    }
    if (NRHS < 0) {
        plasma_error("PLASMA_dgels", "illegal value of NRHS");
        return -4;
    }
    if (LDA < max(1, M)) {
        plasma_error("PLASMA_dgels", "illegal value of LDA");
        return -6;
    }
    if (LDB < max(1, max(M, N))) {
        plasma_error("PLASMA_dgels", "illegal value of LDB");
        return -9;
    }
    /* Quick return */
    if (min(M, min(N, NRHS)) == 0) {
        for (i = 0; i < max(M, N); i++)
            for (j = 0; j < NRHS; j++)
                B[j*LDB+i] = 0.0;
        return PLASMA_SUCCESS;
    }

    /* Tune NB & IB depending on M, N & NRHS; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_DGELS, M, N, NRHS);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_dgels", "plasma_tune() failed");
        return status;
    }

    /* Set MT, NT & NTRHS */
    NB    = PLASMA_NB;
    IB    = PLASMA_IB;
    IBNB  = IB*NB;
    NT    = (N%NB==0) ? (N/NB) : (N/NB+1);
    MT    = (M%NB==0) ? (M/NB) : (M/NB+1);

    plasma_sequence_create(plasma, &sequence);

    if (plasma->householder == PLASMA_FLAT_HOUSEHOLDER) {
        descT = plasma_desc_init(
            PlasmaRealDouble,
            IB, NB, IBNB,
            MT*IB, NT*NB, 0, 0, MT*IB, NT*NB);
    }
    else {
        /* Double the size of T to accomodate the tree reduction phase */
        descT = plasma_desc_init(
            PlasmaRealDouble,
            IB, NB, IBNB,
            MT*IB, 2*NT*NB, 0, 0, MT*IB, 2*NT*NB);
    }
    descT.mat = T;

    if ( M >= N ) {
        if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
            plasma_dooplap2tile( descA, A, NB, NB, LDA, N,    0, 0, M, N   , plasma_desc_mat_free(&(descA)) );
            plasma_dooplap2tile( descB, B, NB, NB, LDB, NRHS, 0, 0, M, NRHS, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)));
        } else {
Beispiel #21
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex32_t
 *
 *  PLASMA_csyrk - Performs one of the hermitian rank k operations
 *
 *    \f[ C = \alpha [ op( A ) \times conjfg( op( A )' )] + \beta C \f],
 *
 *  where op( X ) is one of
 *
 *    op( X ) = X  or op( X ) = conjfg( X' )
 *
 *  where alpha and beta are real scalars, C is an n-by-n hermitian
 *  matrix and A is an n-by-k matrix in the first case and a k-by-n
 *  matrix in the second case.
 *
 *******************************************************************************
 *
 * @param[in] uplo
 *          = PlasmaUpper: Upper triangle of C is stored;
 *          = PlasmaLower: Lower triangle of C is stored.
 *
 * @param[in] trans
 *          Specifies whether the matrix A is transposed or conjfugate transposed:
 *          = PlasmaNoTrans:   A is not transposed;
 *          = PlasmaTrans  :   A is transposed.
 *
 * @param[in] N
 *          N specifies the order of the matrix C. N must be at least zero.
 *
 * @param[in] K
 *          K specifies the number of columns of the matrix op( A ).
 *
 * @param[in] alpha
 *          alpha specifies the scalar alpha.
 *
 * @param[in] A
 *          A is a LDA-by-ka matrix, where ka is K when trans = PlasmaNoTrans,
 *          and is N otherwise.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA must be at least
 *          max( 1, N ), otherwise LDA must be at least max( 1, K ).
 *
 * @param[in] beta
 *          beta specifies the scalar beta
 *
 * @param[in,out] C
 *          C is a LDC-by-N matrix.
 *          On exit, the array uplo part of the matrix is overwritten
 *          by the uplo part of the updated matrix.
 *
 * @param[in] LDC
 *          The leading dimension of the array C. LDC >= max( 1, N ).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *
 *******************************************************************************
 *
 * @sa PLASMA_csyrk_Tile
 * @sa PLASMA_csyrk
 * @sa PLASMA_dsyrk
 * @sa PLASMA_ssyrk
 *
 ******************************************************************************/
int PLASMA_csyrk(PLASMA_enum uplo, PLASMA_enum trans, int N, int K,
                 PLASMA_Complex32_t alpha, PLASMA_Complex32_t *A, int LDA,
                 PLASMA_Complex32_t beta,  PLASMA_Complex32_t *C, int LDC)
{
    int NB;
    int Am, An;
    int status;
    PLASMA_desc descA, descC;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_csyrk", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }

    /* Check input arguments */
    if ((uplo != PlasmaUpper) && (uplo != PlasmaLower)) {
        plasma_error("PLASMA_csyrk", "illegal value of uplo");
        return -1;
    }
    if ((trans != PlasmaNoTrans) && (trans != PlasmaTrans)) {
        plasma_error("PLASMA_csyrk", "illegal value of trans");
        return -2;
    }
    if ( trans == PlasmaNoTrans ) { 
        Am = N; An = K;
    } else {
        Am = K; An = N;
    }
    if (N < 0) {
        plasma_error("PLASMA_csyrk", "illegal value of N");
        return -3;
    }
    if (K < 0) {
        plasma_error("PLASMA_csyrk", "illegal value of K");
        return -4;
    }
    if (LDA < max(1, Am)) {
        plasma_error("PLASMA_csyrk", "illegal value of LDA");
        return -7;
    }
    if (LDC < max(1, N)) {
        plasma_error("PLASMA_csyrk", "illegal value of LDC");
        return -10;
    }

    /* Quick return */
    if (N == 0 ||
        ((alpha == (PLASMA_Complex32_t)0.0 || K == 0.0) && beta == (PLASMA_Complex32_t)1.0))
        return PLASMA_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNBSIZE */
    status = plasma_tune(PLASMA_FUNC_CSYRK, N, K, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_csyrk", "plasma_tune() failed");
        return status;
    }

    /* Set MT & NT & KT */
    NB = PLASMA_NB;

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_cooplap2tile( descA, A, NB, NB, LDA, An, 0, 0, Am, An, plasma_desc_mat_free(&(descA)) );
        plasma_cooplap2tile( descC, C, NB, NB, LDC, N,  0, 0, N,  N,  plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descC)));
    } else {
Beispiel #22
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex32_t
 *
 *  PLASMA_cgetrf - Computes an LU factorization of a general M-by-N matrix A
 *  using the tile LU algorithm with partial tile pivoting with row interchanges.
 *
 *******************************************************************************
 *
 * @param[in] M
 *          The number of rows of the matrix A. M >= 0.
 *
 * @param[in] N
 *          The number of columns of the matrix A. N >= 0.
 *
 * @param[in,out] A
 *          On entry, the M-by-N matrix to be factored.
 *          On exit, the tile factors L and U from the factorization.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,M).
 *
 * @param[out] IPIV
 *          The pivot indices that define the permutations.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *          \retval >0 if i, U(i,i) is exactly zero. The factorization has been completed,
 *               but the factor U is exactly singular, and division by zero will occur
 *               if it is used to solve a system of equations.
 *
 *******************************************************************************
 *
 * @sa PLASMA_cgetrf_Tile
 * @sa PLASMA_cgetrf_Tile_Async
 * @sa PLASMA_cgetrf
 * @sa PLASMA_dgetrf
 * @sa PLASMA_sgetrf
 *
 ******************************************************************************/
int PLASMA_cgetrf(int M, int N,
                  PLASMA_Complex32_t *A, int LDA,
                  int *IPIV)
{
    int NB, NBNB, minMN;
    int status;
    PLASMA_desc descA ;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_cgetrf", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (M < 0) {
        plasma_error("PLASMA_cgetrf", "illegal value of M");
        return -1;
    }
    if (N < 0) {
        plasma_error("PLASMA_cgetrf", "illegal value of N");
        return -2;
    }
    if (LDA < max(1, M)) {
        plasma_error("PLASMA_cgetrf", "illegal value of LDA");
        return -4;
    }
    /* Quick return */
    if (min(M, N) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB & IB depending on M, N & NRHS; Set NBNBSIZE */
    status = plasma_tune(PLASMA_FUNC_CGESV, M, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_cgetrf", "plasma_tune() failed");
        return status;
    }

    /* Set NT & NTRHS */
    NB   = PLASMA_NB;
    NBNB = NB*NB;

    plasma_sequence_create(plasma, &sequence);

    descA = plasma_desc_init(
        PlasmaComplexFloat,
        NB, NB, NBNB,
        LDA, N, 0, 0, M, N);
    descA.mat = A;

    minMN = min(M, N);
    memset(IPIV, 0, minMN*sizeof(int));

    /* Call the tile interface */
    plasma_dynamic_call_4(plasma_pcgetrf_reclap,
        PLASMA_desc, descA,
        int*, IPIV,
        PLASMA_sequence*, sequence,
        PLASMA_request*, &request);

    plasma_dynamic_sync();

    /*
     * Generate the correct IPIV (Has to be move in a task)
     */
    { 
        int i, inc, tmp, j;
        for(i=1; i<descA.mt; i++) {
            inc = i*descA.mb;
            tmp = min( minMN - inc, descA.mb);
            if ( tmp < 1 )
              break;
            
            for (j=0; j<tmp; j++)
                IPIV[inc+j] = IPIV[inc+j] + inc;
        }
    }

    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);

    return status;
}
Beispiel #23
0
/***************************************************************************//**
 *
 * @ingroup float
 *
 *  PLASMA_ssygv - Computes all eigenvalues and, optionally,
 *  eigenvectors of a complex generalized Hermitian-definite
 *  eigenproblem of the form: A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 *  B*A*x=(lambda)*x.
 *  Here A and B are assumed to be Hermitian and B is also positive
 *  definite.
 *  Note: Only PlasmaNoVec supported!
 *
 *******************************************************************************
 *
 * @param[in] PlasmaItype
 *          Intended usage:
 *          = 1: A*x=(lambda)*B*x
 *          = 2: A*Bx=(lambda)*x 
 *          = 3: B*A*x=(lambda)*x 
 *
 * @param[in] jobz
 *          Intended usage:
 *          = PlasmaNoVec: computes eigenvalues only;
 *          = PlasmaVec: computes eigenvalues and eigenvectors.
 *          Note: Only PlasmaNoVec supported!
 *
 * @param[in] uplo
 *          Specifies whether the matrix A is upper triangular or
 *          lower triangular:
 *          = PlasmaUpper: Upper triangle of A and B are stored;
 *          = PlasmaLower: Lower triangle of A and B are stored.
 *
 * @param[in] N
 *          The order of the matrix A. N >= 0.
 *
 * @param[in,out] A
 *          On entry, the symmetric (or Hermitian) matrix A.
 *          If uplo = PlasmaUpper, the leading N-by-N upper triangular
 *          part of A contains the upper triangular part of the matrix
 *          A, and the strictly lower triangular part of A is not
 *          referenced.
 *          If uplo = PlasmaLower, the leading N-by-N lower triangular
 *          part of A contains the lower triangular part of the matrix
 *          A, and the strictly upper triangular part of A is not
 *          referenced.
 *          On exit, if jobz = PlasmaVec, then if return value = 0, A
 *          contains the matrix Z of eigenvectors.
 *          The eigenvectors are normalized as follows:
 *          if ITYPE = 1 or 2, Z**T*B*Z = I;
 *          if ITYPE = 3,      Z**T*inv(B)*Z = I.
 *          If jobz = PlasmaNoVec, then on exit the lower triangle (if
 *          uplo = PlasmaLower) or the upper triangle (if uplo =
 *          PlasmaUpper) of A, including the diagonal, is destroyed.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[in,out] B
 *          On entry, the symmetric (or Hermitian) positive definite
 *          matrix B.
 *          If uplo = PlasmaUpper, the leading N-by-N upper triangular
 *          part of B contains the upper triangular part of the matrix
 *          B, and the strictly lower triangular part of B is not
 *          referenced.
 *          If uplo = PlasmaLower, the leading N-by-N lower triangular
 *          part of B contains the lower triangular part of the matrix
 *          B, and the strictly upper triangular part of B is not
 *          referenced.
 *          On exit, if return value <= N, the part of B containing
 *          the matrix is overwritten by the triangular factor U or L
 *          from the Cholesky factorization B = U**T*U or B = L*L**T.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDA >= max(1,N).
 *
 * @param[out] W
 *          On exit, if info = 0, the eigenvalues.
 *
 * @param[in, out] descT
 *          On entry, descriptor as return by PLASMA_Alloc_Workspace_ssygv
 *          On exit, contains auxiliary factorization data.
 *
 * @param[out] Q
 *          On exit, if jobz = PlasmaVec and info = 0, the eigenvectors.
 *
 * @param[in] LDQ
 *          The leading dimension of Q.
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *          \retval <=N if INFO = i, plasma_ssygv failed to converge; i
 *               off-diagonal elements of an intermediate tridiagonal
 *               form did not converge to zero.
 *          \retval >N if INFO = N + i, for 1 <= i <= N, then the leading
 *                     minor of order i of B is not positive definite.
 *                     The factorization of B could not be completed and
 *                     no eigenvalues or eigenvectors were computed.
 *
 *******************************************************************************
 *
 * @sa PLASMA_ssygv_Tile
 * @sa PLASMA_ssygv_Tile_Async
 * @sa PLASMA_chegv
 * @sa PLASMA_dsygv
 * @sa PLASMA_ssygv
 *
 ******************************************************************************/
int PLASMA_ssygv(PLASMA_enum itype, PLASMA_enum jobz, PLASMA_enum uplo, int N,
                 float *A, int LDA,
                 float *B, int LDB,
                 float *W,
                 PLASMA_desc *descT,
                 float *Q, int LDQ)
{
    int NB, IB, IBNB, NT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descB, descQ;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_error("PLASMA_ssygv", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }

    /* Tune NB & IB depending on N; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_SSYGV, N, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_ssygv", "plasma_tune() failed");
        return status;
    }

    /* Set NT */
    NB   = PLASMA_NB;
    IB   = PLASMA_IB;
    IBNB = IB*NB;
    NT   = (N%NB==0) ? (N/NB) : (N/NB+1);

    /* Check input arguments */
    if (itype != 1 && itype != 2 && itype != 3) {
        plasma_error("PLASMA_ssygv", "Illegal value of itype");
        return -1;
    }
    if (jobz != PlasmaNoVec && jobz != PlasmaVec) {
        plasma_error("PLASMA_ssygv", "illegal value of jobz");
        return -2;
    }
    if (uplo != PlasmaLower && uplo!= PlasmaUpper) {
        plasma_error("PLASMA_ssygv", "only PlasmaLower supported");
        return -3;
    }
    if (N < 0) {
        plasma_error("PLASMA_ssygv", "illegal value of N");
        return -4;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_ssygv", "illegal value of LDA");
        return -6;
    }
    if (LDB < max(1, N)) {
        plasma_error("PLASMA_ssygv", "illegal value of LDB");
        return -8;
    }
    if ( (plasma_desc_check(descT) != PLASMA_SUCCESS) || 
         ( descT->m != NT*IB ) || (descT->n != NT*NB) ) {
        plasma_error("PLASMA_ssygv", "invalid T descriptor");
        return -10;
    }
    if (LDQ < max(1, N)) {
        plasma_error("PLASMA_ssygv", "illegal value of LDQ");
        return -12;
    }
    
    /* Quick return */
    if (N == 0)
        return PLASMA_SUCCESS;

    if (jobz == PlasmaVec) {
        plasma_error("PLASMA_ssygv", "computing the eigenvectors is not supported in this version");
        return -1;
    }

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_sooplap2tile( descA, A, NB, NB, LDA, N, 0, 0, N, N, 
                             plasma_desc_mat_free(&(descA)) );
        plasma_sooplap2tile( descB, B, NB, NB, LDB, N, 0, 0, N, N, 
                             plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)) );
        if (jobz == PlasmaVec) {
            /* No need for conversion, it's just output */
            plasma_sdesc_alloc( descQ, NB, NB, LDQ, N, 0, 0, N, N, 
                                plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)); plasma_desc_mat_free(&(descQ)) );
        }
Beispiel #24
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t
 *
 *  PLASMA_zhemm - Performs one of the matrix-matrix operations
 *
 *     \f[ C = \alpha \times A \times B + \beta \times C \f]
 *
 *  or
 *
 *     \f[ C = \alpha \times B \times A + \beta \times C \f]
 *
 *  where alpha and beta are scalars, A is an hermitian matrix and  B and
 *  C are m by n matrices.
 *
 *******************************************************************************
 *
 * @param[in] side
 *          Specifies whether the hermitian matrix A appears on the
 *          left or right in the operation as follows:
 *          = PlasmaLeft:      \f[ C = \alpha \times A \times B + \beta \times C \f]
 *          = PlasmaRight:     \f[ C = \alpha \times B \times A + \beta \times C \f]
 *
 * @param[in] uplo
 *          Specifies whether the upper or lower triangular part of
 *          the hermitian matrix A is to be referenced as follows:
 *          = PlasmaLower:     Only the lower triangular part of the
 *                             hermitian matrix A is to be referenced.
 *          = PlasmaUpper:     Only the upper triangular part of the
 *                             hermitian matrix A is to be referenced.
 *
 * @param[in] M
 *          Specifies the number of rows of the matrix C. M >= 0.
 *
 * @param[in] N
 *          Specifies the number of columns of the matrix C. N >= 0.
 *
 * @param[in] alpha
 *          Specifies the scalar alpha.
 *
 * @param[in] A
 *          A is a LDA-by-ka matrix, where ka is M when side = PlasmaLeft,
 *          and is N otherwise. Only the uplo triangular part is referenced.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,ka).
 *
 * @param[in] B
 *          B is a LDB-by-N matrix, where the leading M-by-N part of
 *          the array B must contain the matrix B.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= max(1,M).
 *
 * @param[in] beta
 *          Specifies the scalar beta.
 *
 * @param[in,out] C
 *          C is a LDC-by-N matrix.
 *          On exit, the array is overwritten by the M by N updated matrix.
 *
 * @param[in] LDC
 *          The leading dimension of the array C. LDC >= max(1,M).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *
 *******************************************************************************
 *
 * @sa PLASMA_zhemm_Tile
 * @sa PLASMA_chemm
 * @sa PLASMA_dhemm
 * @sa PLASMA_shemm
 *
 ******************************************************************************/
int PLASMA_zhemm(PLASMA_enum side, PLASMA_enum uplo, int M, int N,
                 PLASMA_Complex64_t alpha, PLASMA_Complex64_t *A, int LDA,
                                           PLASMA_Complex64_t *B, int LDB,
                 PLASMA_Complex64_t beta,  PLASMA_Complex64_t *C, int LDC)
{
    int NB;
    int Am;
    int status;
    PLASMA_desc descA, descB, descC;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zhemm", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }

    /* Check input arguments */
    if ( (side != PlasmaLeft) && (side != PlasmaRight) ){
        plasma_error("PLASMA_zhemm", "illegal value of side");
        return -1;
    }
    if ((uplo != PlasmaLower) && (uplo != PlasmaUpper)) {
        plasma_error("PLASMA_zhemm", "illegal value of uplo");
        return -2;
    }
    Am = ( side == PlasmaLeft ) ? M : N;
    if (M < 0) {
        plasma_error("PLASMA_zhemm", "illegal value of M");
        return -3;
    }
    if (N < 0) {
        plasma_error("PLASMA_zhemm", "illegal value of N");
        return -4;
    }
    if (LDA < max(1, Am)) {
        plasma_error("PLASMA_zhemm", "illegal value of LDA");
        return -7;
    }
    if (LDB < max(1, M)) {
        plasma_error("PLASMA_zhemm", "illegal value of LDB");
        return -9;
    }
    if (LDC < max(1, M)) {
        plasma_error("PLASMA_zhemm", "illegal value of LDC");
        return -12;
    }

    /* Quick return */
    if (M == 0 || N == 0 ||
        ((alpha == (PLASMA_Complex64_t)0.0) && beta == (PLASMA_Complex64_t)1.0))
        return PLASMA_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNBSIZE */
    status = plasma_tune(PLASMA_FUNC_ZHEMM, M, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_zhemm", "plasma_tune() failed");
        return status;
    }

    /* Set MT & NT & KT */
    NB = PLASMA_NB;

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_zooplap2tile( descA, A, NB, NB, LDA, Am, 0, 0, Am, Am, 
                             plasma_desc_mat_free(&(descA)) );
        plasma_zooplap2tile( descB, B, NB, NB, LDB, N,  0, 0, M,  N,
                             plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)));
        plasma_zooplap2tile( descC, C, NB, NB, LDC, N,  0, 0, M,  N,
                             plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)); plasma_desc_mat_free(&(descC)));
    } else {
Beispiel #25
0
/***************************************************************************//**
 *
 * @ingroup float
 *
 *  PLASMA_ssytrd - reduces a complex Hermitian matrix A to real symmetric
 *  tridiagonal form S using a two-stage approach
 *  First stage: reduction to band tridiagonal form (unitary Q1);
 *  Second stage: reduction from band to tridiagonal form (unitary
 *  Q2).  Let Q = Q1 * Q2 be the global unitary transformation; Q**T *
 *  A * Q = S.
 *  Not LAPACK compliant as A does not contain the T elements
 *  Note: Only PlasmaNoVec supported!
 *
 *******************************************************************************
 *
 * @param[in] jobz
 *          Intended usage:
 *          = PlasmaNoVec: computes eigenvalues only;
 *          = PlasmaVec: computes eigenvalues and eigenvectors.
 *          Note: Only PlasmaNoVec supported!
 *
 * @param[in] uplo
 *          Specifies whether the matrix A is upper triangular or
 *          lower triangular:
 *          = PlasmaUpper: Upper triangle of A is stored;
 *          = PlasmaLower: Lower triangle of A is stored.
 *
 * @param[in] N
 *          The order of the matrix A. N >= 0.
 *
 * @param[in,out] A
 *          On entry, the symmetric (or Hermitian) matrix A.
 *          If uplo = PlasmaUpper, the leading N-by-N upper triangular
 *          part of A contains the upper triangular part of the matrix
 *          A, and the strictly lower triangular part of A is not
 *          referenced.
 *          If uplo = PlasmaLower, the leading N-by-N lower triangular
 *          part of A contains the lower triangular part of the matrix
 *          A, and the strictly upper triangular part of A is not
 *          referenced.
 *          On exit, the lower triangle (if uplo = PlasmaLower) or the
 *          upper triangle (if uplo = PlasmaUpper) of A, including the
 *          diagonal, is destroyed.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[out] D
 *          On exit, the diagonal elements of the tridiagonal matrix: 
 *          D(i) = A(i,i).
 *
 * @param[out] E
 *          On exit, he off-diagonal elements of the tridiagonal matrix: 
 *          E(i) = A(i,i+1) if uplo = PlasmaUpper, E(i) = A(i+1,i) if uplo = PlasmaLower.
 *
 * @param[in, out] descT
 *          On entry, descriptor as return by PLASMA_Alloc_Workspace_ssyev
 *          On exit, contains auxiliary factorization data.
 *
 * @param[out] Q
 *          On exit, if jobz = PlasmaVec and info = 0, the eigenvectors.
 *
 * @param[in] LDQ
 *          The leading dimension of the array Q. LDQ >= max(1,N).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *          \retval >0 if INFO = i, the algorithm failed to converge; i
 *               off-diagonal elements of an intermediate tridiagonal
 *               form did not converge to zero.
 *
 *******************************************************************************
 *
 * @sa PLASMA_ssytrd_Tile
 * @sa PLASMA_ssytrd_Tile_Async
 * @sa PLASMA_chetrd
 * @sa PLASMA_dsytrd
 * @sa PLASMA_ssytrd
 *
 ******************************************************************************/
int PLASMA_ssytrd(PLASMA_enum jobz, PLASMA_enum uplo, int N,
                 float *A, int LDA,
                 float *D,
                 float *E,
                 PLASMA_desc *descT,
                 float *Q, int LDQ)
{
    int NB, IB, IBNB, NT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descQ;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_error("PLASMA_ssytrd", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }

    /* Tune NB & IB depending on N; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_SSYTRD, N, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_ssytrd", "plasma_tune() failed");
        return status;
    }

    /* Set NT */
    NB    = PLASMA_NB;
    IB    = PLASMA_IB;
    IBNB  = IB*NB;
    NT    = (N%NB==0) ? (N/NB) : (N/NB+1);

    /* Check input arguments */
    if (jobz != PlasmaNoVec && jobz != PlasmaVec) {
        plasma_error("PLASMA_ssytrd", "illegal value of jobz");
        return -1;
    }
    if (uplo != PlasmaLower && uplo != PlasmaUpper) {
        plasma_error("PLASMA_ssytrd", "illegal value of uplo");
        return -2;
    }
    if (N < 0) {
        plasma_error("PLASMA_ssytrd", "illegal value of N");
        return -3;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_ssytrd", "illegal value of LDA");
        return -5;
    }
    if ( (plasma_desc_check(descT) != PLASMA_SUCCESS) || 
         ( descT->m != NT*IB ) || (descT->n != NT*NB) ) {
        plasma_error("PLASMA_ssytrd", "invalid T descriptor");
        return -8;
    }
    if (LDQ < max(1, N)) {
        plasma_error("PLASMA_ssytrd", "illegal value of LDQ");
        return -10;
    }
    /* Quick return */
    if (N == 0)
        return PLASMA_SUCCESS;

    if (jobz == PlasmaVec) {
        plasma_error("PLASMA_ssytrd", "computing the eigenvectors is not supported in this version");
        return -1;
    }

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_sooplap2tile( descA, A, NB, NB, LDA, N,    0, 0, N, N   , plasma_desc_mat_free(&(descA)) );
        if (jobz == PlasmaVec) {
           plasma_sooplap2tile( descQ, Q, NB, NB, LDQ, N,    0, 0, N, N   , plasma_desc_mat_free(&(descQ)) );
        }
    } else {
        plasma_siplap2tile( descA, A, NB, NB, LDA, N,    0, 0, N, N   );
        if (jobz == PlasmaVec)
           plasma_siplap2tile( descQ, Q, NB, NB, LDQ, N,    0, 0, N, N   );
    }

    /* Call the tile interface */
    PLASMA_ssytrd_Tile_Async(jobz, uplo, &descA, D, E, descT, &descQ, sequence, &request);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_sooptile2lap( descA, A, NB, NB, LDA, N    );
        if (jobz == PlasmaVec) {
           plasma_sooptile2lap( descQ, Q, NB, NB, LDQ, N    );
        }
        plasma_dynamic_sync();
        plasma_desc_mat_free(&descA);
        if (jobz == PlasmaVec)
           plasma_desc_mat_free(&descQ);
    } else {
        plasma_siptile2lap( descA, A, NB, NB, LDA, N    );
        if (jobz == PlasmaVec)
           plasma_siptile2lap( descQ, Q, NB, NB, LDQ, N    );
        plasma_dynamic_sync();
    }

    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);
    return status;
}
Beispiel #26
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t
 *
 *  PLASMA_zcposv - Computes the solution to a system of linear equations A * X = B,
 *  where A is an N-by-N symmetric positive definite (or Hermitian positive definite
 *  in the complex case) matrix and X and B are N-by-NRHS matrices.
 *  The Cholesky decomposition is used to factor A as
 *
 *    A = U**H * U, if uplo = PlasmaUpper, or
 *    A = L * L**H, if uplo =  PlasmaLower,
 *
 *  where U is an upper triangular matrix and  L is a lower triangular matrix.
 *  The factored form of A is then used to solve the system of equations A * X = B.
 *
 *  PLASMA_zcposv first attempts to factorize the matrix in COMPLEX and use this
 *  factorization within an iterative refinement procedure to produce a
 *  solution with COMPLEX*16 normwise backward error quality (see below).
 *  If the approach fails the method switches to a COMPLEX*16
 *  factorization and solve.
 *
 *  The iterative refinement is not going to be a winning strategy if
 *  the ratio COMPLEX performance over COMPLEX*16 performance is too
 *  small. A reasonable strategy should take the number of right-hand
 *  sides and the size of the matrix into account. This might be done
 *  with a call to ILAENV in the future. Up to now, we always try
 *  iterative refinement.
 *
 *  The iterative refinement process is stopped if ITER > ITERMAX or
 *  for all the RHS we have: RNRM < N*XNRM*ANRM*EPS*BWDMAX
 *  where:
 *
 *  - ITER is the number of the current iteration in the iterative refinement process
 *  - RNRM is the infinity-norm of the residual
 *  - XNRM is the infinity-norm of the solution
 *  - ANRM is the infinity-operator-norm of the matrix A
 *  - EPS is the machine epsilon returned by DLAMCH('Epsilon').
 *
 *  Actually, in its current state (PLASMA 2.1.0), the test is slightly relaxed.
 *
 *  The values ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.
 *
 *******************************************************************************
 *
 * @param[in] uplo
 *          Specifies whether the matrix A is upper triangular or lower triangular:
 *          = PlasmaUpper: Upper triangle of A is stored;
 *          = PlasmaLower: Lower triangle of A is stored.
 *
 * @param[in] N
 *          The number of linear equations, i.e., the order of the matrix A. N >= 0.
 *
 * @param[in] NRHS
 *          The number of right hand sides, i.e., the number of columns of the matrix B.
 *          NRHS >= 0.
 *
 * @param[in] A
 *          The N-by-N symmetric positive definite (or Hermitian) coefficient matrix A.
 *          If uplo = PlasmaUpper, the leading N-by-N upper triangular part of A
 *          contains the upper triangular part of the matrix A, and the strictly lower triangular
 *          part of A is not referenced.
 *          If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower
 *          triangular part of the matrix A, and the strictly upper triangular part of A is not
 *          referenced.
 *          This matrix is not modified.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[in] B
 *          The N-by-NRHS matrix of right hand side matrix B.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= max(1,N).
 *
 * @param[out] X
 *          If return value = 0, the N-by-NRHS solution matrix X.
 *
 * @param[in] LDX
 *          The leading dimension of the array B. LDX >= max(1,N).
 *
 * @param[out] ITER
 *          The number of the current iteration in the iterative refinement process
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *          \retval >0 if i, the leading minor of order i of A is not positive definite, so the
 *               factorization could not be completed, and the solution has not been computed.
 *
 *******************************************************************************
 *
 * @sa PLASMA_zcposv_Tile
 * @sa PLASMA_zcposv_Tile_Async
 * @sa PLASMA_dsposv
 * @sa PLASMA_zposv
 *
 ******************************************************************************/
int PLASMA_zcposv(PLASMA_enum uplo, int N, int NRHS,
                  PLASMA_Complex64_t *A, int LDA,
                  PLASMA_Complex64_t *B, int LDB,
                  PLASMA_Complex64_t *X, int LDX, int *ITER)
{
    int NB;
    int status;
    PLASMA_desc  descA;
    PLASMA_desc  descB;
    PLASMA_desc  descX;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zcposv", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (uplo != PlasmaUpper && uplo != PlasmaLower) {
        plasma_error("PLASMA_zcposv", "illegal value of uplo");
        return -1;
    }
    if (N < 0) {
        plasma_error("PLASMA_zcposv", "illegal value of N");
        return -2;
    }
    if (NRHS < 0) {
        plasma_error("PLASMA_zcposv", "illegal value of NRHS");
        return -3;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_zcposv", "illegal value of LDA");
        return -5;
    }
    if (LDB < max(1, N)) {
        plasma_error("PLASMA_zcposv", "illegal value of LDB");
        return -7;
    }
    if (LDX < max(1, N)) {
        plasma_error("PLASMA_zcposv", "illegal value of LDX");
        return -10;
    }
    /* Quick return - currently NOT equivalent to LAPACK's
     * LAPACK does not have such check for ZCPOSV */
    if (min(N, NRHS) == 0)
        return PLASMA_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNBSIZE */
    status = plasma_tune(PLASMA_FUNC_ZCPOSV, N, N, NRHS);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_zcposv", "plasma_tune() failed");
        return status;
    }

    NB = PLASMA_NB;

    plasma_sequence_create(plasma, &sequence);

    /* DOUBLE PRECISION INITIALIZATION */
    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_zooplap2tile( descA, A, NB, NB, LDA, N,    0, 0, N, N   , plasma_desc_mat_free(&(descA)) );
        plasma_zooplap2tile( descB, B, NB, NB, LDB, NRHS, 0, 0, N, NRHS, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)) );
        plasma_zdesc_alloc(  descX, NB, NB, N, NRHS, 0, 0, N, NRHS, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descB)); plasma_desc_mat_free(&(descX)) );
    } else {
Beispiel #27
0
/***************************************************************************//**
 *
 * @ingroup PLASMA_Complex64_t
 *
 *  PLASMA_zgesvd - computes the singular value decomposition (SVD) of a complex
 *  M-by-N matrix A, optionally computing the left and/or right singular
 *  vectors. The SVD is written
 *
 *       A = U * SIGMA * transpose(V)
 *
 *  where SIGMA is an M-by-N matrix which is zero except for its
 *  min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
 *  V is an N-by-N orthogonal matrix.  The diagonal elements of SIGMA
 *  are the singular values of A; they are real and non-negative, and
 *  are returned in descending order.  The first min(m,n) columns of
 *  U and V are the left and right singular vectors of A.
 *
 *  Note that the routine returns V**T, not V.
 *  Not LAPACK Compliant for now!
 *  Note: Only PlasmaNoVec supported!
 *******************************************************************************
 *
 * @param[in] jobu
 *          Specifies options for computing all or part of the matrix U.
 *          Intended usage:
 *          = PlasmaVec: all M columns of U are returned in array U;
 *          = PlasmaNoVec: no columns of U (no left singular vectors) are
 *                     computed.
 *          Note: Only PlasmaNoVec supported!
 *
 * @param[in] jobvt
 *          Specifies options for computing all or part of the matrix V**H.
 *          Intended usage:
 *          = PlasmaVec: all M columns of U are returned in array U;
 *          = PlasmaNoVec: no columns of U (no left singular vectors) are
 *                     computed.
 *          Note: Only PlasmaNoVec supported!
 *
 * @param[in] M
 *          The number of rows of the matrix A. M >= 0.
 *
 * @param[in] N
 *          The number of columns of the matrix A. N >= 0.
 *
 * @param[in,out] A
 *          On entry, the M-by-N matrix A.
 *          On exit,
 *          if JOBU = 'O',  A is overwritten with the first min(m,n)
 *                          columns of U (the left singular vectors,
 *                          stored columnwise);
 *          if JOBVT = 'O', A is overwritten with the first min(m,n)
 *                          rows of V**H (the right singular vectors,
 *                          stored rowwise);
 *          if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
 *                          are destroyed.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,M).
 *
 * @param[out] S
 *          The double precision singular values of A, sorted so that S(i) >= S(i+1).
 *
 * @param[out] U
 *          (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
 *          If JOBU = 'A', U contains the M-by-M unitary matrix U;
 *          if JOBU = 'S', U contains the first min(m,n) columns of U
 *          (the left singular vectors, stored columnwise);
 *          if JOBU = 'N' or 'O', U is not referenced.
 *
 * @param[in] LDU
 *          The leading dimension of the array U.  LDU >= 1; if
 *          JOBU = 'S' or 'A', LDU >= M.
 *
 * @param[out] VT
 *         If JOBVT = 'A', VT contains the N-by-N unitary matrix
 *         V**H;
 *         if JOBVT = 'S', VT contains the first min(m,n) rows of
 *         V**H (the right singular vectors, stored rowwise);
 *         if JOBVT = 'N' or 'O', VT is not referenced.
 *
 * @param[in] LDVT
 *         The leading dimension of the array VT.  LDVT >= 1; if
 *         JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
 *
 * @param[in, out] descT
 *          On entry, descriptor as return by PLASMA_Alloc_Workspace_zgesvd
 *          On exit, contains auxiliary factorization data.
 *
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_zgesvd_Tile
 * @sa PLASMA_zgesvd_Tile_Async
 * @sa PLASMA_cgesvd
 * @sa PLASMA_dgesvd
 * @sa PLASMA_sgesvd
 *
 ******************************************************************************/
int PLASMA_zgesvd(PLASMA_enum jobu, PLASMA_enum jobvt, int M, int N,
                  PLASMA_Complex64_t *A, int LDA,
                  double *S,
                  PLASMA_Complex64_t *U, int LDU,
                  PLASMA_Complex64_t *VT, int LDVT,
                  PLASMA_desc *descT)
{
    int NB, IB, IBNB, minMN, MT, NT, minMTNT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descU, descVT;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_zgesvd", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    
    /* Tune NB & IB depending on M & N; Set NBNB */
    status = plasma_tune(PLASMA_FUNC_ZGESVD, M, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_zgesvd", "plasma_tune() failed");
        return status;
    }

    /* Set MT, NT */
    NB    = PLASMA_NB;
    IB    = PLASMA_IB;
    IBNB  = IB*NB;
    MT    = (M%NB==0) ? (M/NB) : (M/NB+1);
    NT    = (N%NB==0) ? (N/NB) : (N/NB+1);
    minMN = min(M,N);
    minMTNT = min(MT,NT);

    /* Check input arguments */
    if (jobu != PlasmaNoVec  && jobu !=PlasmaVec) {
        plasma_error("PLASMA_zgesvd", "illegal value of jobu");
        return -1;
    }
    if (jobvt != PlasmaNoVec && jobvt != PlasmaVec) {
        plasma_error("PLASMA_zgesvd", "illegal value of jobvt");
        return -2;
    }
    if (M < 0) {
        plasma_error("PLASMA_zgesvd", "illegal value of M");
        return -3;
    }
    if (N < 0) {
        plasma_error("PLASMA_zgesvd", "illegal value of N");
        return -4;
    }
    if (LDA < max(1, M)) {
        plasma_error("PLASMA_zgesvd", "illegal value of LDA");
        return -6;
    }
    if (LDU < 1) {
        plasma_error("PLASMA_zgesvd", "illegal value of LDU");
        return -9;
    }
    if (LDVT < 1) {
        plasma_error("PLASMA_zgesvd", "illegal value of LDVT");
        return -11;
    }
    if ( (plasma_desc_check(descT) != PLASMA_SUCCESS) || 
         ( descT->m != MT*IB ) || (descT->n != NT*NB) ) {
        plasma_error("PLASMA_zgesvd", "invalid T descriptor");
        return -12;
    }
    /* Quick return */
    if (min(M, N) == 0) {
        return PLASMA_SUCCESS;
    }

    if (jobu == PlasmaVec) {
        plasma_error("PLASMA_zgesvd", "computing the singular vectors is not supported in this version");
        return -1;
    }
    if (jobvt == PlasmaVec) {
        plasma_error("PLASMA_zgesvd", "computing the singular vectors is not supported in this version");
        return -2;
    }

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_zooplap2tile( descA,   A, NB, NB,  LDA, N, 0, 0, M, N, plasma_desc_mat_free(&(descA)) );
        if (jobu == PlasmaVec){
            plasma_zooplap2tile( descU,   U, NB, NB,  LDU, M, 0, 0, M, M, plasma_desc_mat_free(&(descA)); plasma_desc_mat_free(&(descU)));
        }
Beispiel #28
0
/***************************************************************************//**
 *
 * @ingroup double
 *
 *  PLASMA_dsygst - reduces a complex Hermitian-definite generalized
 *  eigenproblem to standard form.
 *  If PlasmaItype == 1, the problem is A*x = lambda*B*x, and A is
 *  overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
 *  If PlasmaItype == 2 or 3, the problem is A*B*x = lambda*x or B*A*x
 *  = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.  B must
 *  have been previously factorized as U**T*U or L*L**T by
 *  PLASMA_DPOTRF.
 *
 *******************************************************************************
 *
 * @param[in] PlasmaItype
 *          Intended usage:
 *          = 1: A*x=(lambda)*B*x
 *          = 2: A*Bx=(lambda)*x 
 *          = 3: B*A*x=(lambda)*x 
 *
 * @param[in] uplo
 *          Specifies whether the matrix A is upper triangular or
 *          lower triangular:
 *          = PlasmaUpper: Upper triangle of A is stored;
 *          = PlasmaLower: Lower triangle of A is stored.
 *
 * @param[in] N
 *          The order of the matrices A and B. N >= 0.
 *
 * @param[in,out] A
 *          On entry, the symmetric (or Hermitian) matrix A.
 *          If uplo = PlasmaUpper, the leading N-by-N upper triangular
 *          part of A contains the upper triangular part of the matrix
 *          A, and the strictly lower triangular part of A is not
 *          referenced.
 *          If uplo = PlasmaLower, the leading N-by-N lower triangular
 *          part of A contains the lower triangular part of the matrix
 *          A, and the strictly upper triangular part of A is not
 *          referenced.
 *          On exit, if return value == 0, the transformed matrix,
 *          stored in the same format as A.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[in,out] B
 *          On entry, the triangular factor from the Cholesky
 *          factorization of B, as returned by PLASMA_DPOTRF.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= max(1,N).
 *
 *******************************************************************************
 *
 * @return
 *          \retval PLASMA_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa PLASMA_dsygst_Tile
 * @sa PLASMA_dsygst_Tile_Async
 * @sa PLASMA_chegst
 * @sa PLASMA_dsygst
 * @sa PLASMA_ssygst
 *
 ******************************************************************************/
int PLASMA_dsygst(PLASMA_enum itype, PLASMA_enum uplo, int N,
                  double *A, int LDA,
                  double *B, int LDB)
{
    int NB, IB, IBNB, NT;
    int status;
    plasma_context_t *plasma;
    PLASMA_sequence *sequence = NULL;
    PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
    PLASMA_desc descA, descB;

    plasma = plasma_context_self();
    if (plasma == NULL) {
        plasma_fatal_error("PLASMA_dsygst", "PLASMA not initialized");
        return PLASMA_ERR_NOT_INITIALIZED;
    }
    /* Check input arguments */
    if (itype != 1 && itype != 2 && itype != 3) {
        plasma_error("PLASMA_dsygst", "Illegal value of itype");
        return -1;
    }
    if (uplo != PlasmaUpper && uplo != PlasmaLower) {
        plasma_error("PLASMA_dsygst", "Illegal value of uplo");
        return -2;
    }
    if (N < 0) {
        plasma_error("PLASMA_dsygst", "illegal value of N");
        return -3;
    }
    if (LDA < max(1, N)) {
        plasma_error("PLASMA_dsygst", "illegal value of LDA");
        return -5;
    }
    if (LDB < max(1, N)) {
        plasma_error("PLASMA_dsygst", "illegal value of LDB");
        return -7;
    }
    /* Quick return */
    if (N == 0)
        return PLASMA_SUCCESS;

    /* Tune NB & IB depending on M, N & NRHS; Set NBNBSIZE */
    status = plasma_tune(PLASMA_FUNC_DSYGST, N, N, 0);
    if (status != PLASMA_SUCCESS) {
        plasma_error("PLASMA_dsygst", "plasma_tune() failed");
        return status;
    }

    /* Set NT */
    NB   = PLASMA_NB;
    IB   = PLASMA_IB;
    IBNB = IB*NB;
    NT   = (N%NB==0) ? (N/NB) : (N/NB+1);

    plasma_sequence_create(plasma, &sequence);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_dooplap2tile( descA, A, NB, NB, LDA, N, 0, 0, N, N, plasma_desc_mat_free(&(descA)) );
        plasma_dooplap2tile( descB, B, NB, NB, LDB, N, 0, 0, N, N, plasma_desc_mat_free(&(descB)) );
    } else {
        plasma_diplap2tile( descA, A, NB, NB, LDA, N, 0, 0, N, N);
        plasma_diplap2tile( descB, B, NB, NB, LDB, N, 0, 0, N, N);
    }

    /* Call the tile interface */
    PLASMA_dsygst_Tile_Async(itype, uplo, &descA, &descB, sequence, &request);

    if ( PLASMA_TRANSLATION == PLASMA_OUTOFPLACE ) {
        plasma_dooptile2lap( descA, A, NB, NB, LDA, N );
        plasma_dooptile2lap( descB, B, NB, NB, LDB, N );
        plasma_dynamic_sync();
        plasma_desc_mat_free(&descA);
        plasma_desc_mat_free(&descB);
    } else {
        plasma_diptile2lap( descA, A, NB, NB, LDA, N );
        plasma_diptile2lap( descB, B, NB, NB, LDB, N );
        plasma_dynamic_sync();
    }

    status = sequence->status;
    plasma_sequence_destroy(plasma, sequence);
    return status;
}