Beispiel #1
0
void QuasiNewton::optimize_vertex_positions( PatchData& pd, MsqError& err )
{
  TerminationCriterion& term = *get_inner_termination_criterion();
  OFEvaluator& func = get_objective_function_evaluator();
  
  const double sigma = 1e-4;
  const double beta0 = 0.25;
  const double beta1 = 0.80;
  const double tol1 = 1e-8;
  const double epsilon = 1e-10;

  double norm_r; //, norm_g;
  double alpha, beta;
  double obj, objn;

  size_t i;
  
    // Initialize stuff
  const size_t nn = pd.num_free_vertices();
  double a[QNVEC], b[QNVEC], r[QNVEC];
  for (i = 0; i < QNVEC; ++i)
    r[i] = 0;
  for (i = 0; i <= QNVEC; ++i) {
    v[i].clear();
    v[i].resize( nn, Vector3D(0.0) );
    w[i].clear();
    w[i].resize( nn, Vector3D(0.0) );
  }
  d.resize( nn );
  mHess.resize( nn );  //hMesh(mesh);

  bool valid = func.update( pd, obj, v[QNVEC], mHess, err ); MSQ_ERRRTN(err);
  if (!valid) {
    MSQ_SETERR(err)("Initial objective function is not valid", MsqError::INVALID_MESH);
    return;
  }

  while (!term.terminate()) {
    pd.recreate_vertices_memento( mMemento, err ); MSQ_ERRRTN(err);
    pd.get_free_vertex_coordinates( w[QNVEC] );

    x = v[QNVEC];
    for (i = QNVEC; i--; ) {
      a[i] = r[i] * inner( &(w[i][0]), arrptr(x), nn );
      plus_eq_scaled( arrptr(x), -a[i], &v[i][0], nn );
    }
     
    solve( arrptr(d), arrptr(x) );
  
    for (i = QNVEC; i--; ) {
      b[i] = r[i] * inner( &(v[i][0]), arrptr(d), nn );
      plus_eq_scaled( arrptr(d), a[i]-b[i], &(w[i][0]), nn );
    }
    
    alpha = -inner( &(v[QNVEC][0]), arrptr(d), nn );  /* direction is negated */
    if (alpha > 0.0) {
      MSQ_SETERR(err)("No descent.", MsqError::INVALID_MESH);
      return;
    }
   
    alpha *= sigma;
    beta = 1.0;
    
    pd.move_free_vertices_constrained( arrptr(d), nn, -beta, err ); MSQ_ERRRTN(err);
    valid = func.evaluate( pd, objn, v[QNVEC], err ); 
    if (err.error_code() == err.BARRIER_VIOLATED)             
      err.clear();  // barrier violated does not represent an actual error here
    MSQ_ERRRTN(err);
    if (!valid ||
        (obj - objn < -alpha*beta - epsilon &&
         length( &(v[QNVEC][0]), nn ) >= tol1)) {
      
      if (!valid)  // function not defined at trial point
        beta *= beta0;
      else  // unacceptable iterate
        beta *= beta1;
      
      for (;;) {
        if (beta < tol1) {
          pd.set_to_vertices_memento( mMemento, err ); MSQ_ERRRTN(err);
          MSQ_SETERR(err)("Newton step not good", MsqError::INTERNAL_ERROR);
          return;
        }
      
        pd.set_free_vertices_constrained( mMemento, arrptr(d), nn, -beta, err ); MSQ_ERRRTN(err);
        valid = func.evaluate( pd, objn, err );
        if (err.error_code() == err.BARRIER_VIOLATED)             
          err.clear();  // barrier violated does not represent an actual error here
        MSQ_ERRRTN(err);
        if (!valid) // function undefined at trial point
          beta *= beta0;
        else if (obj - objn < -alpha*beta - epsilon) // unacceptlable iterate
          beta *= beta1;
        else
          break;
      }
    }
    
    for (i = 0; i < QNVEC-1; ++i) {
      r[i] = r[i+1];
      w[i].swap( w[i+1] );
      v[i].swap( v[i+1] );
    }
    w[QNVEC-1].swap( w[0] );
    v[QNVEC-1].swap( v[0] );
    
    func.update( pd, obj, v[QNVEC], mHess, err ); MSQ_ERRRTN(err);
    norm_r = length_squared( &(v[QNVEC][0]), nn );
    //norm_g = sqrt(norm_r);

    // checks stopping criterion 
    term.accumulate_patch( pd, err ); MSQ_ERRRTN(err);
    term.accumulate_inner( pd, objn, &v[QNVEC][0], err ); MSQ_ERRRTN(err);
  }
}
Beispiel #2
0
void TrustRegion::optimize_vertex_positions( PatchData& pd, MsqError& err )
{
  TerminationCriterion& term = *get_inner_termination_criterion();
  OFEvaluator& func = get_objective_function_evaluator();
  
  const double cg_tol = 1e-2;
  const double eta_1  = 0.01;
  const double eta_2  = 0.90;
  const double tr_incr = 10;
  const double tr_decr_def = 0.25;
  const double tr_decr_undef = 0.25;
  const double tr_num_tol = 1e-6;
  const int max_cg_iter = 10000;
  
  double radius = 1000;		/* delta*delta */

 const int nn = pd.num_free_vertices();
  wVect.resize(nn); Vector3D* w = arrptr(wVect);
  zVect.resize(nn); Vector3D* z = arrptr(zVect);
  dVect.resize(nn); Vector3D* d = arrptr(dVect);
  pVect.resize(nn); Vector3D* p = arrptr(pVect);
  rVect.resize(nn); Vector3D* r = arrptr(rVect);

  double norm_r, norm_g;
  double alpha, beta, kappa;
  double rz, rzm1;
  double dMp, norm_d, norm_dp1, norm_p;
  double obj, objn;

  int cg_iter;
  bool valid;

  mHess.initialize( pd, err );  //hMesh(mesh);
  valid = func.update( pd, obj, mGrad, mHess, err ); MSQ_ERRRTN(err);
  if (!valid) {
    MSQ_SETERR(err)("Initial objective function is not valid", MsqError::INVALID_MESH);
    return;
  }
  compute_preconditioner( err ); MSQ_ERRRTN(err);
  pd.recreate_vertices_memento( mMemento, err ); MSQ_ERRRTN(err);

  while (!term.terminate() && (radius > 1e-20)) {

    norm_r = length_squared(arrptr(mGrad), nn);
    norm_g = sqrt(norm_r);

    memset(d, 0, 3*sizeof(double)*nn);
    memcpy(r, arrptr(mGrad), nn*sizeof(Vector3D)); //memcpy(r, mesh->g, 3*sizeof(double)*nn);
    norm_g *= cg_tol;

    apply_preconditioner( z, r, err); MSQ_ERRRTN(err); //prec->apply(z, r, prec, mesh);
    negate(p, z, nn);
    rz = inner(r, z, nn);

    dMp    = 0;
    norm_p = rz;
    norm_d = 0;

    cg_iter = 0;
    while ((sqrt(norm_r) > norm_g) && 
#ifdef DO_STEEP_DESC
         (norm_d > tr_num_tol) && 
#endif
         (cg_iter < max_cg_iter)) 
    {
      ++cg_iter;

      memset(w, 0, 3*sizeof(double)*nn);
      //matmul(w, mHess, p); //matmul(w, mesh, p);
      mHess.product( w, p );

      kappa = inner(p, w, nn);
      if (kappa <= 0.0) {
        alpha = (sqrt(dMp*dMp+norm_p*(radius-norm_d))-dMp)/norm_p;
        plus_eq_scaled( d, alpha, p, nn );
	break;
      }

      alpha = rz / kappa;

      norm_dp1 = norm_d + 2.0*alpha*dMp + alpha*alpha*norm_p;
      if (norm_dp1 >= radius) {
        alpha = (sqrt(dMp*dMp+norm_p*(radius-norm_d))-dMp)/norm_p;
        plus_eq_scaled( d, alpha, p, nn );
	break;
      }

      plus_eq_scaled( d, alpha, p, nn );
      plus_eq_scaled( r, alpha, w, nn );
      norm_r = length_squared(r, nn);

      apply_preconditioner( z, r, err); MSQ_ERRRTN(err); //prec->apply(z, r, prec, mesh);

      rzm1 = rz;
      rz = inner(r, z, nn);
      beta = rz / rzm1;
      times_eq_minus( p, beta, z, nn );

      dMp = beta*(dMp + alpha*norm_p);
      norm_p = rz + beta*beta*norm_p;
      norm_d = norm_dp1;
    }

#ifdef DO_STEEP_DESC    
    if (norm_d <= tr_num_tol) {
      norm_g = length(arrptr(mGrad), nn);
      double ll = 1.0;
      if (norm_g < tr_num_tol)
        break;
      if (norm_g > radius)
        ll = radius / nurm_g;
      for (int i = 0; i < nn; ++i)
        d[i] = ll * mGrad[i];
    }
#endif

    alpha = inner( arrptr(mGrad), d, nn ); // inner(mesh->g, d, nn);

    memset(p, 0, 3*sizeof(double)*nn);
    //matmul(p, mHess, d); //matmul(p, mesh, d);
    mHess.product( p, d );
    beta = 0.5*inner(p, d, nn);
    kappa = alpha + beta;

    /* Put the new point into the locations */
    pd.move_free_vertices_constrained( d, nn, 1.0, err ); MSQ_ERRRTN(err);

    valid = func.evaluate( pd, objn, err ); MSQ_ERRRTN(err); 
    if (!valid) {
      /* Function not defined at trial point */
      radius *= tr_decr_undef;
      pd.set_to_vertices_memento( mMemento, err ); MSQ_ERRRTN(err); 
      continue;
    }
      

    if ((fabs(kappa) <= tr_num_tol) && (fabs(objn - obj) <= tr_num_tol)) {
      kappa = 1;
    }
    else {
      kappa = (objn - obj) / kappa;
    }
    
    if (kappa < eta_1) {
      /* Iterate is unacceptable */
      radius *= tr_decr_def;
      pd.set_to_vertices_memento( mMemento, err ); MSQ_ERRRTN(err); 
      continue;
    }

      /* Iterate is acceptable */
    if (kappa >= eta_2) {
      /* Iterate is a very good step, increase radius */
      radius *= tr_incr;
      if (radius > 1e20) {
	radius = 1e20;
      }
    }

    func.update( pd, obj, mGrad, mHess, err );
    compute_preconditioner( err ); MSQ_ERRRTN(err);
    pd.recreate_vertices_memento( mMemento, err ); MSQ_ERRRTN(err);

    // checks stopping criterion 
    term.accumulate_patch( pd, err ); MSQ_ERRRTN(err);
    term.accumulate_inner( pd, objn, arrptr(mGrad), err ); MSQ_ERRRTN(err);
  }
}