Beispiel #1
0
void vm_mem_bootstrap(void)
{
	vm_offset_t	start, end;

	/*
	 *	Initializes resident memory structures.
	 *	From here on, all physical memory is accounted for,
	 *	and we use only virtual addresses.
	 */

	vm_page_bootstrap(&start, &end);

	/*
	 *	Initialize other VM packages
	 */

	slab_bootstrap();
	vm_object_bootstrap();
	vm_map_init();
	kmem_init(start, end);
	pmap_init();
	slab_init();
	kalloc_init();
	vm_fault_init();
	vm_page_module_init();
	memory_manager_default_init();
}
Beispiel #2
0
int main() { /* Simple test */
  pmap_t pmap;
  pmap_init(&pmap);
  pmap.asid = 10;

  set_active_pmap(&pmap);
  vm_page_t *pg1 = pm_alloc(4);

  vaddr_t ex_addr = PAGESIZE * 10;
  pmap_map(&pmap, ex_addr, pg1->paddr, pg1->size, PMAP_VALID | PMAP_DIRTY);

  int *x = (int *) ex_addr;
  for (int i = 0; i < 1024 * pg1->size; i++)
    *(x + i) = i;
  for (int i = 0; i < 1024 * pg1->size; i++)
    assert(*(x + i) == i);

  vm_page_t *pg2 = pm_alloc(1);

  ex_addr = PAGESIZE * 2000;
  pmap_map(&pmap, ex_addr, pg2->paddr, pg2->size, PMAP_VALID | PMAP_DIRTY);

  x = (int *) ex_addr;
  for (int i = 0; i < 1024 * pg2->size; i++)
    *(x + i) = i;
  for (int i = 0; i < 1024 * pg2->size; i++)
    assert(*(x + i) == i);

  pm_free(pg1);
  pm_free(pg2);

  pmap_delete(&pmap);
  kprintf("Tests passed\n");
  return 0;
}
Beispiel #3
0
void
vm_mem_bootstrap(void)
{
	vm_offset_t	start, end;

	/*
	 *	Initializes resident memory structures.
	 *	From here on, all physical memory is accounted for,
	 *	and we use only virtual addresses.
	 */

	vm_page_bootstrap(&start, &end);

	/*
	 *	Initialize other VM packages
	 */

	zone_bootstrap();
	vm_object_bootstrap();
	vm_map_init();
	kmem_init(start, end);
	pmap_init();
	zone_init((vm_size_t)ptoa(vm_page_free_count));
	kalloc_init();
#if	MACH_RT
	rtalloc_init();
#endif	/* MACH_RT */
	vm_fault_init();
	vm_page_module_init();
	memory_manager_default_init();
}
Beispiel #4
0
void
pmap_bootstrap(void)
{
	int error;

	error = pool_create(&pmap_pool, "PMAP", sizeof (struct pmap),
			    POOL_DEFAULT);
	if (error != 0)
		panic("%s: pool_create failed: %m", __func__, error);
	error = pmap_init(&kernel_vm, KERNEL_BASE, KERNEL_END);
	if (error != 0)
		panic("%s: pmap_init failed: %m", __func__, error);
}
Beispiel #5
0
/* ARGSUSED*/
static void
vm_mem_init(void *dummy)
{
	/*
	 * Initializes resident memory structures. From here on, all physical
	 * memory is accounted for, and we use only virtual addresses.
	 */
	vm_set_page_size();
	vm_page_startup();

	/*
	 * Initialize other VM packages
	 */
	vm_object_init1();
	vm_map_startup();
	kmem_init();
	pmap_init();
}
Beispiel #6
0
void
uvm_init()
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * step 0: ensure that the hardware set the page size
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	/*
	 * step 1: zero the uvm structure
	 */

	memset(&uvm, 0, sizeof(uvm));
#ifndef OSKIT
	averunnable.fscale = FSCALE;
#endif

	/*
	 * step 2: init the page sub-system.  this includes allocating the
	 * vm_page structures, and setting up all the page queues (and
	 * locks).  available memory will be put in the "free" queue.
	 * kvm_start and kvm_end will be set to the area of kernel virtual
	 * memory which is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * step 3: init the map sub-system.  allocates the static pool of
	 * vm_map_entry structures that are used for "special" kernel maps
	 * (e.g. kernel_map, kmem_map, etc...).
	 */

	uvm_map_init();

	/*
	 * step 4: setup the kernel's virtual memory data structures.  this
	 * includes setting up the kernel_map/kernel_object and the kmem_map/
	 * kmem_object.
	 */
	
	uvm_km_init(kvm_start, kvm_end);

	/*
	 * step 5: init the pmap module.   the pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * step 6: init the kernel memory allocator.   after this call the
	 * kernel memory allocator (malloc) can be used.
	 */

	kmeminit();

	/*
	 * step 7: init all pagers and the pager_map.
	 */
	uvm_pager_init();

	/*
	 * step 8: init anonymous memory systems (both amap and anons)
	 */

	amap_init();		/* init amap module */
	uvm_anon_init();	/* allocate initial anons */

	/*
	 * the VM system is now up!  now that malloc is up we can resize the
	 * <obj,off> => <page> hash table for general use and enable paging
	 * of kernel objects.
	 */

	uvm_page_rehash();
	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	/*
	 * done!
	 */

	return;
}
void
uvm_init()
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * step 0: ensure that the hardware set the page size
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	/*
	 * step 1: zero the uvm structure
	 */

	memset(&uvm, 0, sizeof(uvm));
	averunnable.fscale = FSCALE;

	/*
	 * step 2: init the page sub-system.  this includes allocating the
	 * vm_page structures, and setting up all the page queues (and
	 * locks).  available memory will be put in the "free" queue.
	 * kvm_start and kvm_end will be set to the area of kernel virtual
	 * memory which is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * step 3: init the map sub-system.  allocates the static pool of
	 * vm_map_entry structures that are used for "special" kernel maps
	 * (e.g. kernel_map, kmem_map, etc...).
	 */

	uvm_map_init();

	/*
	 * step 4: setup the kernel's virtual memory data structures.  this
	 * includes setting up the kernel_map/kernel_object and the kmem_map/
	 * kmem_object.
	 */

	uvm_km_init(kvm_start, kvm_end);

	/*
	 * step 5: init the pmap module.   the pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * step 6: init the kernel memory allocator.   after this call the
	 * kernel memory allocator (malloc) can be used.
	 */

	uvm_km_page_init();
	kmeminit();
#if !defined(__HAVE_PMAP_DIRECT)
	kthread_create_deferred(uvm_km_createthread, NULL);
#endif

	/*
	 * step 7: init all pagers and the pager_map.
	 */

	uvm_pager_init();

	/*
	 * step 8: init anonymous memory system
	 */

	amap_init();		/* init amap module */

	/*
	 * the VM system is now up!  now that malloc is up we can resize the
	 * <obj,off> => <page> hash table for general use and enable paging
	 * of kernel objects.
	 */

	uvm_page_rehash();
	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	/*
	 * reserve some unmapped space for malloc/pool use after free usage
	 */
#ifdef DEADBEEF0
	kvm_start = trunc_page(DEADBEEF0) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x\n", DEADBEEF0);
#endif
#ifdef DEADBEEF1
	kvm_start = trunc_page(DEADBEEF1) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x\n", DEADBEEF1);
#endif
	/*
	 * init anonymous memory systems
	 */
	uvm_anon_init();
}
Beispiel #8
0
void
uvm_init(void)
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * step 0: ensure that the hardware set the page size
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	/*
	 * step 1: zero the uvm structure
	 */

	memset(&uvm, 0, sizeof(uvm));
	averunnable.fscale = FSCALE;
	uvm_amap_init();

	/*
	 * step 2: init the page sub-system.  this includes allocating the
	 * vm_page structures, and setting up all the page queues (and
	 * locks).  available memory will be put in the "free" queue.
	 * kvm_start and kvm_end will be set to the area of kernel virtual
	 * memory which is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * step 3: init the map sub-system.  allocates the static pool of
	 * vm_map_entry structures that are used for "special" kernel maps
	 * (e.g. kernel_map, kmem_map, etc...).
	 */

	uvm_map_init();

	/*
	 * step 4: setup the kernel's virtual memory data structures.  this
	 * includes setting up the kernel_map/kernel_object.
	 */

	uvm_km_init(kvm_start, kvm_end);

	/*
	 * step 5: init the pmap module.   the pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * step 6: init the kernel memory allocator.   after this call the
	 * kernel memory allocator (malloc) can be used. this includes
	 * setting up the kmem_map.
	 */

	kmeminit();

#ifdef DEBUG
	debug_init();
#endif

	/*
	 * step 7: init all pagers and the pager_map.
	 */

	uvm_pager_init();

	/*
	 * step 8: init the uvm_loan() facility.
	 */

	uvm_loan_init();

	/*
	 * Initialize pools.  This must be done before anyone manipulates
	 * any vm_maps because we use a pool for some map entry structures.
	 */

	pool_subsystem_init();

	/*
	 * init slab memory allocator kmem(9).
	 */

	kmem_init();

	/*
	 * the VM system is now up!  now that kmem is up we can resize the
	 * <obj,off> => <page> hash table for general use and enable paging
	 * of kernel objects.
	 */

	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	uvmpdpol_reinit();

	/*
	 * init anonymous memory systems
	 */

	uvm_anon_init();

	uvm_uarea_init();

	/*
	 * init readahead module
	 */

	uvm_ra_init();
}
Beispiel #9
0
void
uvm_init(void)
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * step 0: ensure that the hardware set the page size
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	/*
	 * step 1: set up stats.
	 */
	averunnable.fscale = FSCALE;

	/*
	 * step 2: init the page sub-system.  this includes allocating the
	 * vm_page structures, and setting up all the page queues (and
	 * locks).  available memory will be put in the "free" queue.
	 * kvm_start and kvm_end will be set to the area of kernel virtual
	 * memory which is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * step 3: init the map sub-system.  allocates the static pool of
	 * vm_map_entry structures that are used for "special" kernel maps
	 * (e.g. kernel_map, kmem_map, etc...).
	 */

	uvm_map_init();

	/*
	 * step 4: setup the kernel's virtual memory data structures.  this
	 * includes setting up the kernel_map/kernel_object and the kmem_map/
	 * kmem_object.
	 */

	uvm_km_init(kvm_start, kvm_end);

	/*
	 * step 5: init the pmap module.   the pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * step 6: init the kernel memory allocator.   after this call the
	 * kernel memory allocator (malloc) can be used.
	 */

	kmeminit();

	/*
	 * step 6.5: init the dma allocator, which is backed by pools.
	 */
	dma_alloc_init();

	/*
	 * step 7: init all pagers and the pager_map.
	 */

	uvm_pager_init();

	/*
	 * step 8: init anonymous memory system
	 */

	amap_init();		/* init amap module */

	/*
	 * step 9: init uvm_km_page allocator memory.
	 */
	uvm_km_page_init();

	/*
	 * the VM system is now up!  now that malloc is up we can
	 * enable paging of kernel objects.
	 */

	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	/*
	 * reserve some unmapped space for malloc/pool use after free usage
	 */
#ifdef DEADBEEF0
	kvm_start = trunc_page(DEADBEEF0) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x", DEADBEEF0);
#endif
#ifdef DEADBEEF1
	kvm_start = trunc_page(DEADBEEF1) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x", DEADBEEF1);
#endif
	/*
	 * init anonymous memory systems
	 */
	uvm_anon_init();

#ifndef SMALL_KERNEL
	/*
	 * Switch kernel and kmem_map over to a best-fit allocator,
	 * instead of walking the tree.
	 */
	uvm_map_set_uaddr(kernel_map, &kernel_map->uaddr_any[3],
	    uaddr_bestfit_create(vm_map_min(kernel_map),
	    vm_map_max(kernel_map)));
	uvm_map_set_uaddr(kmem_map, &kmem_map->uaddr_any[3],
	    uaddr_bestfit_create(vm_map_min(kmem_map),
	    vm_map_max(kmem_map)));
#endif /* !SMALL_KERNEL */
}
Beispiel #10
0
// Called first from entry.S on the bootstrap processor,
// and later from boot/bootother.S on all other processors.
// As a rule, "init" functions in PIOS are called once on EACH processor.
void
init(void)
{
	extern char start[], edata[], end[];

	// Before anything else, complete the ELF loading process.
	// Clear all uninitialized global data (BSS) in our program,
	// ensuring that all static/global variables start out zero.
	if (cpu_onboot())
		memset(edata, 0, end - edata);

	// Initialize the console.
	// Can't call cprintf until after we do this!
	cons_init();

  	extern uint8_t _binary_obj_boot_bootother_start[],
    	_binary_obj_boot_bootother_size[];

  	uint8_t *code = (uint8_t*)lowmem_bootother_vec;
  	memmove(code, _binary_obj_boot_bootother_start, (uint32_t) _binary_obj_boot_bootother_size);

	// Lab 1: test cprintf and debug_trace
	cprintf("1234 decimal is %o octal!\n", 1234);
	debug_check();

	// Initialize and load the bootstrap CPU's GDT, TSS, and IDT.
	cpu_init();
	trap_init();

	// Physical memory detection/initialization.
	// Can't call mem_alloc until after we do this!
	mem_init();

	// Lab 2: check spinlock implementation
	if (cpu_onboot())
		spinlock_check();

	// Initialize the paged virtual memory system.
	pmap_init();

	// Find and start other processors in a multiprocessor system
	mp_init();		// Find info about processors in system
	pic_init();		// setup the legacy PIC (mainly to disable it)
	ioapic_init();		// prepare to handle external device interrupts
	lapic_init();		// setup this CPU's local APIC
	cpu_bootothers();	// Get other processors started
//	cprintf("CPU %d (%s) has booted\n", cpu_cur()->id,
//		cpu_onboot() ? "BP" : "AP");

	file_init();		// Create root directory and console I/O files

	// Lab 4: uncomment this when you can handle IRQ_SERIAL and IRQ_KBD.
	//cons_intenable();	// Let the console start producing interrupts

	// Initialize the process management code.
	proc_init();
	// Initialize the process management code.
	proc_init();


	if(!cpu_onboot())
		proc_sched();
 	proc *root = proc_root = proc_alloc(NULL,0);
  
  	elfhdr *ehs = (elfhdr *)ROOTEXE_START;
  	assert(ehs->e_magic == ELF_MAGIC);

  	proghdr *phs = (proghdr *) ((void *) ehs + ehs->e_phoff);
  	proghdr *ep = phs + ehs->e_phnum;

  	for (; phs < ep; phs++)
	{
    		if (phs->p_type != ELF_PROG_LOAD)
      		continue;

    		void *fa = (void *) ehs + ROUNDDOWN(phs->p_offset, PAGESIZE);
    		uint32_t va = ROUNDDOWN(phs->p_va, PAGESIZE);
    		uint32_t zva = phs->p_va + phs->p_filesz;
    		uint32_t eva = ROUNDUP(phs->p_va + phs->p_memsz, PAGESIZE);

    		uint32_t perm = SYS_READ | PTE_P | PTE_U;
    		if(phs->p_flags & ELF_PROG_FLAG_WRITE) perm |= SYS_WRITE | PTE_W;

    		for (; va < eva; va += PAGESIZE, fa += PAGESIZE) 
		{
    			pageinfo *pi = mem_alloc(); assert(pi != NULL);
      			if(va < ROUNDDOWN(zva, PAGESIZE))
        			memmove(mem_pi2ptr(pi), fa, PAGESIZE);
      			else if (va < zva && phs->p_filesz)
			{
      				memset(mem_pi2ptr(pi),0, PAGESIZE);
      				memmove(mem_pi2ptr(pi), fa, zva-va);
      			} 
			else
        			memset(mem_pi2ptr(pi), 0, PAGESIZE);

      			pte_t *pte = pmap_insert(root->pdir, pi, va, perm);
      			assert(pte != NULL);
      		}
      }

      root->sv.tf.eip = ehs->e_entry;
      root->sv.tf.eflags |= FL_IF;

      pageinfo *pi = mem_alloc(); assert(pi != NULL);
      pte_t *pte = pmap_insert(root->pdir, pi, VM_STACKHI-PAGESIZE,
      SYS_READ | SYS_WRITE | PTE_P | PTE_U | PTE_W);

      assert(pte != NULL);
      root->sv.tf.esp = VM_STACKHI;

      proc_ready(root);
      proc_sched();
	// Initialize the I/O system.

	// Lab 1: change this so it enters user() in user mode,
	// running on the user_stack declared above,
	// instead of just calling user() directly.
	user(); // FIXME: Maybe get rid of this
}
Beispiel #11
0
void
uvm_init(void)
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * Ensure that the hardware set the page size, zero the UVM structure.
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	memset(&uvm, 0, sizeof(uvm));
	averunnable.fscale = FSCALE;

	/*
	 * Init the page sub-system.  This includes allocating the vm_page
	 * structures, and setting up all the page queues (and locks).
	 * Available memory will be put in the "free" queue, kvm_start and
	 * kvm_end will be set to the area of kernel virtual memory which
	 * is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * Init the map sub-system.
	 */

	uvm_map_init();

	/*
	 * Setup the kernel's virtual memory data structures.  This includes
	 * setting up the kernel_map/kernel_object.
	 * Bootstrap all kernel memory allocators.
	 */

	uao_init();
	uvm_km_bootstrap(kvm_start, kvm_end);

	/*
	 * Setup uvm_map caches and init the amap.
	 */

	uvm_map_init_caches();
	uvm_amap_init();

	/*
	 * Init the pmap module.  The pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * Make kernel memory allocators ready for use.
	 * After this call the pool/kmem memory allocators can be used.
	 */

	uvm_km_init();

#ifdef DEBUG
	debug_init();
#endif

	/*
	 * Init all pagers and the pager_map.
	 */

	uvm_pager_init();

	/*
	 * Initialize the uvm_loan() facility.
	 */

	uvm_loan_init();

	/*
	 * Init emap subsystem.
	 */

	uvm_emap_sysinit();

	/*
	 * The VM system is now up!  Now that kmem is up we can resize the
	 * <obj,off> => <page> hash table for general use and enable paging
	 * of kernel objects.
	 */

	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	uvmpdpol_reinit();

	/*
	 * Init anonymous memory systems.
	 */

	uvm_anon_init();

	uvm_uarea_init();

	/*
	 * Init readahead mechanism.
	 */

	uvm_ra_init();
}