Beispiel #1
0
int
main(int argc, const char **argv)
{
  int i;
  playerc_client_t *client;
  playerc_position2d_t *position2d;

  // Create a client and connect it to the server.
  client = playerc_client_create(NULL, "localhost", 6666);
  if (0 != playerc_client_connect(client))
    return -1;

  // Create and subscribe to a position2d device.
  position2d = playerc_position2d_create(client, 1);
  if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE))
    return -1;

  // Make the robot spin!
  if (0 != playerc_position2d_set_cmd_vel(position2d, 0.25, 0, DTOR(40.0), 1))
    return -1;

  for (i = 0; i < 200; i++)
  {
    // Wait for new data from server
    playerc_client_read(client);

    // Print current robot pose
    printf("position2d : %f %f %f\n",
           position2d->px, position2d->py, position2d->pa);
  }

  // Shutdown
  playerc_position2d_unsubscribe(position2d);
  playerc_position2d_destroy(position2d);
  playerc_client_disconnect(client);
  playerc_client_destroy(client);

  return 0;
}
Beispiel #2
0
int
main(int argc, char **argv)
{
  // Initialize movement parameters  (default to a square)
  int n = 4;
  int l = 65;
  int v = 50;
  int a = 90;

  // Parse command-line arguements
  int option_index = 0;
  static struct option long_options[] = {
    {"line",     0, 0, 0 },
    {"triangle", 0, 0, 1 },
    {"square",   0, 0, 2 },
    {"pentagon", 0, 0, 3 },
    {"hexagon",  0, 0, 4 },
    {0,          0, 0, 0 }
  };

  int shape_set = false;
  int angle_set = false;
  int num_set = false;
  int reverse_direction = false;
  int smooth_acceleration = false;
  int c;
  while ((c = getopt_long(argc, argv, "l:v:n:a:rs",
              long_options, &option_index)) != -1)
    switch (c) {
      case 0: // line
        n = 2; a = 180; shape_set = true; break;
      case 1: // triangle
        n = 3; a = 120; shape_set = true; break;
      case 2: // square
        n = 4; a = 90; shape_set = true; break;
      case 3: // pentagon
        n = 5; a = 72; shape_set = true; break;
      case 4: // hexagon
        n = 6; a = 60; shape_set = true; break;
      case 'l': // 0 to 200 cm (default 65)
        l = atoi(optarg); break;
      case 'v': // 0 to 50 cm/sec (default 50)
        v = atoi(optarg); break;
      case 'n': // 0 to 10 (default 4)
        n = atoi(optarg); num_set = true; break;
      case 'a': // 0 to 180 degrees (default 90)
        a = atoi(optarg); angle_set = true; break;
      case 'r':
        reverse_direction = true; break;
      case 's':
        smooth_acceleration = true; break;
      case '?':
        if (optopt == 'v' || optopt == 'a' || optopt == 'l' || optopt == 'n')
          fprintf (stderr, "Option -%c requires an argument.\n", optopt);
        else if (isprint (optopt))
          fprintf (stderr, "Unknown option `-%c'.\n", optopt);
        else
          fprintf (stderr, "Unknown option character `\\x%x'.\n", optopt);
        return 1;
      default:
        printf("Bad arguments.\n\nUsage: dead_reckoning -n <number of sides> "
               "-l <length of each side> -v <velocity (cm/sec)> "
               "-a <turning angle (degrees)>");
        exit(1);
    }
  int i = 0;
  for (i = optind; i < argc; i++)
    printf ("Non-option argument %s\n", argv[i]);

  if(!shape_set && (!num_set || !angle_set)) {
    printf("\nYou need to specify a shape (by name, or with the arguments "
           "'n' and 'a').\n\nUsage: dead_reckoning --<shape> "
           "[-l <side length>] [-v <velocity>] [-r] [-s]\n\n"
           "Alternative usage: dead_reckoning -n <number of sides> "
           "-a <angle of each corner in degrees> "
           "[-l <length of each side>] [-v <velocity>]\n\n"
           "Valid shapes are: line, triangle, square, pentagon, hexagon\n"
           "Side length is in cm. Valid range is [10,200]. Default value is 65.\n"
           "Velocity is in cm/sec. Valid range is [10,50]. Default value is 50.\n"
           "The -r option reverses the turn direction (clockwise by default)\n"
           "The -s option enables smooth acceleration and deceleration\n\n"
           "e.g. dead_reckoning --hexagon\n"
           "e.g. dead_reckoning --hexagon -l 100\n"
           "e.g. dead_reckoning --hexagon -l 100 -v 40\n"
           "e.g. dead_reckoning -n 6 -a 60 -l 100 -v 40\n\n");
    exit(1);
  }

  // Initialize player
  i = 0;
  playerc_client_t *client;
  playerc_position2d_t *position2d;

  // Create a client and connect it to the server.
  client = playerc_client_create(NULL, "localhost", 6665);
  if (0 != playerc_client_connect(client))
    return -1;

  // Create and subscribe to a position2d device.
  position2d = playerc_position2d_create(client, 0);
  if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE))
    return -1;

  // Read initial position
  playerc_client_read(client);
  double start_x = position2d->px;
  double start_y = position2d->py;
  double start_a = position2d->pa;

  // Convert parameters to motor control arguments
  double max_vel = 0.01 * v;
  int move_time = l * 28000;
  move_time *= 50.0 / (double)v;
  double max_turn_speed = 1.57;     // 90 degrees per second
  int turn_time = (int)(((double)a/90.0) * 560000);
  int d = -1;
  if (reverse_direction) d = 1;

  // Move the robot (e.g. square)
  double accel_rate = 0.01;         // 2 meters per sec^2
  double turn_accel_rate = 0.0314;  // 360 degrees per sec^2
  int cycle_time = 5000;            // 5 miliseconds
  for (i = 0; i < n; ++i) {
    // FORWARD
    int acceleration_time = 0;
    double vel = 0;
    int t = 0;
    if (smooth_acceleration) {
      // accelerate (up to max speed in 0.25 seconds)
      acceleration_time = (max_vel / accel_rate) * cycle_time;
      for (; vel < max_vel && t < move_time / 2;
          t += cycle_time, vel += accel_rate, usleep(cycle_time))
        if (playerc_position2d_set_cmd_vel(position2d, vel, 0, 0, 1)) return -1;
    }
    //max forward speed
    if (playerc_position2d_set_cmd_vel(position2d, max_vel, 0, 0, 1)) return -1;
    usleep(move_time - acceleration_time);  // not 2x acceleration time in order to make
                                            // up for ground not covered durring acceleration
                                            // (at an average of half of full speed)
    if (smooth_acceleration) {
      // decelerate
      for (; vel >= 0; vel -= accel_rate, usleep(cycle_time))
        if (playerc_position2d_set_cmd_vel(position2d, vel, 0, 0, 1)) return -1;
    }    
    
    // TURN
    double turn_speed = 0;
    if (smooth_acceleration) {
      // accelerate (up to max speed in 0.25 seconds)
      acceleration_time = (max_turn_speed / turn_accel_rate) * cycle_time;
      for (t = 0; turn_speed < max_turn_speed && t < move_time / 2;
          t += cycle_time, turn_speed += turn_accel_rate, usleep(cycle_time))
        if (playerc_position2d_set_cmd_vel(position2d, 0, 0, d * turn_speed, 1)) return -1;
    }
    // max turn speed
    if (playerc_position2d_set_cmd_vel(position2d, 0, 0, d * max_turn_speed, 1)) return -1;
    usleep(turn_time - acceleration_time);
    if (smooth_acceleration) {
      // decelerate
      for (; turn_speed >= 0; turn_speed -= turn_accel_rate, usleep(cycle_time))
        if (playerc_position2d_set_cmd_vel(position2d, 0, 0, d * turn_speed, 1)) return -1;
    }
  }
  // Stop
  if (playerc_position2d_set_cmd_vel(position2d, 0, 0, 0, 1)) return -1;
  
  // Read final position, get error
  playerc_client_read(client);
  double error_x = position2d->px - start_x;
  double error_y = position2d->py - start_y;
  double error_a = position2d->pa - start_a;

  // Report odometry error
  printf("\n\nMovement error according to onboard odometry:\n"
         "\tX pos: %f cm\n\tY pos: %f cm\n\tAngle: %f degrees\n",
         error_x * 100, error_y * 100, error_a * -57.325);

  // Shutdown
  playerc_position2d_unsubscribe(position2d);
  playerc_position2d_destroy(position2d);
  playerc_client_disconnect(client);
  playerc_client_destroy(client);

  return 0;
}
Beispiel #3
0
int main(int argc, const char **argv)
{
    //Variaveis
    int degrees,PosRelX,PosRelY;
    float radians,Dlaser,ODM_ang, ang;
    int width = 500, height = 500; //Coloque o tamanho do mapa aqui (em pixel)
    int centroX = (width / 2);
    int centroY = (height / 2);
    playerc_client_t *client;
    playerc_laser_t *laser;
    playerc_position2d_t *position2d;
    CvPoint pt,pt1,pt2;
    CvScalar cinzaE,preto,cinzaC;
    char window_name[] = "Mapa";

    IplImage* image = cvCreateImage( cvSize(width,height), 8, 3 );
    cvNamedWindow(window_name, 1 );
    preto = CV_RGB(0, 0, 0);        //Para indicar obstaculos
    cinzaE = CV_RGB(92, 92, 92);    //Para indicar o desconhecido
    cinzaC = CV_RGB(150, 150, 150); //Para indicar espacos livres
printf ("debug: 11 - INICIO\n");
    client = playerc_client_create(NULL, "localhost", 6665);
printf ("debug: 12\n");
    if (playerc_client_connect(client) != 0)
    return -1;
printf ("debug: 13\n");
    laser = playerc_laser_create(client, 0);
printf ("debug: 21\n");
    if (playerc_laser_subscribe(laser, PLAYERC_OPEN_MODE))
    return -1;
printf ("debug: 22\n");

    position2d = playerc_position2d_create(client, 0);
    if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE) != 0) {
        printf ("err1\n");
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }
    
printf ("debug: 23\n");
    if (playerc_client_datamode (client, PLAYERC_DATAMODE_PULL) != 0) {
        printf ("err2\n");
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }
printf ("debug: 24\n");
    if (playerc_client_set_replace_rule (client, -1, -1, PLAYER_MSGTYPE_DATA, -1, 1) != 0) {
        printf ("err3\n");
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }
    

    playerc_position2d_enable(position2d, 1);  // Liga os motores
printf ("debug: 25\n");    
    playerc_position2d_set_odom(position2d, 0, 0, 0);  // Zera o odômetro

    cvSet(image, cinzaE,0); //Preencha a imagem com fundo cinza escuro
    pt.x = centroX;  // Zera a coordenada X
    pt.y = centroY;  // Zera a coordenada Y

/*
    if( 0 != playerc_position2d_set_cmd_vel(position2d, 0, 0, DTOR(40.0), 1))
        return -1;
  */  
    
    while(1) {
printf ("debug: 26\n");
        playerc_client_read(client);
printf ("debug: 27\n");
        //cvSaveImage("mapa1.jpg",image,0);
printf ("debug: 28\n");        
        //playerc_client_read(client);
printf ("debug: 29\n");
        for (degrees = 2; degrees <= 360; degrees+=2) {
printf ("debug: 30\n");              
            Dlaser = laser->scan[degrees][0];
printf ("debug: 31\n");              
            if (Dlaser < 8) {
                radians = graus2rad (degrees/2);      //Converte o angulo do laser em graus para radianos
printf ("debug: 32\n");                              
                ODM_ang = position2d->pa;             //Obtem o angulo relativo do robo
                ang = ((1.5*PI)+radians+ODM_ang);     //Converte o angulo relativo em global
printf ("debug: 33\n");
                PosRelX = arredonda(position2d->px);  //Posicao X relativa do robo
                PosRelY = arredonda(position2d->py);  //Posicao Y relativa do robo
printf ("debug: 34\n");
                pt1.y = (centroY-PosRelY);            //Coordenada y global do robo
                pt1.x = (centroX+PosRelX);            //Coordenada x global do robo

                //converte coordenadas polares para retangulares (global)
printf ("debug: 35\n");
                pt.y = (int)(pt1.y-(sin(ang)*Dlaser*10));
                pt.x = (int)(pt1.x+(cos(ang)*Dlaser*10));

printf ("debug: 36\n");
                //Desenha a area livre
                cvLine(image, pt1,pt,cinzaC, 1,4,0);

printf ("debug: 37\n");
                //Marca o objeto no mapa
                cvLine(image, pt,pt,preto, 1,4,0);
printf ("debug: 38\n");
                //Mostra o resultado do mapeamento na tela
                //cvShowImage(window_name, image );
printf ("debug: 39\n");
                //cvWaitKey(10);
printf ("debug: 40\n");
            }
        }
    }

    //Desconecta o player
printf ("debug: 41\n");
    playerc_laser_unsubscribe(laser);
printf ("debug: 42\n");
    playerc_laser_destroy(laser);
printf ("debug: 43\n");
    playerc_client_disconnect(client);
printf ("debug: 44\n");
    playerc_client_destroy(client);
printf ("debug: 45\n");

    //Destroi a janela OpenCV
    cvReleaseImage(&image);
printf ("debug: 46\n");
    cvDestroyWindow(window_name);
printf ("debug: 47\n");
    return 0;
}
Beispiel #4
0
int main(int argc, const char **argv) {
    int i;
    int porta = 6665;
    double x, y;
    char livre;
    char end_ip[20];

    // OpenCV Variables  
    char wndname[30] = "Drawing Demo";
    int line_type = CV_AA; // change it to 8 to see non-antialiased graphics
    CvPoint pt1, pt2;
    IplImage* image;
    int width = MAX_X, height = MAX_Y; // 200 x 100 pixels 

    // Player-Stage Variables
    playerc_client_t *client;
    playerc_position2d_t *position2d;
    playerc_laser_t *laser;

    // Create a window
    image = cvCreateImage(cvSize(width, height), 8, 3);
    cvNamedWindow(wndname, 1);
    cvZero(image);
    pt1.x = 100;
    pt1.y = MAX_Y;
    pt2.x = 100;
    pt2.y = MAX_Y - 80;
    cvLine(image, pt1, pt2, CV_RGB(255, 255, 255), 2, line_type, 0);
    pt2.x = 20;
    pt2.y = MAX_Y;
    cvLine(image, pt1, pt2, CV_RGB(255, 255, 255), 2, line_type, 0);
    pt2.x = 180;
    pt2.y = MAX_Y;
    cvLine(image, pt1, pt2, CV_RGB(255, 255, 255), 2, line_type, 0);
    cvShowImage(wndname, image);
    cvWaitKey(1000);

    cvZero(image);
    pt1.x = 20;
    pt1.y = MAX_Y;
    pt2.x = 160;
    pt2.y = MAX_Y - 80;
    cvRectangle(image, pt1, pt2, CV_RGB(255, 255, 255), 2, line_type, 0);
    cvShowImage(wndname, image);
    cvWaitKey(1000);

    strcpy(end_ip, "localhost");

    if (argc >= 2) /* Get Port */
        porta = atoi(argv[1]);
    if (argc >= 3) /* Get IP Address */
        strcpy(end_ip, argv[2]);

    printf("Porta: %d\n", porta);
    printf("IP: %s\n", end_ip);

    client = playerc_client_create(NULL, end_ip, porta);
    if (playerc_client_connect(client) != 0)
        return -1;

    // Connect to Position
    position2d = playerc_position2d_create(client, 0);
    if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE) != 0) {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    // Enable motor control
    playerc_position2d_enable(position2d, 1);

    // Connect to Laser
    laser = playerc_laser_create(client, 0);
    if (playerc_laser_subscribe(laser, PLAYERC_OPEN_MODE))
        return -1;

    // Read several times the robot data (delay)
    playerc_client_read(client);
    playerc_client_read(client);
    playerc_client_read(client);
    playerc_client_read(client);
    playerc_client_read(client);

    while (1) {
        playerc_client_read(client);

        // scan for free 100 cm in front of robot
        livre = 1;
        cvZero(image);
        for (i = 0; i < 360; i++) {
            if ((laser->scan[i][0]) < 0.5)
                livre = 0;

            //  Debug: if (laser->scan[i][0] <= 0) printf("#");

            if (laser->scan[i][0] < 7.8) {
                x = laser->scan[i][0] * cos(laser->scan[i][1] + 3.1415926 / 2.0);
                y = laser->scan[i][0] * sin(laser->scan[i][1] + 3.1415926 / 2.0);

                pt1.x = (int) (x * 10 + 100);
                pt1.y = (int) (MAX_Y - y * 10);
                cvCircle(image, pt1, 2, CV_RGB(255, 255, 255), 1, line_type, 0);
            }
        }
        cvShowImage(wndname, image);

        // if free moves, otherwise turns
        if (livre)
            playerc_position2d_set_cmd_vel(position2d, 0.2, 0, 0.0, 1);
        else
            playerc_position2d_set_cmd_vel(position2d, 0.0, 0, 0.4, 1);

        cvWaitKey(10);
    }

    playerc_laser_unsubscribe(laser);
    playerc_laser_destroy(laser);
    playerc_client_disconnect(client);
    playerc_client_destroy(client);

    return 0;
}
Beispiel #5
0
int
player_update()
{
  int i;

  if (NULL != playerc_client_read(g_client))
  {
    if (NULL != g_camera)
    {
      // Decompress the image if necessary
      playerc_camera_decompress(g_camera);
      assert(allocated_size > g_camera->image_count*3);
      // figure out the colorspace
      switch (g_camera->format)
      {
        case PLAYER_CAMERA_FORMAT_MONO8:
          // we should try to use the alpha layer,
          // but for now we need to change
          // the image data
          for (i=0;i<g_camera->image_count;++i)
          {

            memcpy(g_img+i*3, g_camera->image+i, 3);
          }
          break;
        case PLAYER_CAMERA_FORMAT_MONO16:
    	{
          int j = 0;
          // Transform to MONO8
          for (i = 0; i < g_camera->image_count; i++, j+=2)
          {
            g_img[i*3+1] = g_img[i*3+2] = g_img[i*3+3] =
          	  ((unsigned char)(g_camera->image[j]) << 8) +
          	  (unsigned char)(g_camera->image[j+1]);
          }
          break;
        }
        case PLAYER_CAMERA_FORMAT_RGB888:
          // do nothing
          memcpy(g_img, g_camera->image, g_camera->image_count);
          break;
        default:
          g_print("Unknown camera format: %i\n", g_camera->format);
          exit(-1);
      }
      g_width  = g_camera->width;
      g_height = g_camera->height;
    }

    if (NULL != g_blobfinder)
    {
      g_blob_count = PLAYERCAM_MAX_BLOBS < g_blobfinder->blobs_count ? PLAYERCAM_MAX_BLOBS : g_blobfinder->blobs_count;
      memcpy(g_blobs,
             g_blobfinder->blobs,
             g_blob_count*sizeof(player_blobfinder_blob_t));


      if ((g_width  != g_blobfinder->width) ||
          (g_height != g_blobfinder->height))
      {
        g_print("camera and blobfinder height or width do not match %d,%d != %d,%d\n",g_width,g_height,g_blobfinder->width,g_blobfinder->height);
        // should we die here?
        //exit(-1);
      }
    }
  }
  else
  {
    g_print("ERROR reading player g_client\n");
    //exit(-1);
  }
  return 0;
}
Beispiel #6
0
int
player_init(int argc, char *argv[])
{
  int csize, usize, i;

  if(get_options(argc, argv) < 0)
  {
    print_usage();
    exit(-1);
  }

  // Create a g_client object and connect to the server; the server must
  // be running on "localhost" at port 6665
  g_client = playerc_client_create(NULL, g_hostname, g_port);
  playerc_client_set_transport(g_client, g_transport);
  if (0 != playerc_client_connect(g_client))
  {
    fprintf(stderr, "error: %s\n", playerc_error_str());
    exit(-1);
  }

/*  if (0 != playerc_client_datafreq(g_client, 20))
  {
    fprintf(stderr, "error: %s\n", playerc_error_str());
    return -1;
  }
*/

  // Create a camera proxy (device id "camera:index") and susbscribe
  g_camera = playerc_camera_create(g_client, g_camera_index);
  if (0 != playerc_camera_subscribe(g_camera, PLAYER_OPEN_MODE))
  {
    fprintf(stderr, "camera error: %s\n", playerc_error_str());
    fprintf(stderr, "playercam will attempt to continue without a camera\n");
    playerc_camera_destroy(g_camera);
    g_camera = NULL;
  }

  // Create a blobfinder proxy (device id "blobfinder:index") and susbscribe
  g_blobfinder = playerc_blobfinder_create(g_client, g_blobfinder_index);
  if (0 != playerc_blobfinder_subscribe(g_blobfinder, PLAYER_OPEN_MODE))
  {
    fprintf(stderr, "blobfinder error: %s\n", playerc_error_str());
    fprintf(stderr, "playercam will attempt to continue without a blobfinder\n");
    playerc_blobfinder_destroy(g_blobfinder);
    g_blobfinder = NULL;
  }

  if ((NULL == g_camera) && (NULL == g_blobfinder))
  {
    fprintf(stderr, "we need either a camera or blobfinder! aborting\n");
    exit(-1);
  }

  // Get up to 10 images until we have a valid frame (g_wdith > 0)
  for (i=0, g_width=0; i < 10 && g_width==0 && NULL != playerc_client_read(g_client); ++i)
  {
    if (NULL != g_camera)
    {
      // Decompress the image
      csize = g_camera->image_count;
      playerc_camera_decompress(g_camera);
      usize = g_camera->image_count;

      g_print("camera: [w %d h %d d %d] [%d/%d bytes]\n",
              g_camera->width, g_camera->height, g_camera->bpp, csize, usize);

      g_width  = g_camera->width;
      g_height = g_camera->height;
      if (allocated_size != usize)
      {
    	  g_img = realloc(g_img, usize);
        allocated_size = usize;
      }
    }
    else // try the blobfinder
    {
      g_print("blobfinder: [w %d h %d]\n",
              g_blobfinder->width, g_blobfinder->height);

      g_width  = g_blobfinder->width;
      g_height = g_blobfinder->height;
      usize = g_width * g_height * 3;
      if (allocated_size != usize)
      {
        g_img = realloc(g_img, usize);
        allocated_size = usize;
      }
      // set the image data to 0 since we don't have a camera
      memset(g_img, 128, usize);
    }
  }

  g_window_width  = g_width;
  g_window_height = g_height;

  assert(g_width>0);
  assert(g_height>0);

  playerc_client_datamode(g_client,PLAYER_DATAMODE_PULL);
  playerc_client_set_replace_rule(g_client,-1,-1,PLAYER_MSGTYPE_DATA,-1,1);

  return 0;
}
Beispiel #7
0
/*double
randomInt(int low, int high)
{
return low + (high - low) * (rand()/(RAND_MAX * 1.0 ));
}
// Main function for the program*/
int
main(int argc, const char **argv)
{
playerc_client_t *client;
playerc_position2d_t *position2d;
int cycle, index=0;
double dist,angle,fidAngle = 0,lineAngle=0, fidDist=0, prevYaw=0,posAngle=0;
// Create a client and connect it to the server.
client = playerc_client_create(NULL, "localhost", 6665);
if (0 != playerc_client_connect(client))
return -1;
// Create and subscribe to a position2d device.
position2d = playerc_position2d_create(client, 0);
if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE))
return -1;
// Initiating random walk movement
/*if (0 != playerc_position2d_set_cmd_vel(position2d, randomInt(0.1,1)
,randomInt(0.1,1),DTOR(randomInt(-20,20)) ,1))
return -1;
fprintf(stdout, "robot random positions \n");*/
//looping in random positions
int i;
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 3
,0 , 0,1))
return -1;
usleep(1000);
}
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 0
,0 , 1,1))
return -1;
usleep(1000);
}
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 3
,0 , 0,1))
return -1;
usleep(1000);
}
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 0
,0 , 1,1))
return -1;
usleep(1000);
}
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 3
,0 , 0,1))
return -1;
usleep(1000);
}


while(1)
{if (0 != playerc_position2d_set_cmd_vel(position2d, 0,0 , 0,1))
return -1;
}

playerc_position2d_unsubscribe(position2d);
playerc_position2d_destroy(position2d);
playerc_client_disconnect(client);
playerc_client_destroy(client);
return 0;
}
Beispiel #8
0
int main(int argc, const char **argv)
{
	int i;
	playerc_client_t *client;
	nsdnet_t *device;

	// Takes a parameter for the index.
	int index = 0;
	if (argc < 2)
	{
		printf("Needs one parameter.\n");
		return 0;
	}
	else
	{
		index = atoi(argv[1]);
		printf("Using index %d\n", index);
	}

	// Create a client and connect it to the server.
	client = playerc_client_create(NULL, "localhost", 6665);
	if (0 != playerc_client_connect(client))
	{
		printf("Could not connect\n");
		return -1;
	}

	// Load the plugin interface
	if (playerc_add_xdr_ftable (player_plugininterf_gettable (), 0) < 0)
		printf("Could not add xdr functions\n");

	// Create and subscribe to a device using the interface.
	device = nsdnet_create(client, index);
	if (nsdnet_subscribe(device, PLAYER_OPEN_MODE) != 0)
	{
		printf("Could not subscribe\n");
		return -1;
	}

	// Get our clientid
	if (nsdnet_property_get(device, "self.id"))
	{
		printf("Failed to get registered device id...\n");
		return -1;
	}

	// Print out what we get...
	printf("Client id: %s\n", device->propval);

	// Get the list of clients
	if (nsdnet_get_listclients(device))
	{
		printf("Failed to get list of clients...\n");
		return -1;
	}

	// Print out what we get...
	printf("Clients: ");
	for (i = 0; i < device->listclients_count; i++)
	{
		printf("%s ", device->listclients[i]);
	}
	printf("\n");

	// Endless loop...
	for (i = 0; i < 1000; i++)
	{
		if (playerc_client_peek(client, 0) == 1)
		{
			playerc_client_read(client);
			while (device->queue_head != device->queue_tail)
			{
				nsdmsg_t *msg; int err;
				if ((err = nsdnet_receive_message(device, &msg)))
				{
					if (err < 0)
						printf("ERROR\n");
					else
						printf("%s: %s [%d]\n", msg->clientid, msg->msg, i);
				}
			}
			usleep(0);
		}
		else
		{
			printf("Sending Hello World\n");
			if (nsdnet_send_message(device, NULL, 12, "Hello World"))
			{
				printf("Could not broadcast 'Hello World'\n");
				return -1;
			}
			usleep(100000);
		}
	}

	// Shutdown
	nsdnet_unsubscribe(device);
	nsdnet_destroy(device);
	playerc_client_disconnect(client);
	playerc_client_destroy(client);

	return 0;
}
Beispiel #9
0
int
main(int argc, const char **argv)
{
  int i;
  playerc_client_t *client;
  player_pose2d_t position2d_vel;
  player_pose2d_t position2d_target;
  playerc_position2d_t *position2d;

  // Create a client and connect it to the server.
  client = playerc_client_create(NULL, "localhost", 6665);
  if (0 != playerc_client_connect(client))
    return -1;

  // Create and subscribe to a position2d device.
  position2d = playerc_position2d_create(client, 0);
  if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE))
    return -1;

// Make the robot spin!
 if (0 != playerc_position2d_set_cmd_vel(position2d, 0.25, 0, DTOR(40.0), 1))
    return -1;

  for (i = 0; i < 50; i++)
  {
		playerc_client_read(client);

		// Print current robot pose
		printf("position2d : %f %f %f\n",
		position2d->px, position2d->py, position2d->pa);
  }
/* con el comando playerc_position2d_set_cmd_vel() simplemente se establece una
 * consigna de velocidad la cual es independiente de la posición en la que se
 * encuentra el robot */




      position2d_target.px = 2;
      position2d_target.py = -3;
      position2d_target.pa = 0;
      
      // Move to pose  
      playerc_position2d_set_cmd_pose(position2d, position2d_target.px , position2d_target.py, position2d_target.pa , 1);

	printf("position2d : %f %f %f\n",
	position2d->px, position2d->py, position2d->pa);
      // Stop when reach the target
      while  (sqrt(pow(position2d->px - position2d_target.px,2.0) + pow(position2d->py - position2d_target.py,2.0)) > 0.05 )
	{
		playerc_client_read(client);

		// Print current robot pose
		printf("position2d : %f %f %f\n",
		position2d->px, position2d->py, position2d->pa);
	}
/* Con el comando position2d_set_cmd_pose() se establece una pose de destino.
 * Cuando se utiliza este método la información obtenida de la odometría sí que
 * afecta a la trayectoria seguida y al punto final */


      position2d_target.px = 0;
      position2d_target.py = -3;
      position2d_target.pa = 0;
      position2d_vel.px = 0.6;
      position2d_vel.py = 0;
      position2d_vel.pa = 0;

      // Move to pose  
      playerc_position2d_set_cmd_pose_with_vel(position2d, position2d_target, position2d_vel, 1);

      // Stop when reach the target
      while  (sqrt(pow(position2d->px - position2d_target.px,2.0) + pow(position2d->py - position2d_target.py,2.0)) > 0.05 )
	{
		playerc_client_read(client);

		// Print current robot pose
		printf("position2d : %f %f %f\n",
		position2d->px, position2d->py, position2d->pa);
	}
/* Con el comando playerc_position2d_set_cmd_pose_with_vel se hace lo mismo que
 * con playerc_position2d_set_cmd_pose() pero además se puede indicar una
 * consigna de velocidad */

  // Shutdown
  playerc_position2d_unsubscribe(position2d);
  playerc_position2d_destroy(position2d);
  playerc_client_disconnect(client);
  playerc_client_destroy(client);

  return 0;
}
Beispiel #10
0
// Basic test for truth device.
int test_truth(playerc_client_t *client, int index)
{
    int t;

    double pos_i[3], rot_i[3];
    double pos_f[3], rot_f[3];

    void *rdevice;
    playerc_truth_t *device;

    printf("device [truth] index [%d]\n", index);

    device = playerc_truth_create(client, index);

    TEST("subscribing (read)");
    if (playerc_truth_subscribe(device, PLAYER_READ_MODE) != 0)
    {
        FAIL();
        return -1;
    }
    PASS();

    for (t = 0; t < 3; t++)
    {
        TEST("getting pose (req/rep)");
        if (playerc_truth_get_pose(device,
                                   pos_f + 0, pos_f + 1, pos_f + 2,
                                   rot_f + 1, rot_f + 1, rot_f + 2) != 0)
        {
            FAIL();
            return -1;
        }
        PASS();
        printf("truth: [%6.3f %6.3f %6.3f]\n", pos_f[0], pos_f[1], rot_f[2]);
    }

    TEST("setting pose");
    pos_i[0] = 2;
    pos_i[1] = 3;
    pos_i[2] = 0;
    rot_i[0] = 0;
    rot_i[1] = 0;
    rot_i[2] = M_PI/2;
    if (playerc_truth_set_pose(device,
                               pos_i[0], pos_i[1], pos_i[2],
                               rot_i[0], rot_i[1], rot_i[2]) != 0)
    {
        FAIL();
        return -1;
    }
    PASS();

    TEST("getting pose (req/rep)");
    if (playerc_truth_get_pose(device,
                               pos_f + 0, pos_f + 1, pos_f + 2,
                               rot_f + 1, rot_f + 1, rot_f + 2) != 0)
    {
        FAIL();
        return -1;
    }
    PASS();
    printf("truth: [%6.3f %6.3f %6.3f]\n", pos_f[0], pos_f[1], rot_f[2]);

    TEST("checking values for consitency");
    if (fabs(pos_f[0] - pos_i[0]) > 0.001 ||
            fabs(pos_f[1] - pos_i[1]) > 0.001 ||
            fabs(rot_f[2] - rot_i[2]) > 0.001)
        FAIL();
    else
        PASS();

    for (t = 0; t < 3; t++)
    {
        TEST1("reading data (attempt %d)", t);

        do
            rdevice = playerc_client_read(client);
        while (rdevice == client);

        if (rdevice == device)
        {
            PASS();
            printf("truth: [%6.3f %6.3f %6.3f]\n",
                   device->pos[0], device->pos[1], device->rot[2]);
        }
        else
            FAIL();
    }

    TEST("unsubscribing");
    if (playerc_truth_unsubscribe(device) != 0)
        FAIL();
    else
        PASS();

    playerc_truth_destroy(device);

    return 0;
}
Beispiel #11
0
int main(int argc, const char **argv)
{
	int r, i, j;
	playerc_client_t *client;
	playerc_position2d_t *position2d;


	//sonar
	playerc_sonar_t *sonar;

	celda celdas[25];
	int actual=0;
	int forward=1;
	int no_solucion=0;
	int flag_celda_final=0;

	// Create a client and connect it to the server.
	client = playerc_client_create(NULL, "localhost", 6665);
	if (playerc_client_connect(client) != 0) {
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}

	// Create and subscribe to a position2d device.
	position2d = playerc_position2d_create(client, 0);
	if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE) != 0) {
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}
	// Fixing initial position
	playerc_position2d_set_odom(position2d, 0.0, 0.0, 0.0);

	// Create and subscribe to a sonar device
	sonar = playerc_sonar_create(client, 0);
	if (playerc_sonar_subscribe(sonar, PLAYER_OPEN_MODE) != 0) {
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}
/* Obtener la geometría de los sensores de ultrasonidos sobre el pioneer 2 */
	if (playerc_sonar_get_geom(sonar) != 0) {
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}

	// Enable motors 
	playerc_position2d_enable(position2d, 1);

	playerc_client_read(client);

	inspeccionar_celda(sonar,&celdas[actual]);

	//Rutina para asegurarse de que ni nos dejamos un camino atrás,
	//ni estamos ya en la salida:"Ponemos el culo contra la pared"
	
	if(celda_final(&celdas[actual])) {//Si no veo ninguna pared
		girar_dch(client,position2d); // giro para comprobar la espalda
		inspeccionar_celda(sonar,&celdas[actual]);
		if(celdas[actual].pared[D_DCH]) { // había pared detrás
	    		girar_izq(client,position2d); 
			//establecer orientación de referencia aquí
			theta = D_ARRIBA;
			inspeccionar_celda(sonar,&celdas[actual]);
		} else {
			printf("Ya estamos en la salida\n");
			flag_celda_final=1;
		}
	} else {
		// me pongo de espaldas a la pared
		if(celdas[actual].pared[D_DCH]) { //si tengo pared a la dcha
			girar_izq(client,position2d); 
		} else if(celdas[actual].pared[D_IZQ]) { //si tengo pared a la izda
			girar_dch(client,position2d);
		} else if(celdas[actual].pared[D_ARRIBA]) { //si la tengo en fente
			girar_180(client,position2d);
		}
		//establecer orientación de referencia aquí
		theta = D_ARRIBA;
		inspeccionar_celda(sonar,&celdas[actual]);
	}


	while(!(flag_celda_final || no_solucion)) {
		printf("celda: %d [%d,%d]\n",actual, x, y);
		r = mejor_ruta(celdas, actual, &forward);
		if (forward) {
			ir_direccion(client, position2d, r);
			actual++;
			inspeccionar_celda(sonar,&celdas[actual]);
		} else if (actual > 0) {
			ir_direccion(client, position2d, r);
			actual--;
		} else {
			no_solucion=1;
			printf("no hay solucion\n");
		}
		
		if ((flag_celda_final = celda_final(&celdas[actual])) != 0) {
			printf("Fuera del laberinto!!\n\n");
			printf("Camino:\n");
			printf("-------\n");
			for (i=0; i <= actual; i++) {
				for (j = 0; (j < 3) && (celdas[i].pared[j] != RUTA); j++) ;
				printf("(%d,%d) - %s\n", celdas[i].pos[0], celdas[i].pos[1], dirs[j]);
			}
		}
	}


	// Unsuscribe and Destroy
	// position2d
	playerc_position2d_unsubscribe(position2d);
	playerc_position2d_destroy(position2d);
	// sonar
	playerc_sonar_unsubscribe(sonar);
	playerc_sonar_destroy(sonar);



	// client
	playerc_client_disconnect(client);
	playerc_client_destroy(client);

	// End
	return 0;
}
Beispiel #12
0
// Basic WSN test
int test_wsn(playerc_client_t *client, int index)
{
  int t;//, i, j;
  void *rdevice;
  playerc_wsn_t *device;

  printf("device [wsn] index [%d]\n", index);

  device = playerc_wsn_create(client, index);

  TEST("subscribing (read)");
  if (playerc_wsn_subscribe(device, PLAYER_OPEN_MODE) == 0)
    PASS();
  else
    FAIL();

  for (t = 0; t < 10; t++)
  {
    TEST1("reading data (attempt %d)", t);

    do
      rdevice = playerc_client_read(client);
    while (rdevice == client);
    
    if (rdevice == device)
    {
      PASS();
      printf("Node type: %d, with ID %d and parent %d holds:\n"
		"accel_{X,Y,Z}  : [%f,%f,%f]\n"
		"magn_{X,Y,Z}   : [%f,%f,%f]\n"
		"temperature    : [%f]\n"
		"light          : [%f]\n"
		"microphone     : [%f]\n"
		"battery voltage: [%f]\n", 
		device->node_type, device->node_id, device->node_parent_id,
		device->data_packet.accel_x, device->data_packet.accel_y, 
		device->data_packet.accel_z, device->data_packet.magn_x,
		device->data_packet.magn_y, device->data_packet.magn_z,
		device->data_packet.temperature, device->data_packet.light, 
		device->data_packet.mic, device->data_packet.battery);
    }
    else
    {
      FAIL();
      break;
    }
  }
  
  TEST("setting the data frequency rate");
  if(playerc_wsn_datafreq(device, -1, -1, 1) < 0)
    FAIL();
  else
  {
    sleep(3);
    PASS();
  }
  
  TEST("enabling all LEDs");
  if(playerc_wsn_set_devstate(device, -1, -1, 3, 7) < 0)
    FAIL();
  else
  {
    sleep(3);
    PASS();
  }
  
/*  TEST("going to sleep");
  if(playerc_wsn_power(device, 2, -1, 0) < 0)
    FAIL();
  else
  {
    sleep(3);
    PASS();
  }
  
  TEST("waking up");
  if(playerc_wsn_power(device, 1, -1, 1) < 0)
    FAIL();
  else
  {
    sleep(3);
    PASS();
  }
*/  

  TEST("unsubscribing");
  if (playerc_wsn_unsubscribe(device) == 0)
    PASS();
  else
    FAIL();
  
  playerc_wsn_destroy(device);
  
  return 0;
}
Beispiel #13
0
//Prints position data of the robot, used for debugging and tracking
void printPos(playerc_client_t * client, playerc_position2d_t * pos2D, playerc_bumper_t * bumper) {
	playerc_client_read(client);
	printf("\n\nStopped in position : %f %f %f  bumpers: %d %d\n\n", pos2D->px, pos2D->py, pos2D->pa, bumper->bumpers[0], bumper->bumpers[1]);
}
Beispiel #14
0
int main(int argc, const char **argv)
{
    //Variables
    int degrees,PosRelX,PosRelY;
    float radians,Dlaser,ODM_ang, ang;
    int width = 500, height = 500; //Create the size of the map here (in pixel)
    int centroX = (width / 2);
    int centroY = (height / 2);
    playerc_client_t *client;
    playerc_laser_t *laser;
    playerc_position2d_t *position2d;
    CvPoint pt,pt1,pt2;
    CvScalar cinzaE,preto,cinzaC;
    char window_name[] = "Map";

    IplImage* image = cvCreateImage( cvSize(width,height), 8, 3 );
    cvNamedWindow(window_name, 1 );
    preto = CV_RGB(0, 0, 0);        //for indicating obstacles
    cinzaE = CV_RGB(92, 92, 92);    //To indicate the stranger
    cinzaC = CV_RGB(150, 150, 150); //To indicate free spaces

    client = playerc_client_create(NULL, "localhost", 6665);
    if (playerc_client_connect(client) != 0)
    return -1;

    laser = playerc_laser_create(client, 0);
    if (playerc_laser_subscribe(laser, PLAYERC_OPEN_MODE))
    return -1;

    position2d = playerc_position2d_create(client, 0);
    if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE) != 0) {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    if (playerc_client_datamode (client, PLAYERC_DATAMODE_PULL) != 0) {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    if (playerc_client_set_replace_rule (client, -1, -1, PLAYER_MSGTYPE_DATA, -1, 1) != 0) {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    playerc_position2d_enable(position2d, 1);  // initialise motors
    playerc_position2d_set_odom(position2d, 0, 0, 0);  // Set odometer to zero

    cvSet(image, cinzaE,0); //set the image colour to dark
    pt.x = centroX;  // Zero coordinate for x
    pt.y = centroY;  // Zero coordinate for y


    while(1) {
        playerc_client_read(client);
        cvSaveImage("mapa.jpg",image);
        playerc_client_read(client);

        for (degrees = 2; degrees <= 360; degrees+=2) {
            Dlaser = laser->scan[degrees][0];
            if (Dlaser < 8) {
                radians = graus2rad (degrees/2);      //Convert the angle of the laser to radians
                ODM_ang = position2d->pa;             //Obtain the angle relative to the robot
                ang = ((1.5*PI)+radians+ODM_ang);     //Converte the angle relative to the world
                PosRelX = arredonda(position2d->px);  //Position x relative to robot
                PosRelY = arredonda(position2d->py);  //Position y relative to robot
                pt1.y = (centroY-PosRelY);            //Co-ordinated global y of the robot
                pt1.x = (centroX+PosRelX);            //Co-ordinated global x of the robot

 //t converts polar coordinates for rectangular (global)
                pt.y = (int)(pt1.y-(sin(ang)*Dlaser*10));
                pt.x = (int)(pt1.x+(cos(ang)*Dlaser*10));

                //The free area draws cvline
                cvLine(image, pt1,pt,cinzaC, 1,4,0);

                //marks the object in the map
                cvLine(image, pt,pt,preto, 1,4,0);

                //Shows the result of the map to the screen
                cvShowImage(window_name, image );
                cvWaitKey(10);
            }
        }
    }

    //Disconnect player
    playerc_laser_unsubscribe(laser);
    playerc_laser_destroy(laser);
    playerc_client_disconnect(client);
    playerc_client_destroy(client);

    //Destroy the OpenCV window cvReleaseImage
    cvReleaseImage(&image);
    cvDestroyWindow(window_name);
    return 0;
}
Beispiel #15
0
// Basic ptz test
int test_ptz(playerc_client_t *client, int index)
{
  int t;
  void *rdevice;
  playerc_ptz_t *device;
  double period;

  printf("device [ptz] index [%d]\n", index);

  device = playerc_ptz_create(client, index);

  TEST("subscribing (read)");
  if (0 == playerc_ptz_subscribe(device, PLAYER_OPEN_MODE))
    PASS();
  else
    FAIL();

  period = 10 / M_PI * 2;

  for (t = 0; t < 20; t++)
  {
    TEST1("reading data (attempt %d)", t);

    do
      rdevice = playerc_client_read(client);
    while (rdevice == client);

    if (rdevice == device)
    {
      PASS();
      printf("ptz: [%d %d %d]\n",
             (int) (device->pan * 180 / M_PI),
             (int) (device->tilt * 180 / M_PI),
             (int) (device->zoom * 180 / M_PI));
    }
    else
    {
      FAIL();
      break;
    }

    TEST1("writing data (attempt %d)", t);
    if (playerc_ptz_set(device,
                        sin(t / period) * M_PI / 2,
                        sin(t / period) * M_PI / 3,
                        (1 - t / 20.0) * M_PI) != 0)
    {
      FAIL();
      break;
    }
    PASS();
  }

  TEST1("writing data (attempt %d)", t);
  if (playerc_ptz_set(device, 0, 0, M_PI) != 0)
    FAIL();
  else
    PASS();

  TEST("unsubscribing");
  if (playerc_ptz_unsubscribe(device) == 0)
    PASS();
  else
    FAIL();

  playerc_ptz_destroy(device);

  return 0;
}
Beispiel #16
0
// Basic test for log device.
int test_log(playerc_client_t *client, int index)
{
  int t;
//   int isplayback=0;
  playerc_log_t *device;

  printf("device [log] index [%d]\n", index);

  device = playerc_log_create(client, index);

  TEST("subscribing (read)");
  if (playerc_log_subscribe(device, PLAYER_OPEN_MODE) != 0)
  {
    FAIL();
    return -1;
  }
  PASS();

  TEST("getting log state");
  if(playerc_log_get_state(device) != 0)
  {
    FAIL();
    return -1;
  }
  PASS();

  if(device->type == PLAYER_LOG_TYPE_WRITE)
  {
    TEST("starting logging");
    if(playerc_log_set_write_state(device,1) != 0)
    {
      FAIL();
      return -1;
    }
    PASS();
  }
  else
  {
    TEST("rewinding logfile");
    if(playerc_log_set_read_rewind(device) != 0)
    {
      FAIL();
      return -1;
    }
    PASS();

    TEST("starting playback");
    if(playerc_log_set_read_state(device,1) != 0)
    {
      FAIL();
      return -1;
    }
    PASS();
  }

  TEST("getting log state");
  if(playerc_log_get_state(device) != 0)
  {
    FAIL();
    return -1;
  }
  if(device->state != 1)
  {
    FAIL();
    return -1;
  }
  PASS();

  // let it log/playback
  TEST("logging/playback proceeding");
  for(t=0;t<50;t++)
  {
    if(!playerc_client_read(client))
    {
      FAIL();
      return -1;
    }
  }
  PASS();

  if(device->type == PLAYER_LOG_TYPE_WRITE)
  {
    TEST("stopping logging");
    if(playerc_log_set_write_state(device,0) != 0)
    {
      FAIL();
      return -1;
    }
    PASS();
  }
  else
  {
    TEST("stopping playback");
    if(playerc_log_set_read_state(device,0) != 0)
    {
      FAIL();
      return -1;
    }
    PASS();
  }

  TEST("getting log state");
  if(playerc_log_get_state(device) != 0)
  {
    FAIL();
    return -1;
  }
  if(device->state != 0)
  {
    FAIL();
    return -1;
  }
  PASS();

  TEST("unsubscribing");
  if (playerc_log_unsubscribe(device) != 0)
  {
    FAIL();
    return -1;
  }
  PASS();
  
  playerc_log_destroy(device);
  
  return 0;
}
Beispiel #17
0
// Basic localize test
int test_localize(playerc_client_t *client, int index)
{
  int t, i;
  void *rdevice;
  playerc_localize_t *device;

  //double min, max;
  //int resolution, intensity;

  printf("device [localize] index [%d]\n", index);

  device = playerc_localize_create(client, index);

  TEST("subscribing (read)");
  if (playerc_localize_subscribe(device, PLAYER_READ_MODE) == 0)
    PASS();
  else
  {
    FAIL();
    return(-1);
  }

  // deprecated: get map from map interface now
#if 0
  TEST("get map");
  if (playerc_localize_get_map(device) == 0)
    PASS();
  else
    FAIL();
#endif

  /* FIX
  TEST("set configuration");
  min = -M_PI/2;
  max = +M_PI/2;
  resolution = 100;
  intensity = 1;
  if (playerc_localize_set_config(device, min, max, resolution, intensity) == 0)
    PASS();
  else
    FAIL();

  TEST("get configuration");
  if (playerc_localize_get_config(device, &min, &max, &resolution, &intensity) == 0)
    PASS();
  else
    FAIL();

  TEST("check configuration sanity");
  if (abs(min + M_PI/2) > 0.01 || abs(max - M_PI/2) > 0.01)
    FAIL();
  else if (resolution != 100 || intensity != 1)
    FAIL();
  else
    PASS();
  */

  for (t = 0; t < 10; t++)
  {
    TEST1("reading data (attempt %d)", t);

    do
      rdevice = playerc_client_read(client);
    while (rdevice == client);
    
    if (rdevice == device)
    {
      PASS();

      printf("localize: [%d %14.3f] [%d] ",
             device->pending_count, device->pending_time, device->hypoth_count);
      for (i = 0; i < device->hypoth_count; i++)
        printf("[%6.3f, %6.3f %6.3f] ",
               device->hypoths[i].mean[0], device->hypoths[i].mean[1], device->hypoths[i].mean[2]);
      printf("\n");
    }
    else
    {
      FAIL();
      break;
    }
  }
  
  TEST("unsubscribing");
  if (playerc_localize_unsubscribe(device) == 0)
    PASS();
  else
    FAIL();
  
  playerc_localize_destroy(device);
  
  return 0;
}
// Basic test for position3d device.
int test_position3d(playerc_client_t *client, int index)
{
  int t;
  void *rdevice;
  playerc_position3d_t *device;

  printf("device [position3d] index [%d]\n", index);

  device = playerc_position3d_create(client, index);

  TEST("subscribing (read/write)");
  if (playerc_position3d_subscribe(device, PLAYER_OPEN_MODE) < 0)
  {
    FAIL();
    return -1;
  }
  PASS();

#if 0 // TODO  
  TEST("getting geometry");
  if (playerc_position3d_get_geom(device) == 0)
    PASS();
  else
    FAIL();
  printf("position3d geom: [%6.3f %6.3f %6.3f] [%6.3f %6.3f]\n",
         device->pose[0], device->pose[1], device->pose[2], device->size[0], device->size[1]);

  TEST("enabling motors");
  if (playerc_position3d_enable(device, 1) == 0)
    PASS();
  else
    FAIL();
#endif
  
  for (t = 0; t < 300; t++)
  {
    TEST1("reading data (attempt %d)", t);

    do
      rdevice = playerc_client_read(client);
    while (rdevice == client);

    if (rdevice == device)
    {
      PASS();
      printf("position3d: [%14.3f] [%+7.3f %+7.3f %+7.3f] [%+7.3f %+7.3f %+7.3f]\n",
             device->info.datatime,
             device->pos_x, device->pos_y, device->pos_z,
             device->pos_roll * 180/M_PI,
             device->pos_pitch * 180/M_PI,
             device->pos_yaw * 180/M_PI);
    }
    else
    {
      FAIL();
      break;
    }

#if 0 // TODO
    TEST1("writing data (attempt %d)", t);
    if (playerc_position3d_set_velocity(device, 0.10, 0, 0, 0, 0, 0.2, 1) != 0)
    {
      FAIL();
      break;
    }
    PASS();
#endif
  }

#if 0 // TODO
  TEST1("writing data (attempt %d)", t);
  if (playerc_position3d_set_velocity(device, 0, 0, 0, 0, 0, 0, 1) != 0)
    FAIL();
  else
    PASS();

  TEST("disabling motors");
  if (playerc_position3d_enable(device, 0) == 0)
    PASS();
  else
    FAIL();

  TEST("unsubscribing");
  if (playerc_position3d_unsubscribe(device) != 0)
    FAIL();
  else
    PASS();
#endif
  
  playerc_position3d_destroy(device);
  
  return 0;
}