static void
smb_tree_acl_access(cred_t *cred, const char *sharename, vnode_t *pathvp,
		    uint32_t *access)
{
	int rc;
	vfs_t *vfsp;
	vnode_t *root = NULL;
	vnode_t *sharevp = NULL;
	char *sharepath;
	struct pathname pnp;
	size_t size;

	*access = ACE_ALL_PERMS; /* default to full "UNIX" access */

	/*
	 * Using the vnode of the share path, we then find the root
	 * directory of the mounted file system. We will then look to
	 * see if there is a .zfs/shares directory and if there is,
	 * get the access information from the ACL/ACES values and
	 * check against the cred.
	 */
	vfsp = pathvp->v_vfsp;
	if (vfsp != NULL)
		rc = VFS_ROOT(vfsp, &root);
	else
		rc = ENOENT;

	if (rc != 0)
		return;


	/*
	 * Find the share object, if there is one. Need to construct
	 * the path to the .zfs/shares/<sharename> object and look it
	 * up.  root is called held but will be released by
	 * lookuppnvp().
	 */

	size = sizeof (SHARES_DIR) + strlen(sharename) + 1;
	sharepath = kmem_alloc(size, KM_SLEEP);
	(void) sprintf(sharepath, "%s%s", SHARES_DIR, sharename);

	pn_alloc(&pnp);
	(void) pn_set(&pnp, sharepath);
	rc = lookuppnvp(&pnp, NULL, NO_FOLLOW, NULL,
	    &sharevp, rootdir, root, kcred);
	pn_free(&pnp);

	kmem_free(sharepath, size);

	/*
	 * Now get the effective access value based on cred and ACL
	 * values.
	 */

	if (rc == 0) {
		smb_vop_eaccess(sharevp, (int *)access, V_ACE_MASK, NULL, cred);
		VN_RELE(sharevp);
	}
}
Beispiel #2
0
vnode_t *
smb_lookuppathvptovp(smb_request_t *sr, char *path, vnode_t *startvp,
    vnode_t *rootvp)
{
	pathname_t pn;
	vnode_t *vp = NULL;
	int lookup_flags = FOLLOW;

	if (SMB_TREE_IS_CASEINSENSITIVE(sr))
		lookup_flags |= FIGNORECASE;

	(void) pn_alloc(&pn);

	if (pn_set(&pn, path) == 0) {
		VN_HOLD(startvp);
		if (rootvp != rootdir)
			VN_HOLD(rootvp);

		/* lookuppnvp should release the holds */
		if (lookuppnvp(&pn, NULL, lookup_flags, NULL, &vp,
		    rootvp, startvp, kcred) != 0) {
			pn_free(&pn);
			return (NULL);
		}
	}

	pn_free(&pn);
	return (vp);
}
Beispiel #3
0
int
smb_pathname(smb_request_t *sr, char *path, int flags,
    smb_node_t *root_node, smb_node_t *cur_node, smb_node_t **dir_node,
    smb_node_t **ret_node, cred_t *cred)
{
	char		*component, *real_name, *namep;
	pathname_t	pn, rpn, upn, link_pn;
	smb_node_t	*dnode, *fnode;
	smb_attr_t	attr;
	vnode_t		*rootvp, *vp;
	size_t		pathleft;
	int		err = 0;
	int		nlink = 0;
	int		local_flags;
	uint32_t	abe_flag = 0;
	char		namebuf[MAXNAMELEN];

	if (path == NULL)
		return (EINVAL);

	ASSERT(root_node);
	ASSERT(cur_node);
	ASSERT(ret_node);

	*ret_node = NULL;

	if (dir_node)
		*dir_node = NULL;

	(void) pn_alloc(&upn);

	if ((err = pn_set(&upn, path)) != 0) {
		(void) pn_free(&upn);
		return (err);
	}

	if (SMB_TREE_SUPPORTS_ABE(sr))
		abe_flag = SMB_ABE;

	(void) pn_alloc(&pn);
	(void) pn_alloc(&rpn);

	component = kmem_alloc(MAXNAMELEN, KM_SLEEP);
	real_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);

	fnode = NULL;
	dnode = cur_node;
	smb_node_ref(dnode);
	rootvp = root_node->vp;

	while ((pathleft = pn_pathleft(&upn)) != 0) {
		if (fnode) {
			smb_node_release(dnode);
			dnode = fnode;
			fnode = NULL;
		}

		if ((err = pn_getcomponent(&upn, component)) != 0)
			break;

		if ((namep = smb_pathname_catia_v5tov4(sr, component,
		    namebuf, sizeof (namebuf))) == NULL) {
			err = EILSEQ;
			break;
		}

		if ((err = pn_set(&pn, namep)) != 0)
			break;

		local_flags = flags & FIGNORECASE;
		err = smb_pathname_lookup(&pn, &rpn, local_flags,
		    &vp, rootvp, dnode->vp, &attr, cred);

		if (err) {
			if (!SMB_TREE_SUPPORTS_SHORTNAMES(sr) ||
			    !smb_maybe_mangled(component))
				break;

			if ((err = smb_unmangle(dnode, component,
			    real_name, MAXNAMELEN, abe_flag)) != 0)
				break;

			if ((namep = smb_pathname_catia_v5tov4(sr, real_name,
			    namebuf, sizeof (namebuf))) == NULL) {
				err = EILSEQ;
				break;
			}

			if ((err = pn_set(&pn, namep)) != 0)
				break;

			local_flags = 0;
			err = smb_pathname_lookup(&pn, &rpn, local_flags,
			    &vp, rootvp, dnode->vp, &attr, cred);
			if (err)
				break;
		}

		/*
		 * This check MUST be done before symlink check
		 * since a reparse point is of type VLNK but should
		 * not be handled like a regular symlink.
		 */
		if (attr.sa_dosattr & FILE_ATTRIBUTE_REPARSE_POINT) {
			err = EREMOTE;
			VN_RELE(vp);
			break;
		}

		if ((vp->v_type == VLNK) &&
		    ((flags & FOLLOW) || pn_pathleft(&upn))) {

			if (++nlink > MAXSYMLINKS) {
				err = ELOOP;
				VN_RELE(vp);
				break;
			}

			(void) pn_alloc(&link_pn);
			err = pn_getsymlink(vp, &link_pn, cred);
			VN_RELE(vp);

			if (err == 0) {
				if (pn_pathleft(&link_pn) == 0)
					(void) pn_set(&link_pn, ".");
				err = pn_insert(&upn, &link_pn,
				    strlen(component));
			}
			pn_free(&link_pn);

			if (err)
				break;

			if (upn.pn_pathlen == 0) {
				err = ENOENT;
				break;
			}

			if (upn.pn_path[0] == '/') {
				fnode = root_node;
				smb_node_ref(fnode);
			}

			if (pn_fixslash(&upn))
				flags |= FOLLOW;

		} else {
			if (flags & FIGNORECASE) {
				if (strcmp(rpn.pn_path, "/") != 0)
					pn_setlast(&rpn);
				namep = rpn.pn_path;
			} else {
				namep = pn.pn_path;
			}

			namep = smb_pathname_catia_v4tov5(sr, namep,
			    namebuf, sizeof (namebuf));

			fnode = smb_node_lookup(sr, NULL, cred, vp, namep,
			    dnode, NULL);
			VN_RELE(vp);

			if (fnode == NULL) {
				err = ENOMEM;
				break;
			}
		}

		while (upn.pn_path[0] == '/') {
			upn.pn_path++;
			upn.pn_pathlen--;
		}

	}

	if ((pathleft) && (err == ENOENT))
		err = ENOTDIR;

	if (err) {
		if (fnode)
			smb_node_release(fnode);
		if (dnode)
			smb_node_release(dnode);
	} else {
		*ret_node = fnode;

		if (dir_node)
			*dir_node = dnode;
		else
			smb_node_release(dnode);
	}

	kmem_free(component, MAXNAMELEN);
	kmem_free(real_name, MAXNAMELEN);
	(void) pn_free(&pn);
	(void) pn_free(&rpn);
	(void) pn_free(&upn);

	return (err);
}
Beispiel #4
0
int
smb_pathname_reduce(
    smb_request_t	*sr,
    cred_t		*cred,
    const char		*path,
    smb_node_t		*share_root_node,
    smb_node_t		*cur_node,
    smb_node_t		**dir_node,
    char		*last_component)
{
	smb_node_t	*root_node;
	pathname_t	ppn;
	char		*usepath;
	int		lookup_flags = FOLLOW;
	int 		trailing_slash = 0;
	int		err = 0;
	int		len;
	smb_node_t	*vss_cur_node;
	smb_node_t	*vss_root_node;
	smb_node_t	*local_cur_node;
	smb_node_t	*local_root_node;

	ASSERT(dir_node);
	ASSERT(last_component);

	*dir_node = NULL;
	*last_component = '\0';
	vss_cur_node = NULL;
	vss_root_node = NULL;

	if (sr && sr->tid_tree) {
		if (STYPE_ISIPC(sr->tid_tree->t_res_type))
			return (EACCES);
	}

	if (SMB_TREE_IS_CASEINSENSITIVE(sr))
		lookup_flags |= FIGNORECASE;

	if (path == NULL)
		return (EINVAL);

	if (*path == '\0')
		return (ENOENT);

	usepath = kmem_alloc(MAXPATHLEN, KM_SLEEP);

	if ((len = strlcpy(usepath, path, MAXPATHLEN)) >= MAXPATHLEN) {
		kmem_free(usepath, MAXPATHLEN);
		return (ENAMETOOLONG);
	}

	(void) strsubst(usepath, '\\', '/');

	if (share_root_node)
		root_node = share_root_node;
	else
		root_node = sr->sr_server->si_root_smb_node;

	if (cur_node == NULL)
		cur_node = root_node;

	local_cur_node = cur_node;
	local_root_node = root_node;

	if (SMB_TREE_IS_DFSROOT(sr) && (sr->smb_flg2 & SMB_FLAGS2_DFS)) {
		err = smb_pathname_dfs_preprocess(sr, usepath, MAXPATHLEN);
		if (err != 0) {
			kmem_free(usepath, MAXPATHLEN);
			return (err);
		}
		len = strlen(usepath);
	}

	if (sr && (sr->smb_flg2 & SMB_FLAGS2_REPARSE_PATH)) {
		err = smb_vss_lookup_nodes(sr, root_node, cur_node,
		    usepath, &vss_cur_node, &vss_root_node);

		if (err != 0) {
			kmem_free(usepath, MAXPATHLEN);
			return (err);
		}

		len = strlen(usepath);
		local_cur_node = vss_cur_node;
		local_root_node = vss_root_node;
	}

	if (usepath[len - 1] == '/')
		trailing_slash = 1;

	(void) strcanon(usepath, "/");

	(void) pn_alloc(&ppn);

	if ((err = pn_set(&ppn, usepath)) != 0) {
		(void) pn_free(&ppn);
		kmem_free(usepath, MAXPATHLEN);
		if (vss_cur_node != NULL)
			(void) smb_node_release(vss_cur_node);
		if (vss_root_node != NULL)
			(void) smb_node_release(vss_root_node);
		return (err);
	}

	/*
	 * If a path does not have a trailing slash, strip off the
	 * last component.  (We only need to return an smb_node for
	 * the second to last component; a name is returned for the
	 * last component.)
	 */

	if (trailing_slash) {
		(void) strlcpy(last_component, ".", MAXNAMELEN);
	} else {
		(void) pn_setlast(&ppn);
		(void) strlcpy(last_component, ppn.pn_path, MAXNAMELEN);
		ppn.pn_path[0] = '\0';
	}

	if ((strcmp(ppn.pn_buf, "/") == 0) || (ppn.pn_buf[0] == '\0')) {
		smb_node_ref(local_cur_node);
		*dir_node = local_cur_node;
	} else {
		err = smb_pathname(sr, ppn.pn_buf, lookup_flags,
		    local_root_node, local_cur_node, NULL, dir_node, cred);
	}

	(void) pn_free(&ppn);
	kmem_free(usepath, MAXPATHLEN);

	/*
	 * Prevent traversal to another file system if mount point
	 * traversal is disabled.
	 *
	 * Note that we disregard whether the traversal of the path went
	 * outside of the file system and then came back (say via a link).
	 * This means that only symlinks that are expressed relatively to
	 * the share root work.
	 *
	 * share_root_node is NULL when mapping a share, so we disregard
	 * that case.
	 */

	if ((err == 0) && share_root_node) {
		if (share_root_node->vp->v_vfsp != (*dir_node)->vp->v_vfsp) {
			err = EACCES;
			if ((sr) && (sr)->tid_tree &&
			    smb_tree_has_feature((sr)->tid_tree,
			    SMB_TREE_TRAVERSE_MOUNTS))
				err = 0;
		}
	}

	if (err) {
		if (*dir_node) {
			(void) smb_node_release(*dir_node);
			*dir_node = NULL;
		}
		*last_component = 0;
	}

	if (vss_cur_node != NULL)
		(void) smb_node_release(vss_cur_node);
	if (vss_root_node != NULL)
		(void) smb_node_release(vss_root_node);

	return (err);
}
Beispiel #5
0
/*
 * Given a directory, return the full, resolved path.  This looks up "..",
 * searches for the given vnode in the parent, appends the component, etc.  It
 * is used to implement vnodetopath() and getcwd() when the cached path fails.
 */
static int
dirtopath(vnode_t *vrootp, vnode_t *vp, char *buf, size_t buflen, int flags,
    cred_t *cr)
{
	pathname_t pn, rpn, emptypn;
	vnode_t *cmpvp, *pvp = NULL;
	vnode_t *startvp = vp;
	int err = 0, vprivs;
	size_t complen;
	char *dbuf;
	dirent64_t *dp;
	char		*bufloc;
	size_t		dlen = DIRENT64_RECLEN(MAXPATHLEN);
	refstr_t	*mntpt;

	/* Operation only allowed on directories */
	ASSERT(vp->v_type == VDIR);

	/* We must have at least enough space for "/" */
	if (buflen < 2)
		return (ENAMETOOLONG);

	/* Start at end of string with terminating null */
	bufloc = &buf[buflen - 1];
	*bufloc = '\0';

	pn_alloc(&pn);
	pn_alloc(&rpn);
	dbuf = kmem_alloc(dlen, KM_SLEEP);
	bzero(&emptypn, sizeof (emptypn));

	/*
	 * Begin with an additional reference on vp.  This will be decremented
	 * during the loop.
	 */
	VN_HOLD(vp);

	for (;;) {
		/*
		 * Return if we've reached the root.  If the buffer is empty,
		 * return '/'.  We explicitly don't use vn_compare(), since it
		 * compares the real vnodes.  A lofs mount of '/' would produce
		 * incorrect results otherwise.
		 */
		if (VN_CMP(vrootp, vp)) {
			if (*bufloc == '\0')
				*--bufloc = '/';
			break;
		}

		/*
		 * If we've reached the VFS root, something has gone wrong.  We
		 * should have reached the root in the above check.  The only
		 * explantation is that 'vp' is not contained withing the given
		 * root, in which case we return EPERM.
		 */
		if (VN_CMP(rootdir, vp)) {
			err = EPERM;
			goto out;
		}

		/*
		 * Shortcut: see if this vnode is a mountpoint.  If so,
		 * grab the path information from the vfs_t.
		 */
		if (vp->v_flag & VROOT) {

			mntpt = vfs_getmntpoint(vp->v_vfsp);
			if ((err = pn_set(&pn, (char *)refstr_value(mntpt)))
			    == 0) {
				refstr_rele(mntpt);
				rpn.pn_path = rpn.pn_buf;

				/*
				 * Ensure the mountpoint still exists.
				 */
				VN_HOLD(vrootp);
				if (vrootp != rootdir)
					VN_HOLD(vrootp);
				if (lookuppnvp(&pn, &rpn, flags, NULL,
				    &cmpvp, vrootp, vrootp, cr) == 0) {

					if (VN_CMP(vp, cmpvp)) {
						VN_RELE(cmpvp);

						complen = strlen(rpn.pn_path);
						bufloc -= complen;
						if (bufloc < buf) {
							err = ERANGE;
							goto out;
						}
						bcopy(rpn.pn_path, bufloc,
						    complen);
						break;
					} else {
						VN_RELE(cmpvp);
					}
				}
			} else {
				refstr_rele(mntpt);
			}
		}

		/*
		 * Shortcut: see if this vnode has correct v_path. If so,
		 * we have the work done.
		 */
		mutex_enter(&vp->v_lock);
		if (vp->v_path != NULL) {

			if ((err = pn_set(&pn, vp->v_path)) == 0) {
				mutex_exit(&vp->v_lock);
				rpn.pn_path = rpn.pn_buf;

				/*
				 * Ensure the v_path pointing to correct vnode
				 */
				VN_HOLD(vrootp);
				if (vrootp != rootdir)
					VN_HOLD(vrootp);
				if (lookuppnvp(&pn, &rpn, flags, NULL,
				    &cmpvp, vrootp, vrootp, cr) == 0) {

					if (VN_CMP(vp, cmpvp)) {
						VN_RELE(cmpvp);

						complen = strlen(rpn.pn_path);
						bufloc -= complen;
						if (bufloc < buf) {
							err = ERANGE;
							goto out;
						}
						bcopy(rpn.pn_path, bufloc,
						    complen);
						break;
					} else {
						VN_RELE(cmpvp);
					}
				}
			} else {
				mutex_exit(&vp->v_lock);
			}
		} else {
			mutex_exit(&vp->v_lock);
		}

		/*
		 * Shortcuts failed, search for this vnode in its parent.  If
		 * this is a mountpoint, then get the vnode underneath.
		 */
		if (vp->v_flag & VROOT)
			vp = vn_under(vp);
		if ((err = VOP_LOOKUP(vp, "..", &pvp, &emptypn, 0, vrootp, cr,
		    NULL, NULL, NULL)) != 0)
			goto out;

		/*
		 * With extended attributes, it's possible for a directory to
		 * have a parent that is a regular file.  Check for that here.
		 */
		if (pvp->v_type != VDIR) {
			err = ENOTDIR;
			goto out;
		}

		/*
		 * If this is true, something strange has happened.  This is
		 * only true if we are the root of a filesystem, which should
		 * have been caught by the check above.
		 */
		if (VN_CMP(pvp, vp)) {
			err = ENOENT;
			goto out;
		}

		/*
		 * Check if we have read and search privilege so, that
		 * we can lookup the path in the directory
		 */
		vprivs = (flags & LOOKUP_CHECKREAD) ? VREAD | VEXEC : VEXEC;
		if ((err = VOP_ACCESS(pvp, vprivs, 0, cr, NULL)) != 0) {
			goto out;
		}

		/*
		 * Try to obtain the path component from dnlc cache
		 * before searching through the directory.
		 */
		if ((cmpvp = dnlc_reverse_lookup(vp, dbuf, dlen)) != NULL) {
			/*
			 * If we got parent vnode as a result,
			 * then the answered path is correct.
			 */
			if (VN_CMP(cmpvp, pvp)) {
				VN_RELE(cmpvp);
				complen = strlen(dbuf);
				bufloc -= complen;
				if (bufloc <= buf) {
					err = ENAMETOOLONG;
					goto out;
				}
				bcopy(dbuf, bufloc, complen);

				/* Prepend a slash to the current path */
				*--bufloc = '/';

				/* And continue with the next component */
				VN_RELE(vp);
				vp = pvp;
				pvp = NULL;
				continue;
			} else {
				VN_RELE(cmpvp);
			}
		}

		/*
		 * Search the parent directory for the entry corresponding to
		 * this vnode.
		 */
		if ((err = dirfindvp(vrootp, pvp, vp, cr, dbuf, dlen, &dp))
		    != 0)
			goto out;
		complen = strlen(dp->d_name);
		bufloc -= complen;
		if (bufloc <= buf) {
			err = ENAMETOOLONG;
			goto out;
		}
		bcopy(dp->d_name, bufloc, complen);

		/* Prepend a slash to the current path.  */
		*--bufloc = '/';

		/* And continue with the next component */
		VN_RELE(vp);
		vp = pvp;
		pvp = NULL;
	}

	/*
	 * Place the path at the beginning of the buffer.
	 */
	if (bufloc != buf)
		ovbcopy(bufloc, buf, buflen - (bufloc - buf));

out:
	/*
	 * If the error was ESTALE and the current directory to look in
	 * was the root for this lookup, the root for a mounted file
	 * system, or the starting directory for lookups, then
	 * return ENOENT instead of ESTALE.  In this case, no recovery
	 * is possible by the higher level.  If ESTALE was returned for
	 * some intermediate directory along the path, then recovery
	 * is potentially possible and retrying from the higher level
	 * will either correct the situation by purging stale cache
	 * entries or eventually get back to the point where no recovery
	 * is possible.
	 */
	if (err == ESTALE &&
	    (VN_CMP(vp, vrootp) || (vp->v_flag & VROOT) || vp == startvp))
		err = ENOENT;

	kmem_free(dbuf, dlen);
	VN_RELE(vp);
	if (pvp)
		VN_RELE(pvp);
	pn_free(&pn);
	pn_free(&rpn);

	return (err);
}
Beispiel #6
0
/*
 * Starting at current directory, translate pathname pnp to end.
 * Leave pathname of final component in pnp, return the vnode
 * for the final component in *compvpp, and return the vnode
 * for the parent of the final component in dirvpp.
 *
 * This is the central routine in pathname translation and handles
 * multiple components in pathnames, separating them at /'s.  It also
 * implements mounted file systems and processes symbolic links.
 *
 * vp is the vnode where the directory search should start.
 *
 * Reference counts: vp must be held prior to calling this function.  rootvp
 * should only be held if rootvp != rootdir.
 */
int
lookuppnvp(
	struct pathname *pnp,		/* pathname to lookup */
	struct pathname *rpnp,		/* if non-NULL, return resolved path */
	int flags,			/* follow symlinks */
	vnode_t **dirvpp,		/* ptr for parent vnode */
	vnode_t **compvpp,		/* ptr for entry vnode */
	vnode_t *rootvp,		/* rootvp */
	vnode_t *vp,			/* directory to start search at */
	cred_t *cr)			/* user's credential */
{
	vnode_t *cvp;	/* current component vp */
	char component[MAXNAMELEN];	/* buffer for component (incl null) */
	int error;
	int nlink;
	int lookup_flags;
	struct pathname presrvd; /* case preserved name */
	struct pathname *pp = NULL;
	vnode_t *startvp;
	vnode_t *zonevp = curproc->p_zone->zone_rootvp;		/* zone root */
	int must_be_directory = 0;
	boolean_t retry_with_kcred;
	uint32_t auditing = AU_AUDITING();

	CPU_STATS_ADDQ(CPU, sys, namei, 1);
	nlink = 0;
	cvp = NULL;
	if (rpnp)
		rpnp->pn_pathlen = 0;

	lookup_flags = dirvpp ? LOOKUP_DIR : 0;
	if (flags & FIGNORECASE) {
		lookup_flags |= FIGNORECASE;
		pn_alloc(&presrvd);
		pp = &presrvd;
	}

	if (auditing)
		audit_anchorpath(pnp, vp == rootvp);

	/*
	 * Eliminate any trailing slashes in the pathname.
	 * If there are any, we must follow all symlinks.
	 * Also, we must guarantee that the last component is a directory.
	 */
	if (pn_fixslash(pnp)) {
		flags |= FOLLOW;
		must_be_directory = 1;
	}

	startvp = vp;
next:
	retry_with_kcred = B_FALSE;

	/*
	 * Make sure we have a directory.
	 */
	if (vp->v_type != VDIR) {
		error = ENOTDIR;
		goto bad;
	}

	if (rpnp && VN_CMP(vp, rootvp))
		(void) pn_set(rpnp, "/");

	/*
	 * Process the next component of the pathname.
	 */
	if (error = pn_getcomponent(pnp, component)) {
		goto bad;
	}

	/*
	 * Handle "..": two special cases.
	 * 1. If we're at the root directory (e.g. after chroot or
	 *    zone_enter) then change ".." to "." so we can't get
	 *    out of this subtree.
	 * 2. If this vnode is the root of a mounted file system,
	 *    then replace it with the vnode that was mounted on
	 *    so that we take the ".." in the other file system.
	 */
	if (component[0] == '.' && component[1] == '.' && component[2] == 0) {
checkforroot:
		if (VN_CMP(vp, rootvp) || VN_CMP(vp, zonevp)) {
			component[1] = '\0';
		} else if (vp->v_flag & VROOT) {
			vfs_t *vfsp;
			cvp = vp;

			/*
			 * While we deal with the vfs pointer from the vnode
			 * the filesystem could have been forcefully unmounted
			 * and the vnode's v_vfsp could have been invalidated
			 * by VFS_UNMOUNT. Hence, we cache v_vfsp and use it
			 * with vfs_rlock_wait/vfs_unlock.
			 * It is safe to use the v_vfsp even it is freed by
			 * VFS_UNMOUNT because vfs_rlock_wait/vfs_unlock
			 * do not dereference v_vfsp. It is just used as a
			 * magic cookie.
			 * One more corner case here is the memory getting
			 * reused for another vfs structure. In this case
			 * lookuppnvp's vfs_rlock_wait will succeed, domount's
			 * vfs_lock will fail and domount will bail out with an
			 * error (EBUSY).
			 */
			vfsp = cvp->v_vfsp;

			/*
			 * This lock is used to synchronize
			 * mounts/unmounts and lookups.
			 * Threads doing mounts/unmounts hold the
			 * writers version vfs_lock_wait().
			 */

			vfs_rlock_wait(vfsp);

			/*
			 * If this vnode is on a file system that
			 * has been forcibly unmounted,
			 * we can't proceed. Cancel this operation
			 * and return EIO.
			 *
			 * vfs_vnodecovered is NULL if unmounted.
			 * Currently, nfs uses VFS_UNMOUNTED to
			 * check if it's a forced-umount. Keep the
			 * same checking here as well even though it
			 * may not be needed.
			 */
			if (((vp = cvp->v_vfsp->vfs_vnodecovered) == NULL) ||
			    (cvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
				vfs_unlock(vfsp);
				VN_RELE(cvp);
				if (pp)
					pn_free(pp);
				return (EIO);
			}
			VN_HOLD(vp);
			vfs_unlock(vfsp);
			VN_RELE(cvp);
			cvp = NULL;
			/*
			 * Crossing mount points. For eg: We are doing
			 * a lookup of ".." for file systems root vnode
			 * mounted here, and VOP_LOOKUP() (with covered vnode)
			 * will be on underlying file systems mount point
			 * vnode. Set retry_with_kcred flag as we might end
			 * up doing VOP_LOOKUP() with kcred if required.
			 */
			retry_with_kcred = B_TRUE;
			goto checkforroot;
		}
	}

	/*
	 * LOOKUP_CHECKREAD is a private flag used by vnodetopath() to indicate
	 * that we need to have read permission on every directory in the entire
	 * path.  This is used to ensure that a forward-lookup of a cached value
	 * has the same effect as a reverse-lookup when the cached value cannot
	 * be found.
	 */
	if ((flags & LOOKUP_CHECKREAD) &&
	    (error = VOP_ACCESS(vp, VREAD, 0, cr, NULL)) != 0)
		goto bad;

	/*
	 * Perform a lookup in the current directory.
	 */
	error = VOP_LOOKUP(vp, component, &cvp, pnp, lookup_flags,
	    rootvp, cr, NULL, NULL, pp);

	/*
	 * Retry with kcred - If crossing mount points & error is EACCES.
	 *
	 * If we are crossing mount points here and doing ".." lookup,
	 * VOP_LOOKUP() might fail if the underlying file systems
	 * mount point has no execute permission. In cases like these,
	 * we retry VOP_LOOKUP() by giving as much privilage as possible
	 * by passing kcred credentials.
	 *
	 * In case of hierarchical file systems, passing kcred still may
	 * or may not work.
	 * For eg: UFS FS --> Mount NFS FS --> Again mount UFS on some
	 *			directory inside NFS FS.
	 */
	if ((error == EACCES) && retry_with_kcred)
		error = VOP_LOOKUP(vp, component, &cvp, pnp, lookup_flags,
		    rootvp, zone_kcred(), NULL, NULL, pp);

	if (error) {
		cvp = NULL;
		/*
		 * On error, return hard error if
		 * (a) we're not at the end of the pathname yet, or
		 * (b) the caller didn't want the parent directory, or
		 * (c) we failed for some reason other than a missing entry.
		 */
		if (pn_pathleft(pnp) || dirvpp == NULL || error != ENOENT)
			goto bad;
		if (auditing) {	/* directory access */
			if (error = audit_savepath(pnp, vp, vp, error, cr))
				goto bad_noaudit;
		}

		pn_setlast(pnp);
		/*
		 * We inform the caller that the desired entry must be
		 * a directory by adding a '/' to the component name.
		 */
		if (must_be_directory && (error = pn_addslash(pnp)) != 0)
			goto bad;
		*dirvpp = vp;
		if (compvpp != NULL)
			*compvpp = NULL;
		if (rootvp != rootdir)
			VN_RELE(rootvp);
		if (pp)
			pn_free(pp);
		return (0);
	}

	/*
	 * Traverse mount points.
	 * XXX why don't we need to hold a read lock here (call vn_vfsrlock)?
	 * What prevents a concurrent update to v_vfsmountedhere?
	 * 	Possible answer: if mounting, we might not see the mount
	 *	if it is concurrently coming into existence, but that's
	 *	really not much different from the thread running a bit slower.
	 *	If unmounting, we may get into traverse() when we shouldn't,
	 *	but traverse() will catch this case for us.
	 *	(For this to work, fetching v_vfsmountedhere had better
	 *	be atomic!)
	 */
	if (vn_mountedvfs(cvp) != NULL) {
		if ((error = traverse(&cvp)) != 0)
			goto bad;
	}

	/*
	 * If we hit a symbolic link and there is more path to be
	 * translated or this operation does not wish to apply
	 * to a link, then place the contents of the link at the
	 * front of the remaining pathname.
	 */
	if (cvp->v_type == VLNK && ((flags & FOLLOW) || pn_pathleft(pnp))) {
		struct pathname linkpath;

		if (++nlink > MAXSYMLINKS) {
			error = ELOOP;
			goto bad;
		}
		pn_alloc(&linkpath);
		if (error = pn_getsymlink(cvp, &linkpath, cr)) {
			pn_free(&linkpath);
			goto bad;
		}

		if (auditing)
			audit_symlink(pnp, &linkpath);

		if (pn_pathleft(&linkpath) == 0)
			(void) pn_set(&linkpath, ".");
		error = pn_insert(pnp, &linkpath, strlen(component));
		pn_free(&linkpath);
		if (error)
			goto bad;
		VN_RELE(cvp);
		cvp = NULL;
		if (pnp->pn_pathlen == 0) {
			error = ENOENT;
			goto bad;
		}
		if (pnp->pn_path[0] == '/') {
			do {
				pnp->pn_path++;
				pnp->pn_pathlen--;
			} while (pnp->pn_path[0] == '/');
			VN_RELE(vp);
			vp = rootvp;
			VN_HOLD(vp);
		}
		if (auditing)
			audit_anchorpath(pnp, vp == rootvp);
		if (pn_fixslash(pnp)) {
			flags |= FOLLOW;
			must_be_directory = 1;
		}
		goto next;
	}

	/*
	 * If rpnp is non-NULL, remember the resolved path name therein.
	 * Do not include "." components.  Collapse occurrences of
	 * "previous/..", so long as "previous" is not itself "..".
	 * Exhausting rpnp results in error ENAMETOOLONG.
	 */
	if (rpnp && strcmp(component, ".") != 0) {
		size_t len;

		if (strcmp(component, "..") == 0 &&
		    rpnp->pn_pathlen != 0 &&
		    !((rpnp->pn_pathlen > 2 &&
		    strncmp(rpnp->pn_path+rpnp->pn_pathlen-3, "/..", 3) == 0) ||
		    (rpnp->pn_pathlen == 2 &&
		    strncmp(rpnp->pn_path, "..", 2) == 0))) {
			while (rpnp->pn_pathlen &&
			    rpnp->pn_path[rpnp->pn_pathlen-1] != '/')
				rpnp->pn_pathlen--;
			if (rpnp->pn_pathlen > 1)
				rpnp->pn_pathlen--;
			rpnp->pn_path[rpnp->pn_pathlen] = '\0';
		} else {
			if (rpnp->pn_pathlen != 0 &&
			    rpnp->pn_path[rpnp->pn_pathlen-1] != '/')
				rpnp->pn_path[rpnp->pn_pathlen++] = '/';
			if (flags & FIGNORECASE) {
				/*
				 * Return the case-preserved name
				 * within the resolved path.
				 */
				error = copystr(pp->pn_buf,
				    rpnp->pn_path + rpnp->pn_pathlen,
				    rpnp->pn_bufsize - rpnp->pn_pathlen, &len);
			} else {
				error = copystr(component,
				    rpnp->pn_path + rpnp->pn_pathlen,
				    rpnp->pn_bufsize - rpnp->pn_pathlen, &len);
			}
			if (error)	/* copystr() returns ENAMETOOLONG */
				goto bad;
			rpnp->pn_pathlen += (len - 1);
			ASSERT(rpnp->pn_bufsize > rpnp->pn_pathlen);
		}
	}

	/*
	 * If no more components, return last directory (if wanted) and
	 * last component (if wanted).
	 */
	if (pn_pathleft(pnp) == 0) {
		/*
		 * If there was a trailing slash in the pathname,
		 * make sure the last component is a directory.
		 */
		if (must_be_directory && cvp->v_type != VDIR) {
			error = ENOTDIR;
			goto bad;
		}
		if (dirvpp != NULL) {
			/*
			 * Check that we have the real parent and not
			 * an alias of the last component.
			 */
			if (vn_compare(vp, cvp)) {
				if (auditing)
					(void) audit_savepath(pnp, cvp, vp,
					    EINVAL, cr);
				pn_setlast(pnp);
				VN_RELE(vp);
				VN_RELE(cvp);
				if (rootvp != rootdir)
					VN_RELE(rootvp);
				if (pp)
					pn_free(pp);
				return (EINVAL);
			}
			*dirvpp = vp;
		} else
			VN_RELE(vp);
		if (auditing)
			(void) audit_savepath(pnp, cvp, vp, 0, cr);
		if (pnp->pn_path == pnp->pn_buf)
			(void) pn_set(pnp, ".");
		else
			pn_setlast(pnp);
		if (rpnp) {
			if (VN_CMP(cvp, rootvp))
				(void) pn_set(rpnp, "/");
			else if (rpnp->pn_pathlen == 0)
				(void) pn_set(rpnp, ".");
		}

		if (compvpp != NULL)
			*compvpp = cvp;
		else
			VN_RELE(cvp);
		if (rootvp != rootdir)
			VN_RELE(rootvp);
		if (pp)
			pn_free(pp);
		return (0);
	}

	/*
	 * Skip over slashes from end of last component.
	 */
	while (pnp->pn_path[0] == '/') {
		pnp->pn_path++;
		pnp->pn_pathlen--;
	}

	/*
	 * Searched through another level of directory:
	 * release previous directory handle and save new (result
	 * of lookup) as current directory.
	 */
	VN_RELE(vp);
	vp = cvp;
	cvp = NULL;
	goto next;

bad:
	if (auditing)	/* reached end of path */
		(void) audit_savepath(pnp, cvp, vp, error, cr);
bad_noaudit:
	/*
	 * Error.  Release vnodes and return.
	 */
	if (cvp)
		VN_RELE(cvp);
	/*
	 * If the error was ESTALE and the current directory to look in
	 * was the root for this lookup, the root for a mounted file
	 * system, or the starting directory for lookups, then
	 * return ENOENT instead of ESTALE.  In this case, no recovery
	 * is possible by the higher level.  If ESTALE was returned for
	 * some intermediate directory along the path, then recovery
	 * is potentially possible and retrying from the higher level
	 * will either correct the situation by purging stale cache
	 * entries or eventually get back to the point where no recovery
	 * is possible.
	 */
	if (error == ESTALE &&
	    (VN_CMP(vp, rootvp) || (vp->v_flag & VROOT) || vp == startvp))
		error = ENOENT;
	VN_RELE(vp);
	if (rootvp != rootdir)
		VN_RELE(rootvp);
	if (pp)
		pn_free(pp);
	return (error);
}
Beispiel #7
0
/*
 * The additional flag, LOOKUP_CHECKREAD, is used to enforce artificial
 * constraints in order to be standards compliant.  For example, if we have
 * the cached path of '/foo/bar', and '/foo' has permissions 100 (execute
 * only), then we can legitimately look up the path to the current working
 * directory without needing read permission.  Existing standards tests,
 * however, assume that we are determining the path by repeatedly looking up
 * "..".  We need to keep this behavior in order to maintain backwards
 * compatibility.
 */
static int
vnodetopath_common(vnode_t *vrootp, vnode_t *vp, char *buf, size_t buflen,
    cred_t *cr, int flags)
{
	pathname_t pn, rpn;
	int ret, len;
	vnode_t *compvp, *pvp, *realvp;
	proc_t *p = curproc;
	char path[MAXNAMELEN];
	int doclose = 0;

	/*
	 * If vrootp is NULL, get the root for curproc.  Callers with any other
	 * requirements should pass in a different vrootp.
	 */
	if (vrootp == NULL) {
		mutex_enter(&p->p_lock);
		if ((vrootp = PTOU(p)->u_rdir) == NULL)
			vrootp = rootdir;
		VN_HOLD(vrootp);
		mutex_exit(&p->p_lock);
	} else {
		VN_HOLD(vrootp);
	}

	/*
	 * This is to get around an annoying artifact of the /proc filesystem,
	 * which is the behavior of {cwd/root}.  Trying to resolve this path
	 * will result in /proc/pid/cwd instead of whatever the real working
	 * directory is.  We can't rely on VOP_REALVP(), since that will break
	 * lofs.  The only difference between procfs and lofs is that opening
	 * the file will return the underling vnode in the case of procfs.
	 */
	if (vp->v_type == VDIR && VOP_REALVP(vp, &realvp, NULL) == 0 &&
	    realvp != vp) {
		VN_HOLD(vp);
		if (VOP_OPEN(&vp, FREAD, cr, NULL) == 0)
			doclose = 1;
		else
			VN_RELE(vp);
	}

	pn_alloc(&pn);

	/*
	 * Check to see if we have a cached path in the vnode.
	 */
	mutex_enter(&vp->v_lock);
	if (vp->v_path != NULL) {
		(void) pn_set(&pn, vp->v_path);
		mutex_exit(&vp->v_lock);

		pn_alloc(&rpn);

		/* We should only cache absolute paths */
		ASSERT(pn.pn_buf[0] == '/');

		/*
		 * If we are in a zone or a chroot environment, then we have to
		 * take additional steps, since the path to the root might not
		 * be readable with the current credentials, even though the
		 * process can legitmately access the file.  In this case, we
		 * do the following:
		 *
		 * lookuppnvp() with all privileges to get the resolved path.
		 * call localpath() to get the local portion of the path, and
		 * continue as normal.
		 *
		 * If the the conversion to a local path fails, then we continue
		 * as normal.  This is a heuristic to make process object file
		 * paths available from within a zone.  Because lofs doesn't
		 * support page operations, the vnode stored in the seg_t is
		 * actually the underlying real vnode, not the lofs node itself.
		 * Most of the time, the lofs path is the same as the underlying
		 * vnode (for example, /usr/lib/libc.so.1).
		 */
		if (vrootp != rootdir) {
			char *local = NULL;
			VN_HOLD(rootdir);
			if (lookuppnvp(&pn, &rpn, FOLLOW,
			    NULL, &compvp, rootdir, rootdir, kcred) == 0) {
				local = localpath(rpn.pn_path, vrootp,
				    kcred);
				VN_RELE(compvp);
			}

			/*
			 * The original pn was changed through lookuppnvp().
			 * Set it to local for next validation attempt.
			 */
			if (local) {
				(void) pn_set(&pn, local);
			} else {
				goto notcached;
			}
		}

		/*
		 * We should have a local path at this point, so start the
		 * search from the root of the current process.
		 */
		VN_HOLD(vrootp);
		if (vrootp != rootdir)
			VN_HOLD(vrootp);
		ret = lookuppnvp(&pn, &rpn, FOLLOW | flags, NULL,
		    &compvp, vrootp, vrootp, cr);
		if (ret == 0) {
			/*
			 * Check to see if the returned vnode is the same as
			 * the one we expect.  If not, give up.
			 */
			if (!vn_compare(vp, compvp) &&
			    !vnode_match(vp, compvp, cr)) {
				VN_RELE(compvp);
				goto notcached;
			}

			VN_RELE(compvp);

			/*
			 * Return the result.
			 */
			if (buflen <= rpn.pn_pathlen)
				goto notcached;

			bcopy(rpn.pn_path, buf, rpn.pn_pathlen + 1);
			pn_free(&pn);
			pn_free(&rpn);
			VN_RELE(vrootp);
			if (doclose) {
				(void) VOP_CLOSE(vp, FREAD, 1, 0, cr, NULL);
				VN_RELE(vp);
			}
			return (0);
		}

notcached:
		pn_free(&rpn);
	} else {
		mutex_exit(&vp->v_lock);
	}

	pn_free(&pn);

	if (vp->v_type != VDIR) {
		/*
		 * If we don't have a directory, try to find it in the dnlc via
		 * reverse lookup.  Once this is found, we can use the regular
		 * directory search to find the full path.
		 */
		if ((pvp = dnlc_reverse_lookup(vp, path, MAXNAMELEN)) != NULL) {
			/*
			 * Check if we have read privilege so, that
			 * we can lookup the path in the directory
			 */
			ret = 0;
			if ((flags & LOOKUP_CHECKREAD)) {
				ret = VOP_ACCESS(pvp, VREAD, 0, cr, NULL);
			}
			if (ret == 0) {
				ret = dirtopath(vrootp, pvp, buf, buflen,
				    flags, cr);
			}
			if (ret == 0) {
				len = strlen(buf);
				if (len + strlen(path) + 1 >= buflen) {
					ret = ENAMETOOLONG;
				} else {
					if (buf[len - 1] != '/')
						buf[len++] = '/';
					bcopy(path, buf + len,
					    strlen(path) + 1);
				}
			}

			VN_RELE(pvp);
		} else
			ret = ENOENT;
	} else
		ret = dirtopath(vrootp, vp, buf, buflen, flags, cr);

	VN_RELE(vrootp);
	if (doclose) {
		(void) VOP_CLOSE(vp, FREAD, 1, 0, cr, NULL);
		VN_RELE(vp);
	}

	return (ret);
}