Beispiel #1
0
//------------------------------------------------------------------------------
void PortQueue::GetMessagesFromPort(bool wait_for_messages)
{
	if(_init)
	{
		PortMessage *msg;
		ssize_t size;
		port_info pi;
		get_port_info(_port, &pi);
		status_t stat;

		if(pi.queue_count==0 && wait_for_messages)
		{
			size=port_buffer_size(_port);
			// now that there is a message, we'll just fall through to the
			// port-emptying loop
			get_port_info(_port, &pi);
		}

		for(int32 i = 0; i < pi.queue_count; i++)
		{
			msg = new PortMessage();
			stat = msg->ReadFromPort(_port, 0);

			if(stat != B_OK)
			{
				delete msg;
				break;
			}
			_q.push(msg);
		}
	}
}
Beispiel #2
0
status_t
MainLoop()
{
	do {
		ssize_t size = port_buffer_size(gRequestPort);
		if (size < B_OK)
			return 0;

		void* buffer = malloc(size);
		if (buffer == NULL)
			return B_NO_MEMORY;
		MemoryDeleter _(buffer);

		int32 code;
		size = read_port(gRequestPort, &code, buffer, size);
		if (size < B_OK)
			return 0;

		status_t result;
		switch (code) {
			case MsgGetAddrInfo:
				result = GetAddrInfo(reinterpret_cast<char*>(buffer));
				break;

			default:
				result = B_BAD_VALUE;
				write_port(gReplyPort, MsgError, &result, sizeof(result));
				result = B_OK;
		}

		if (result != B_OK)
			return 0;
	} while (true);
}
Beispiel #3
0
status_t
MainLoop()
{
	do {
		ssize_t size = port_buffer_size(gRequestPort);
		if (size < B_OK)
			return 0;

		void* buffer = malloc(size);
		if (buffer == NULL)
			return B_NO_MEMORY;

		int32 code;
		size = read_port(gRequestPort, &code, buffer, size);
		if (size < B_OK) {
			free(buffer);
			return 0;
		}

		status_t result = ParseRequest(code, buffer);
		free(buffer);

		if (result != B_OK)
			return 0;

	} while (true);
}
//////////// == 
// Function to find a remote BLooper 
BMessenger *SLooper::FindOtherEnd(char *unique_name) { 
        BMessenger *rc = new BMessenger(); 
        int32 ignored; 

        FORMULATE_UNIQUE(unique_name);
        
        // find port by name 
        port_id port = find_port(unique); 
        if (port < 0) { 
                return NULL; 
        } 

        // create a port for the reply
        
        port_id myPort = create_port(1, "temporary port for answer"); 
       
        // send the request to the other end with the port of our end 
        write_port(port, 0xdeadbeef, &myPort, sizeof(myPort)); 
        
        // wait for an answer 
        ssize_t messageSize = port_buffer_size(myPort); 
        char *message = new char[messageSize]; 
        read_port(myPort, &ignored, message, messageSize); 

        // get the BMessenger out of it 
        BMessage msg; 
        msg.Unflatten(message); 
        msg.FindMessenger("messageTarget", rc); 
        
        return rc; 
}
Beispiel #5
0
int32 
BMidiLocalConsumer::EventThread()
{
	int32 msg_code;
	ssize_t msg_size;
	ssize_t buf_size = 100;
	uint8* buffer = (uint8*) malloc(buf_size);

	while (true) {
		if (fTimeout == (bigtime_t) -1) {
			msg_size = port_buffer_size(fPort);
		} else { // have timeout
			msg_size = port_buffer_size_etc(fPort, B_ABSOLUTE_TIMEOUT, fTimeout);
			if (msg_size == B_TIMED_OUT) {
				Timeout(fTimeoutData);
				fTimeout = (bigtime_t) -1;
				fTimeoutData = NULL;
				continue;
			}
		}

		if (msg_size < 0) 
			break;  // error reading port

		if (msg_size > buf_size) {
			buffer = (uint8*) realloc(buffer, msg_size);
			buf_size = msg_size;
		}

		read_port(fPort, &msg_code, buffer, msg_size);

		if (msg_size > 20) { // minimum valid size
			#ifdef DEBUG
			printf("*** received: ");
			for (int32 t = 0; t < msg_size; ++t) {
				printf("%02X, ", ((uint8*) buffer)[t]);
			}
			printf("\n");
			#endif

			fCurrentProducer = *((uint32*)    (buffer +  0));
			int32 targetId  = *((uint32*)    (buffer +  4));
			bigtime_t time  = *((bigtime_t*) (buffer +  8));
			bool atomic     = *((bool*)      (buffer + 16));

			if (targetId == fId) { // only if we are the destination
				Data((uchar*) (buffer + 20), msg_size - 20, atomic, time);
			}
		}
	}

	free(buffer);
	return 0;
}
int32
test_thread(void *)
{
	ssize_t size;

	// BeBook: does block when port is empty, and unblocks when port is written to or deleted
	printf("port_buffer_size...\n");
	size = port_buffer_size(id); 
	printf("port_buffer_size size %ld (0x%08lx) (%s)\n", size, size, strerror(size));

	return 0;
}
Beispiel #7
0
void
play_buffer(void *cookie, void * buffer, size_t size, const media_raw_audio_format & format)
{
	size_t portsize = port_buffer_size(port);
	int32 code;
	
	// Use your feeling, Obi-Wan, and find him you will. 
	read_port(port, &code, buffer, portsize);

	if (size != portsize) {
		sp->SetHasData(false);
		release_sem(finished);
	}
}
Beispiel #8
0
// receive_reply
static
status_t
receive_reply(void **_reply, int32 *_replySize, void *buffer, int32 replySize)
{
	port_id replyPort = get_reply_port();
	ssize_t bytesRead;
	void *reply;
	int32 code;

	// get reply port
	if (replyPort < 0)
		return replyPort;

	// get the reply size
	if (!buffer) {
		replySize = port_buffer_size(replyPort);
		if (replySize < 0)
			return replySize;
	}

	// allocate reply
	if (buffer) {
		reply = buffer;
	} else {
		reply = malloc(replySize);
		if (!reply)
			return B_NO_MEMORY;
	}

	// read the reply
	bytesRead = read_port(replyPort, &code, reply, replySize);
	if (bytesRead < 0) {
		if (!buffer)
			free(reply);
		return bytesRead;
	}
	if (bytesRead != replySize) {
		if (!buffer)
			free(reply);
		return B_ERROR;
	}

	if (_reply)
		*_reply = reply;
	if (_replySize)
		*_replySize = replySize;
	return B_OK;
}
Beispiel #9
0
static status_t
connection_thread(void*)
{
	int32 code;
	ssize_t	ssizePort;
	ssize_t	ssizeRead;

	HciConnection* conn = NULL;

	// TODO: Keep this a static var
	port_id fPort = find_port(BLUETOOTH_CONNECTION_SCHED_PORT);
	if (fPort == B_NAME_NOT_FOUND)
	{
		panic("BT Connection port has been deleted");
	}

	while ((ssizePort = port_buffer_size(fPort)) != B_BAD_PORT_ID) {

		if (ssizePort <= 0) {
			ERROR("%s: Error %s\n", __func__, strerror(ssizePort));
			snooze(500 * 1000);
			continue;
		}

		if (ssizePort > (ssize_t) sizeof(conn)) {
			ERROR("%s: Message too big %ld\n", __func__,  ssizePort);
			snooze(500 * 1000);
			continue;
		}

		ssizeRead = read_port(fPort, &code, &conn, ssizePort);

		if (ssizeRead != ssizePort) {
			ERROR("%s: Mismatch size port=%ld read=%ld\n", __func__,
				ssizePort, ssizeRead);
			snooze(500 * 1000);
			continue;
		}

		purge_connection(conn);
	}

	return B_OK;
}
status_t
read_thread(void* _data)
{
	port_id port = (port_id)_data;

	printf("[%ld] read port...\n", find_thread(NULL));
	
	while (true) {
		ssize_t bytes = port_buffer_size(port);
		printf("[%ld] buffer size %ld waiting\n", find_thread(NULL), bytes);

		char buffer[256];
		int32 code;
		bytes = read_port(port, &code, buffer, sizeof(buffer));
		printf("[%ld] read port result (code %lx): %s\n", find_thread(NULL),
			code, strerror(bytes));
		if (bytes >= 0)
			break;
	}

	return B_OK;
}
Beispiel #11
0
static void do_syscall_sw( uuprocess_t *u, struct trap_state *st)
{
#if HAVE_UNIX
    int callno = st->eax;

    /*
    unsigned int mina = 0, maxa = 0;
    {
        extern struct real_descriptor 	ldt[];

        struct real_descriptor  dsd = ldt[ st->ds/8 ];
        mina = dsd.base_low | (dsd.base_med << 16) | (dsd.base_high << 24);
        maxa = (dsd.limit_low | dsd.limit_high << 16);
        if( dsd.granularity & SZ_G)
            maxa *= PAGE_SIZE;
        maxa += mina;
        }
    */


    //phantom_thread_t *t = GET_CURRENT_THREAD();
    //uuprocess_t *u = t->u;

    /*
    tid_t tid = get_current_tid();
    pid_t pid;
    assert( !t_get_pid( tid, &pid ));
    uuprocess_t *u = proc_by_pid(pid);
    */

    assert( u != 0 );

    unsigned int mina = (int)u->mem_start, maxa = (int)u->mem_end;

    // trap state is good for interrupt.
    // call gate does not push eflags
    int user_esp = st->eflags;

#ifndef ARCH_ia32
#  warning machdep ia32 arg pass convention
#endif
    // list of user syscsall arguments
    int *uarg = adjustin( user_esp, st );
    uarg++; // syscall func return addr

    //SHOW_FLOW( 10, "Syscall pid %2d tid %2d, our esp %p, user esp %p, t kstack %p", u->pid, t->tid, &st, user_esp, t->kstack_top );
    SHOW_FLOW( 8, "Syscall %d args %x, %x, %x", callno, uarg[0], uarg[1],uarg[2] );

    int ret = 0;
    int err = 0;


    switch(callno)
    {
    case SYS__exit:
        // TODO housekeeping?
        SHOW_FLOW( 2, "exit %d", uarg[0] );
        hal_exit_kernel_thread();
        err = ENOSYS;
        break;

    case SYS_ssyslog:
        syslog( uarg[0], "%s", (const char *)adjustin( uarg[1], st ) );
        SHOW_FLOW( 2, "syslog %d %s", uarg[0], (const char *)adjustin( uarg[1], st ) );
        //SHOW_ERROR0( 0, "syslog not impl" );
        break;





    case SYS_sleepmsec:
        //SHOW_FLOW( 2, "sleepmsec %d", uarg[0] );
        hal_sleep_msec(uarg[0]);
        break;



    case SYS_getpagesize:       ret = PAGE_SIZE; break;

    case SYS_personality:
        if( ((unsigned) uarg[0]) == 0xffffffff)
        {
            ret = 0; // Say we're Linux... well...to some extent.
            break;
        }
        err = EINVAL;
        break;

    case SYS_uname:
        err = copyout(uarg[0], mina, maxa, &phantom_uname, sizeof(phantom_uname) );
        if( err ) ret = -1;
        break;


    case SYS_getuid:            ret = u->uid; break;
    case SYS_getuid32:          ret = u->uid;; break;
    case SYS_getegid:           ret = u->egid; break;
    case SYS_getegid32:         ret = u->egid; break;
    case SYS_geteuid:           ret = u->euid; break;
    case SYS_geteuid32:         ret = u->euid; break;
    case SYS_getgid:            ret = u->gid; break;
    case SYS_getgid32:          ret = u->gid; break;

    case SYS_gettid:            ret = get_current_tid(); break;
    case SYS_getpid:            ret = u->pid; break;
    case SYS_getpgrp:           ret = u->pgrp_pid; break;
    case SYS_getppid:           ret = u->ppid; break;

    case SYS_getpgid:
        goto unimpl;

    case SYS_time:
        {
            time_t t = time(0);

            AARG(time_t *, tp, 0, sizeof(time_t));

            *tp = t;
            ret = t;
            break;
        }
    case SYS_nanosleep:
        // todo check for POSIX compliance, make it interruptible by signals
        //int nanosleep(const struct timespec *, struct timespec *);
        {
            goto unimpl;
            //AARG(struct timespec *,  req_time, 0, sizeof(struct timespec));
            //AARG(struct timespec *, rest_time, 1, sizeof(struct timespec));
            //ret = usys_nanosleep( &err, u, req_time, rest_time );
            //break;
        }


    case SYS_sync:
    case SYS_sysinfo:
    case SYS_sysfs:
    case SYS_klogctl:

    case SYS_shutdown:
    case SYS_reboot:



    case SYS_getitimer:
    case SYS_setitimer:
    case SYS_gettimeofday:


    case SYS_setuid:
    case SYS_setuid32:          CHECK_CAP(CAP_SETUID); u->euid = uarg[0]; break;

    case SYS_setgid:            
    case SYS_setgid32:          CHECK_CAP(CAP_SETGID); u->egid = uarg[0]; break;

    case SYS_setgroups:
    case SYS_setgroups32:
        goto unimpl;

    case SYS_setpgid:
    case SYS_setregid:
    case SYS_setregid32:
    case SYS_setresgid:
    case SYS_setresgid32:
    case SYS_setresuid:
    case SYS_setresuid32:
    case SYS_setreuid:
    case SYS_setreuid32:
        goto unimpl;

    case SYS_open:              ret = usys_open(&err, u, adjustin( uarg[0], st ), uarg[1], uarg[2] ); break;
    case SYS_close:             ret = usys_close(&err, u, uarg[0] ); break;
    case SYS_read:
        {
            int count = uarg[2];
            void *addr = adjustin( uarg[1], st );
            CHECKA(addr,count);
            ret = usys_read(&err, u, uarg[0], addr, count );
            break;
        }
    case SYS_write:
        {
            int count = uarg[2];
            void *addr = adjustin( uarg[1], st );
            CHECKA(addr,count);
            ret = usys_write(&err, u, uarg[0], addr, count );
            break;
        }
    case SYS_lseek: ret = usys_lseek(&err, u, uarg[0], uarg[1], uarg[2] ); break;
    case SYS_creat: ret = usys_creat(&err, u, adjustin( uarg[0], st ), uarg[1] ); break;
    case SYS_chdir:
        {
            AARG(const char *, path, 0, 0);
            ret = usys_chdir(&err, u, path );
            break;
        }

    case SYS_pipe:
        {
            AARG(int *, fds, 0, sizeof(int) * 2);
            ret = usys_pipe( &err, u, fds );
            break;
        }

    case SYS_rmdir:
    case SYS_unlink:
        {
            AARG(const char *, name, 0, 1);
            ret = usys_rm( &err, u, name );
            break;
        }


    case SYS_dup:
        ret = usys_dup( &err, u, uarg[0] );
        break;

    case SYS_dup2:
        ret = usys_dup2( &err, u, uarg[0], uarg[1] );
        break;

    case SYS_symlink:
        {
            AARG(const char *, n1, 0, 1);
            AARG(const char *, n2, 1, 1);
            ret = usys_symlink( &err, u, n1, n2 );
            break;
        }

    case SYS_getcwd:
        {
            AARG(char *, buf, 0, uarg[1]);
            ret = usys_getcwd( &err, u, buf, uarg[1] );
            break;
        }

    case SYS_mkdir:
        {
            AARG(const char *, path, 0, 2);
            ret = usys_mkdir( &err, u, path );
            break;
        }

    case SYS_link:
    case SYS__llseek:
    case SYS_chroot:
    case SYS_lstat64:
    case SYS_mknod:
        goto unimpl;

    case SYS_mount:
        {
            const char *source = adjustin( uarg[0], st );
            CHECKA(source,0);
            const char *target = adjustin( uarg[1], st );
            CHECKA(target,0);
            const char *fstype = adjustin( uarg[2], st );
            CHECKA(target,0);
            const void *data = adjustin( uarg[4], st );
            CHECKA(data,0);

            ret = usys_mount(&err, u, source, target, fstype, uarg[3], data );
            break;
        }
    case SYS_umount:
        {
            const char *target = adjustin( uarg[0], st );
            CHECKA(target,0);
            ret = usys_umount(&err, u, target, 0 );
            break;
        }

    /*
    case SYS_umount2:
        {
            const char *target = adjustin( uarg[0], st );
            CHECKA(target);
            ret = usys_umount(&err, u, target, uarg[1] );
            break;
        }
    */

    case SYS_truncate:
        {
            AARG(const char *, path, 0, 0);
            ret = usys_truncate(&err, u, path, uarg[1] );
            break;
        }
    case SYS_ftruncate:
        {
            ret = usys_ftruncate(&err, u, uarg[0], uarg[1] );
            break;
        }

    case SYS_truncate64:
    case SYS_ftruncate64:
        goto unimpl;

    case SYS_fchdir:
        ret = usys_fchdir( &err, u, uarg[0] );
        break;

    case SYS_readdir:
        {
            AARG(struct dirent *, ent, 1, sizeof(struct dirent));
            ret = usys_readdir( &err, u, uarg[0], ent );
            break;
        }
    case SYS_fchmod:
        ret = usys_fchmod( &err, u, uarg[0], uarg[1] );
        break;

    case SYS_fchown:
    case SYS_fchown32:
        ret = usys_fchown( &err, u, uarg[0], uarg[1], uarg[2] );
        break;

    case SYS_fcntl:
        {
            //AARG(void *, str, 2, sizeof(int)); // FIXME size of arg?
            ret = usys_fcntl( &err, u, uarg[0], uarg[1], uarg[0] );
        }
        break;

    case SYS_fcntl64:
    case SYS_fdatasync:
    case SYS_flock:

    case SYS_fstat64:
    case SYS_fstatfs:
    case SYS_fsync:

    case SYS_utime:
    case SYS_chmod:
    case SYS_chown:
    case SYS_chown32:
    case SYS_access:
    case SYS_lchown:
    case SYS_lchown32:
    case SYS_pread:
    case SYS_pwrite:
        goto unimpl;

    case SYS_readv:
        {
            int fd = uarg[0];
            int iovcnt = uarg[2];
            AARG(struct iovec *, list, 1, sizeof(struct iovec) * iovcnt);

            unsigned int onerc;
            int lp;

            for( lp = 0; lp < iovcnt; lp++ )
            {
                void *addr = adjustin( list[lp].iov_base, st );
                CHECKA(addr,list[lp].iov_len);
                onerc = usys_read(&err, u, fd, addr, list[lp].iov_len );

                /*
                if( onerc < 0 )
                {
                    ret = -1;
                    goto err_ret;
                }
                */
                ret += onerc;
                if( onerc < list[lp].iov_len )
                    break;
            }
            break;
        }

    case SYS_writev:
        {
            int fd = uarg[0];
            int iovcnt = uarg[2];
            AARG(struct iovec *, list, 1, sizeof(struct iovec) * iovcnt);

            unsigned int onerc;
            int lp;

            for( lp = 0; lp < iovcnt; lp++ )
            {
                void *addr = adjustin( list[lp].iov_base, st );
                CHECKA(addr,list[lp].iov_len);
                onerc = usys_write(&err, u, fd, addr, list[lp].iov_len );

                /*
                if( onerc < 0 )
                {
                    ret = -1;
                    goto err_ret;
                }
                */
                ret += onerc;
                if( onerc < list[lp].iov_len )
                    break;
            }
            break;
        }

    case SYS_readlink:
        goto unimpl;


    case SYS_gethostname:
        {
            int len = uarg[1];
            char *target = adjustin( uarg[0], st );
            CHECKA(target,len);
            ret = usys_gethostname(&err, u, target, len );
            break;
        }
    case SYS_sethostname:
        {
            int len = uarg[1];
            const char *target = adjustin( uarg[0], st );
            CHECKA(target,len);
            ret = usys_sethostname(&err, u, target, len );
            break;
        }



    case SYS_socket:
        ret = usys_socket( &err, u, uarg[0], uarg[1], uarg[2] );
        break;

    case SYS_setsockopt:
        {
            socklen_t optlen = uarg[4];
            AARG(const void *, optval, 3, optlen);
            ret = usys_setsockopt( &err, u, uarg[0], uarg[1], uarg[2], optval, optlen);
            break;
        }
    case SYS_getsockopt:
        {
            AARG(socklen_t *, optlen, 4, sizeof(socklen_t));
            AARG(void *, optval, 3, *optlen);
            ret = usys_getsockopt( &err, u, uarg[0], uarg[1], uarg[2], optval, optlen);
            break;
        }

    case SYS_getpeername:
        {
            AARG(socklen_t *, namelen, 2, sizeof(socklen_t));
            AARG(struct sockaddr *, name, 1, *namelen);
            ret = usys_getpeername( &err, u, uarg[0], name, namelen);
            break;
        }
    case SYS_getsockname:
        {
            AARG(socklen_t *, namelen, 2, sizeof(socklen_t));
            AARG(struct sockaddr *, name, 1, *namelen);
            ret = usys_getsockname( &err, u, uarg[0], name, namelen);
            break;
        }

    case SYS_bind:
        {
            AARG(const struct sockaddr *, addr, 1, sizeof(struct sockaddr));
            ret = usys_bind( &err, u, uarg[0], addr, uarg[2] );
            break;
        }

    case SYS_listen:
        ret = usys_listen( &err, u, uarg[0], uarg[1] );
        break;

    case SYS_accept:
        {
            AARG( socklen_t *, len, 2, sizeof(socklen_t));
            AARG( struct sockaddr *, acc_addr, 1, *len );
            ret = usys_accept( &err, u, uarg[0], acc_addr, len );
            break;
        }

    case SYS_recv:
        {
            int len = uarg[2];
            AARG( void *, buf, 0, len );
            ret =  usys_recv( &err, u, uarg[0], buf, len, uarg[3] );
            break;
        }

    case SYS_recvmsg:
        {
            AARG( struct msghdr *, msg, 0, sizeof(struct msghdr) );
            ret = usys_recvmsg( &err, u, uarg[0], msg, uarg[2] );
            break;
        }

    case SYS_send:
        {
            int len = uarg[2];
            AARG( const void *, buf, 0, len );
            ret =  usys_send( &err, u, uarg[0], buf, len, uarg[3] );
            break;
        }

    case SYS_sendmsg:
        {
            AARG( const struct msghdr *, msg, 0, sizeof(struct msghdr) );
            ret = usys_sendmsg( &err, u, uarg[0], msg, uarg[2] );
            break;
        }

    case SYS_sendto:
        {
            socklen_t tolen = uarg[5];
            AARG( const struct sockaddr *, to, 4, tolen );
            int len = uarg[2];
            AARG( const void *, buf, 0, len );
            ret =  usys_sendto( &err, u, uarg[0], buf, len, uarg[3], to, tolen );
            break;
        }

    case SYS_recvfrom:
        {
            AARG( socklen_t *, fromlen, 5, sizeof(socklen_t) );
            AARG( struct sockaddr *, from, 4, *fromlen );
            int len = uarg[2];
            AARG( void *, buf, 0, len );
            ret =  usys_recvfrom( &err, u, uarg[0], buf, len, uarg[3], from, fromlen );
            break;
        }



    case SYS_connect:
        // int connect(int socket, const struct sockaddr *address, socklen_t address_len);
        {
            int len = uarg[2];
            AARG( struct sockaddr *, acc_addr, 1, len );
            ret = usys_connect( &err, u, uarg[0], acc_addr, len );
            break;
        }

    case SYS_socketpair:
        {
            AARG( int *, sv, 3, sizeof(int) * 2 );
            ret = usys_socketpair( &err, u, uarg[0], uarg[1], uarg[2], sv );
            break;
        }




    case SYS_sendfile:
    case SYS_socketcall:
        goto unimpl;

    case SYS_nice:
        {
            // int nice = uarg[0];
            // set thr prio
            // break;
            goto unimpl;
        }

    case SYS_brk:
        goto unimpl;
        /*{
            ret = usys_sbrk( &err, u, uarg[0] );
            break;
        }*/

    case SYS_fork:
    case SYS_vfork:
        goto unimpl;

    case SYS_ioctl:
        {
            void *data = adjustin( uarg[2], st );
            CHECKA(data,0);
            ret = usys_ioctl( &err, u, uarg[0], uarg[1], data, uarg[3] );
            break;
        }

        int statlink;
    case SYS_lstat: statlink = 1; goto dostat;
    case SYS_stat: statlink = 0; goto dostat;

    dostat:
        {
            const char *path = adjustin( uarg[0], st );
            CHECKA(path,0);
            struct stat *data = adjustin( uarg[1], st );
            CHECKA(data,sizeof(struct stat));
            ret = usys_stat( &err, u, path, data, statlink );
            break;
        }

    case SYS_fstat:
        {
            struct stat *data = adjustin( uarg[1], st );
            CHECKA(data,sizeof(struct stat));
            ret = usys_fstat( &err, u, uarg[0], data, 0 );
            break;
        }

    case SYS_umask:
        {
            ret = u->umask;
            u->umask = uarg[0];
            break;
        }

    case SYS_kill:
        {
            ret = usys_kill( &err, u, uarg[0], uarg[1] );
            break;
        }

    case SYS_waitpid:
        {
            AARG(int *, addr, 1, sizeof(int));
            ret = usys_waitpid( &err, u, uarg[0], addr, uarg[2] );
            break;
        }

    case SYS_wait:
        {
            AARG(int *, addr, 0, sizeof(int));
            ret = usys_waitpid( &err, u, -1, addr, 0 );
            break;
        }


    case SYS_clone:
        goto unimpl;


    case SYS_madvise:
    case SYS_mincore:
    case SYS_mlock:
    case SYS_mlockall:
    case SYS_mmap:
    case SYS_mprotect:
    case SYS_mremap:
    case SYS_msync:
    case SYS_munlock:
    case SYS_munlockall:
    case SYS_munmap:
        goto unimpl;


        // NewOS/BeOS/Haiku
    case SYS_create_port:
        {
            // TODO check string length and final addr to be valid
            AARG(const char *, name, 1, 0);
            ret = port_create( uarg[0], name );
            break;
        }
    case SYS_close_port:
        ret = port_close( uarg[0] );
        break;
    case SYS_delete_port:
        ret = port_delete( uarg[0] );
        break;
    case SYS_find_port:
        {
            // TODO check string length and final addr to be valid
            AARG(const char *, name, 0, 0);
            ret = port_find(name);
            break;
        }
    case SYS_get_port_info:
        {
            AARG(struct port_info *, info, 1, sizeof(struct port_info));
            ret = port_get_info( uarg[0], info);
        }
    case SYS_get_port_bufsize:
        ret = port_buffer_size( uarg[0] );
        break;
    case SYS_get_port_bufsize_etc:
        ret = port_buffer_size_etc( uarg[0], uarg[1], uarg[2] );
        break;
    case SYS_get_port_count:
        ret = port_count( uarg[0] );
        break;
    case SYS_read_port:
        {
            AARG(int32_t *, msg_code, 1, sizeof(int32_t));
            AARG(void  *, msg_buffer, 2, uarg[3]);
            ret = port_read( uarg[0],
                             msg_code,
                             msg_buffer,
                             uarg[3]);
            break;
        }
    case SYS_write_port:
        {
            //AARG(int32_t *, msg_code, 1, sizeof(int32_t));
            //AARG(int32_t, msg_code, 1, sizeof(int32_t));
            AARG(void  *, msg_buffer, 2, uarg[3]);
            ret = port_write( uarg[0],
                             uarg[1],
                             msg_buffer,
                             uarg[3]);
            break;
        }
    case SYS_read_port_etc:
    case SYS_write_port_etc:
    case SYS_set_port_owner:
    case SYS_get_next_port_info:
        goto unimpl;

    case SYS_phantom_run:
        {
            // extern int phantom_run(const char *fname, const char **argv, const char **envp, int flags);
            AARG(const char  *, fname, 0, 1);

            AARG(const char **, uav,   1, 4);
            AARG(const char **, uep,   2, 4);

            if( 0 == uarg[1] ) uav = 0;
            if( 0 == uarg[2] ) uep = 0;

            SHOW_FLOW( 2, "run %s flags 0x%b", fname, uarg[3], "\020\1<WAIT>\2<NEWWIN>\3<NEWPGRP>" );

            char *a[1024];
            char *e[1024];

            SHOW_FLOW( 2, "run %s load args", fname );

            if(
               user_args_load( mina, maxa, a, 1024, uav ) ||
               user_args_load( mina, maxa, e, 1024, uep )
              )
            {
                ret = -1;
                err = EFAULT;
                SHOW_ERROR( 0, "fault reading args for %s", fname );
                goto err_ret;
            }

            ret = usys_run( &err, u, fname, (const char**)a, (const char**)e, uarg[3] );
            break;
        }

    case SYS_phantom_method:
        // AARG(const char *, m_name, 0, 1);
        // int nfd = aarg[1];
        // AARG(int *, fds, 0, sizeof(int)*nfd);

        // ret = usys_pmethod( &err, u, m_name, int nfd, int fds[] );

    case SYS_phantom_toobject:
    case SYS_phantom_fromobject:
    case SYS_phantom_intmethod:
    case SYS_phantom_strmethod:
        goto unimpl;

        // extern int phantom_runclass(const char *cname, int nmethod, int flags);
    case SYS_phantom_runclass:
        {
            AARG(const char  *, cname, 0, 1);
            unsigned flags = uarg[2];

            if(flags)
                SHOW_ERROR( 0, "SYS_phantom_runclass: unknown flags %x" , flags );

            usys_phantom_runclass( &err, u, cname, uarg[1] );
            ret = err;
        }
        break;

    case SYS_setproperty:
        {
            AARG(const char *, pName, 1, 1); // TODO check zero term string!
            AARG(const char *, pValue, 2, 1);

            usys_setproperty( &err, u, uarg[0], pName, pValue );
            ret = err;
        }
        break;

    case SYS_getproperty:
        {
            AARG(const char *, pName, 1, 1); // TODO check zero term string!
            AARG(char *, pValue, 2, uarg[3]);

            usys_getproperty( &err, u, uarg[0], pName, pValue, uarg[3] );
            ret = err;
        }
        break;

    case SYS_listproperties:
        {
            AARG(char *, buf, 2, uarg[3]);
            usys_listproperties( &err, u, uarg[0], uarg[1], buf, uarg[3] );
            ret = err;
        }
        break;


    case SYS_name2ip:
        {
            AARG(in_addr_t *, out, 0, sizeof(in_addr_t));
            AARG(const char *, name, 1, 1);

            ret = name2ip( out, name, uarg[2] );
            if( ret != 0 ) err = ret;
        }
        break;


    case SYS_sigpending:
        {
            AARG(sigset_t *, set, 0, sizeof(sigset_t *));
            ret = usys_sigpending( &err, u, set);
            break;
        }

    case SYS_signal:
        {
#if 0
            AARG(sighandler_t, hand, 1, sizeof(sighandler_t));
            hand = usys_signal( &err, u, uarg[0], hand);
            // FIXME 64 bit error
            ret = ((int)hand) - mina; // Convert pointer back
#else
            // We do not use pointer (ret and uarg 1), so we don't have to convert it
            ret = (int)usys_signal( &err, u, uarg[0], (void *)uarg[1]);
#endif
            break;
        }

    case SYS_sigprocmask:
    //case raise:
    case SYS_sigaction:
    case SYS_siginterrupt:
    case SYS_sigsuspend:
        goto unimpl;


    unimpl:
        SHOW_ERROR( 0, "Unimplemented syscall %d called", callno );
        err = ENOSYS;
        break;

    default:
        SHOW_ERROR( 0, "Unknown syscall %d called", callno );
        err = ENOSYS;
        break;
    }

#else // HAVE_UNIX
    int err = ENOSYS;
    int ret = -1;
    goto err_ret; // to clear warning
#endif // HAVE_UNIX

err_ret:

#ifdef ARCH_ia32
#define _RET_OK
    st->eax = ret;
    st->edx = err;
#endif

#ifdef ARCH_mips
#define _RET_OK
    st->r2 = ret; // v0 (normal ret register, low)
    st->r3 = err; // v1 (normal ret register, hi)
#endif

#ifdef ARCH_arm
#define _RET_OK
    st->r0 = ret; // normal ret register
    st->r1 = err; // arg1 reg, we can safely use for return of errno
#endif

#ifndef _RET_OK
#error arch ret
#endif

}