Beispiel #1
0
void LineSegment::updateGrips(int* grips, QRectF* grip) const
      {
      *grips = 3;
      QPointF pp(pagePos());
      QPointF pp1(pp);
      QPointF pp2(pos2() + pp);
      QPointF pp3(pos2() * .5 + pp);
      grip[2].translate(pp3);
      grip[1].translate(pp2);
      grip[0].translate(pp1);
      }
Beispiel #2
0
void ParsePositionTest::TestParsePosition() 
{
    ParsePosition pp1(0);
    if (pp1.getIndex() == 0) {
        logln("PP constructor() tested.");
    }else{
        errln("*** PP getIndex or constructor() result");
    }

    {
        int to = 5;
        ParsePosition pp2( to );
        if (pp2.getIndex() == 5) {
            logln("PP getIndex and constructor(int32_t) tested.");
        }else{
            errln("*** PP getIndex or constructor(int32_t) result");
        }
        pp2.setIndex( 3 );
        if (pp2.getIndex() == 3) {
            logln("PP setIndex tested.");
        }else{
            errln("*** PP getIndex or setIndex result");
        }
    }

    ParsePosition pp2(3), pp3(5);
    //pp2 = new ParsePosition( 3 );
    //pp3 = new ParsePosition( 5 );
    ParsePosition pp4(5);
    if ( pp2 != pp3) {
        logln("PP not equals tested.");
    }else{
        errln("*** PP not equals fails");
    }
    if (pp3 == pp4) {
        logln("PP equals tested.");
    }else{
        errln(UnicodeString("*** PP equals fails (") + pp3.getIndex() + " != " + pp4.getIndex() + ")");
    }

    ParsePosition pp5;
    pp5 = pp4;
    if (pp4 == pp5) {
        logln("PP operator= tested.");
    }else{
        errln("*** PP operator= operator== or operator != result");
    }

    ParsePosition *ppp = pp5.clone();
    if(ppp == &pp5 || *ppp != pp5) {
        errln("ParsePosition.clone() failed");
    }
    delete ppp;
}
Beispiel #3
0
TEST_F(TimusProblemsTestClass, TestProblem_1815)  // NOLINT
{
    Pt p1(0.f, 0.f);
    Pt p2(p1);
    p2.x = p2.y = 1.f;
    ASSERT_EQ(0.f, p1.x);
    ASSERT_EQ(1.f, p2.x);
    ASSERT_TRUE(sqrt(2.f) - p1.dist(p2) < 0.000001f);
    Pt pp1(0.f, 0.f);
    Pt pp2(1.f, 0.f);
    Pt pp3(0.f, 1.f);
    double result = solve_1815(pp1, pp2, pp3, 1, 1, 1);
    ASSERT_TRUE(result - 1.9318516526 < 0.0000000001);
}
Beispiel #4
0
void LineSegment::updateGrips(int* grips, QRectF* grip) const
      {
      *grips = 3;
/*      if (line()->anchor() == Spanner::ANCHOR_NOTE) {
            grip[0].translate(pos());
            grip[1].translate(pos2());
            grip[2].translate(pos2() * .5);
            return;
            }
      */
      QPointF pp(pagePos());
      QPointF pp1(pp);
      QPointF pp2(pos2() + pp);
      QPointF pp3(pos2() * .5 + pp);
      grip[2].translate(pp3);
      grip[1].translate(pp2);
      grip[0].translate(pp1);
      }
Beispiel #5
0
cv::Mat TestProjection::test(double userX, double userY, double userZ, 
        const char* filename) {

    //Coordinates of the projection in the real world
    /*cv::Point3f p11(-480, 735, -420);
    cv::Point3f p12(0, 935, 0);
    cv::Point3f p13(0, 220, 0);
    cv::Point3f p14(-480, 240, -420);
    Plane3d proj1(p11, p12, p13, p14);

    cv::Point3f p21(0, 935, 0);
    cv::Point3f p22(480, 735, -420);
    cv::Point3f p23(480, 240, -420);
    cv::Point3f p24(0, 220, 0);
    Plane3d proj2(p21, p22, p23, p24);*/

    cv::Point3f p11(-590, 725, -350);
    cv::Point3f p12(0, 955, 0);
    cv::Point3f p13(0, 200, 0);
    cv::Point3f p14(-590, 227, -350);
    Plane3d proj1(p11, p12, p13, p14);

    cv::Point3f p21(0, 955, 0);
    cv::Point3f p22(567, 755, -350);
    cv::Point3f p23(567, 227, -350);
    cv::Point3f p24(0, 200, 0);
    Plane3d proj2(p21, p22, p23, p24);

    std::vector<Plane3d> planes;
    planes.push_back(proj1);
    planes.push_back(proj2);

    Projection proj(planes);

    //    proj.print();

    //Create the user with the obtained projection coordinates
    User u(proj);

    //Update his position
    u.updatePosition(userX, userY, userZ);
    //    u.print();

    //Create the distorted-corrected plane pairs, using the projections
    //on the user's view plane
    //Plane 1
    //****************************************************************************************************
    Plane2d p1 = u.getProjectedPlanes().at(0).to2d();
    Plane2d p2(cv::Point2f(0, 0), cv::Point2f(480, 0), cv::Point2f(480, 540), cv::Point2f(0, 540));
//    Plane2d p2(cv::Point2f(0, 0), cv::Point2f(230, 0), cv::Point2f(230, 520), cv::Point2f(0, 520));
//    Plane2d p2(cv::Point2f(0, 0), cv::Point2f(270, 0), cv::Point2f(270, 405), cv::Point2f(0, 405));
    //****************************************************************************************************
    //Invert the plane y coordinates
    Plane2d inv1 = p1.yInverted();
    //Move it so that it's closer to the target plane
    cv::Vec2f dist = pjs::distance(inv1, p2);
    Plane2d pp1(cv::Point2f(inv1.getPoint(0).x - dist[0], inv1.getPoint(0).y - dist[1]),
            cv::Point2f(inv1.getPoint(1).x - dist[0], inv1.getPoint(1).y - dist[1]),
            cv::Point2f(inv1.getPoint(2).x - dist[0], inv1.getPoint(2).y - dist[1]),
            cv::Point2f(inv1.getPoint(3).x - dist[0], inv1.getPoint(3).y - dist[1]));

    //Plane 2
    //****************************************************************************************************
    Plane2d p3 = u.getProjectedPlanes().at(1).to2d();
    Plane2d p4(cv::Point2f(0, 0), cv::Point2f(480, 0), cv::Point2f(480, 540), cv::Point2f(0, 540));
//    Plane2d p4(cv::Point2f(0, 0), cv::Point2f(230, 0), cv::Point2f(230, 520), cv::Point2f(0, 520));
//    Plane2d p4(cv::Point2f(0, 0), cv::Point2f(270, 0), cv::Point2f(270, 405), cv::Point2f(0, 405));
    //****************************************************************************************************
    //Invert the plane y coordinates
    Plane2d inv2 = p3.yInverted();
    //Move it so that it's closer to the target plane
    dist = pjs::distance(inv2, p4);
    Plane2d pp3(cv::Point2f(inv2.getPoint(0).x - dist[0], inv2.getPoint(0).y - dist[1]),
            cv::Point2f(inv2.getPoint(1).x - dist[0], inv2.getPoint(1).y - dist[1]),
            cv::Point2f(inv2.getPoint(2).x - dist[0], inv2.getPoint(2).y - dist[1]),
            cv::Point2f(inv2.getPoint(3).x - dist[0], inv2.getPoint(3).y - dist[1]));



    //***********************
    //Load the target image
    //***********************    
    cv::Mat img = cv::imread(filename, CV_LOAD_IMAGE_COLOR);
    if (!img.data) {
        std::cout << " --(!) Error reading image" << std::endl;
        throw std::exception();
    }

    //Helper object
    Utils utils;

    //Divide the image in two
    //    std::vector<cv::Mat> images = utils.divideImageInTwo(img);

    //Build the surfaces with their reference planes and their corresponding
    //image
    Surface s1(pp1, p2);
    Surface s2(pp3, p4);

    std::vector<Surface*> surfaces;
    surfaces.push_back(&s1);
    surfaces.push_back(&s2);

    int originX;
    int padding;
    int screenWidth = 1280;
    int screenHeight = 800;
    //TODO recursive position correction
    int width1 = s1.getWidth();
    int width2 = s2.getWidth();
    int diffW = width1 - width2;
    if (diffW < 0) {
        originX = screenWidth / 2 - width1;
        padding = 0;
    } else {
        originX = 0 + screenWidth / 2 - width1;
        padding = 0;
    }

    //1st position correction
    cv::Point2f origin(originX, 0);
    s1.correctBBPosition(origin);
    cv::Point2f s1ur = s1.getUpperRightCorner();    
    s2.correctPosition(s1ur);

    cv::Point2f upperLeft = s2.getUpperLeftCorner();
    cv::Point2f upperRight = s2.getUpperRightCorner();
    double topY;
    if (upperLeft.y < upperRight.y) {
        topY = upperLeft.y;
    } else {
        topY = upperRight.y;
    }
    cv::Size size = utils.getFinalSize(surfaces);
    int diffH = screenHeight - size.height;
    //2nd position correction if necessary (if second plane is still outside)
    if (!topY < 0) {
        topY = 0;
    }
    cv::Point2f newOrigin(originX, -topY + diffH / 2);
    s1.correctBBPosition(newOrigin);
    s1ur = s1.getUpperRightCorner();
    s2.correctPosition(s1ur);

    //    cv::Size size = utils.getFinalSize(surfaces);
    size.width += padding;

    size.width = std::max(screenWidth, size.width);
    size.height = screenHeight;

    cv::Size sizeS1(size.width / 2, size.height);

    s1.setSize(sizeS1);
    s2.setSize(size);

    std::vector<cv::Mat> images = utils.divideImageInTwo(img);

    s1.setImage(images.at(0));
    s2.setImage(images.at(1));

    s1.applyHomography();
    s2.applyHomography();
    //        s1.addTransparency();
    //        s2.addTransparency();

    cv::Mat finalImage = utils.getImageFromSurfaces(surfaces);

    surfaces.clear();

    return finalImage;
}
Beispiel #6
0
void test_RT()
{
  typedef RT                 Cls;

  //  _test_cls_regular_3( Cls() );
  typedef traits::Bare_point Point;
  typedef traits::Weighted_point Weighted_point;

  typedef typename Cls::Vertex_handle                Vertex_handle;
  typedef typename Cls::Cell_handle                  Cell_handle; 
  typedef typename Cls::Facet                        Facet;
  typedef typename Cls::Edge                         Edge;
  
  typedef std::list<Weighted_point>                  list_point;
  typedef typename Cls::Finite_cells_iterator        Finite_cells_iterator;

  // temporary version

  int n, m;
  int count = 0;

  // For dimension 0, we need to check that the point of highest weight is the
  // one that finally ends up in the vertex.
  std::cout << " test dimension 0 " << std::endl;
  Cls T0;
  T0.insert(Weighted_point( Point (0,0,0), 0) );
  T0.insert(Weighted_point( Point (0,0,0), 1) );
  T0.insert(Weighted_point( Point (0,0,0), -1) );
  assert(T0.dimension() == 0);
  assert(T0.number_of_vertices() == 1);
  assert(T0.finite_vertices_begin()->point().weight() == 1);

  std::cout << " test dimension 1 " << std::endl;
  Cls T1;
  std::cout << " number of inserted points : " ;
  Weighted_point p[5];
  for ( m=0; m<5; m++) {
    if ( (m%2)== 0 ) 
      p[m] = Weighted_point( Point( 2*m,0,0 ), 2 );
    else 
      p[m] = Weighted_point( Point( -2*m+1,0,0 ), 2 );
    T1.insert( p[m] );
    count++;
    if (count <10)
      std::cout << count << '\b' ;
    else
      if (count < 100)
	std::cout << count << '\b' << '\b' ;
      else
	std::cout << count << '\b' << '\b' << '\b' ;
    std::cout.flush();
  }
  assert( T1.is_valid() );
  std::cout << std::endl << " number of vertices : " 
      << T1.number_of_vertices() << std::endl;

  std::cout << " number of inserted points : " ;
  Weighted_point q[5];
  for ( m=0; m<5; m++) {
    if ( (m%2)== 0 )
      q[m] = Weighted_point( Point( 2*m+1,0,0 ), 5 );
    else 
      q[m] = Weighted_point( Point( -2*m+1,0,0 ), 5 );
    T1.insert( q[m] );
    count++;
    if (count <10)
      std::cout << count << '\b' ;
    else
      if (count < 100)
  std::cout << count << '\b' << '\b' ;
      else
  std::cout << count << '\b' << '\b' << '\b' ;
    std::cout.flush();  
  }
  assert( T1.is_valid() );
  std::cout << std::endl << " number of vertices : " 
      << T1.number_of_vertices() << std::endl;

  std::cout << " number of inserted points : " ;
  Weighted_point r[10];
  for ( m=0; m<10; m++) {
    if ( (m%2)== 0 ) 
      r[m] = Weighted_point( Point( m,0,0 ), 1 );
    else 
      r[m] = Weighted_point( Point( -m,0,0 ), 1 );
    T1.insert( r[m] );
    count++;
    if (count <10)
      std::cout << count << '\b' ;
    else
      if (count < 100)
  std::cout << count << '\b' << '\b' ;
      else
  std::cout << count << '\b' << '\b' << '\b' ;
    std::cout.flush();  
  }
  assert( T1.is_valid() );
  std::cout << std::endl << " number of vertices : " 
      << T1.number_of_vertices() << std::endl;
  assert( T1.dimension()==1 );

  // The following is distilled from a bug report by Wulue Zhao
  // ([email protected]), a student of Tamal Dey.
  Point pt0(0,0,0);
  Point pt1( 1,0,0), pt2(2,0,0),  pt3(3,0,0);
  Point pt4(-1,0,0), pt5(-2,0,0), pt6(-3,0,0);

  Weighted_point wp0(pt0,10.0);
  Weighted_point wp1(pt1,0.0),  wp2(pt2,0.0),  wp3(pt3,0.0);
  Weighted_point wp4(pt4,0.0),  wp5(pt5,0.0),  wp6(pt6,0.0);

  Cls T11;

  T11.insert(wp0);
  T11.insert(wp1);
  T11.insert(wp2);
  T11.insert(wp3);
  T11.insert(wp4);
  T11.insert(wp5);
  T11.insert(wp6);

  assert(T11.is_valid());

  // And another distilled bug report from the same guy.
 {
  Point p1(-0.07, 0.04, 0.04);
  Point p2(0.09, 0.04, 0.04);
  Point p3(0.09, -0.05, 0.04);
  Point p4(0.05, -0.05, 0.04);
  Point p5(0.05, 0.0, 0.04);
  Point p6(-0.07, 0.0, 0.04);
  Point p7(-0.07, 0.04, -0.04);
  Point p8(0.09, 0.04, -0.04);
  Point p9(0.09, -0.05, -0.04);
  Point p10(0.05, -0.05, -0.04);
  Point p11(0.05, 0.0, -0.04);
  Point p12(-0.07, 0.0, -0.04);

  Weighted_point wp1(p1,0);
  Weighted_point wp2(p2,0);
  Weighted_point wp3(p3,0);
  Weighted_point wp4(p4,0);
  Weighted_point wp5(p5,0);
  Weighted_point wp6(p6,0);
  Weighted_point wp7(p7,0);
  Weighted_point wp8(p8,0);
  Weighted_point wp9(p9,0);
  Weighted_point wp10(p10,0);
  Weighted_point wp11(p11,0);
  Weighted_point wp12(p12,0);
  Weighted_point wp13(p3,0.3); // wp13 has the same coordinates with wp3

  Cls T111;

  T111.insert(wp1);
  T111.insert(wp2);
  T111.insert(wp3);
  T111.insert(wp13); // it doesnot work inserting wp13 here
  T111.insert(wp4);
  T111.insert(wp5);
  T111.insert(wp6);
  T111.insert(wp7);
  T111.insert(wp8);
  T111.insert(wp9);
  T111.insert(wp10);
  T111.insert(wp11);
  T111.insert(wp12);

  assert(T111.is_valid());
 }

  std::cout << " test dimension 2 " << std::endl;
  std::cout << " number of inserted points : " ;
  Cls T2;

  count = 0 ;
  int px=1, py=1;
  int qx=-1, qy=2;
  Weighted_point s[400];
  for (m=0; m<10; m++)
    for (n=0; n<10; n++) {
      s[m+20*n] = Weighted_point( Point(m*px+n*qx, m*py+n*qy, 0), 1 );
      T2.insert( s[m+20*n] );
      count++;
      if (count <10)
  std::cout << count << '\b' ;
      else
  if (count < 100)
    std::cout << count << '\b' << '\b' ;
  else
    std::cout << count << '\b' << '\b' << '\b' ;
      std::cout.flush();
    }
  for (m=10; m<20; m++)
    for (n=0; n<10; n++) {
      s[m+20*n] = Weighted_point( Point(m*px+n*qx, m*py+n*qy, 0), -1 );
      T2.insert( s[m+20*n] );
      count++;
      if (count <10)
  std::cout << count << '\b' ;
      else
  if (count < 100)
    std::cout << count << '\b' << '\b' ;
  else
    std::cout << count << '\b' << '\b' << '\b' ;
      std::cout.flush();
    }
  for (m=0; m<10; m++)
    for (n=10; n<20; n++) {
      s[m+20*n] = Weighted_point( Point(m*px+n*qx, m*py+n*qy, 0), -2 );
      T2.insert( s[m+20*n] );
      count++;
      if (count <10)
  std::cout << count << '\b' ;
      else
  if (count < 100)
    std::cout << count << '\b' << '\b' ;
  else
    std::cout << count << '\b' << '\b' << '\b' ;
      std::cout.flush();
    }
  for (m=10; m<20; m++)
    for (n=10; n<20; n++) {
      s[m+20*n] = Weighted_point( Point(m*px+n*qx, m*py+n*qy, 0), 5 );
      T2.insert( s[m+20*n] );
      count++;
      if (count <10)
  std::cout << count << '\b' ;
      else
  if (count < 100)
    std::cout << count << '\b' << '\b' ;
  else
    std::cout << count << '\b' << '\b' << '\b' ;
      std::cout.flush();
    }
 
  std::cout << std::endl << " number of vertices : " 
      << T2.number_of_vertices() << std::endl;
  assert( T2.dimension()==2 );
  assert( T2.is_valid() );

 // dimension 3
  std::cout << " test dimension 3" << std::endl;
  Cls T;

  list_point lp;
  int a, b, d;
  for (a=0;a!=10;a++)
    //    for (b=0;b!=10;b++)
    for (b=0;b!=5;b++)
      //      for (d=0;d!=10;d++)
      for (d=0;d!=5;d++)
  lp.push_back(Weighted_point( Point(a*b-d*a + (a-b)*10 +a ,
             a-b+d +5*b,
             a*a-d*d+b),
             a*b-a*d) );
  list_point::iterator it;
  count = 0 ;
  std::cout << " number of inserted points : " ;
  for (it=lp.begin(); it!=lp.end(); ++it){
    count++;
    T.insert(*it);
    if (count <10)
      std::cout << count << '\b' ;
    else
      if (count < 100)
        std::cout << count << '\b' << '\b' ;
      else 
        if (count < 1000)
          std::cout << count << '\b' << '\b' << '\b' ;
        else
    std::cout << count << std::endl;
    std::cout.flush();
  }
  std::cout << std::endl;

  std::cout << " number of vertices : " 
      << T.number_of_vertices() << std::endl;
  assert(T.is_valid());
  assert(T.dimension()==3);

  T.clear();
  std::cout << " test iterator range insert" << std::endl;
  T.insert (lp.begin(), lp.end());

  std::cout << " number of vertices : " 
      << T.number_of_vertices() << std::endl;
  assert(T.is_valid());
  assert(T.dimension()==3);


    //test nearest_power_vertex
  std::cout << " test nearest_power_vertex " << std::endl;
  Point pp1(0.0, 0.0, 0.0);
  Point pp2(1.0, 0.0, 0.0);
  Point pp3(0.0, 1.0, 0.0);
  Point pp4(0.0, 0.0, 1.0);
  Point pp5(1.0, 1.0, 0.0);
  Point pp6(0.0, 1.0, 1.0);
  Point pp7(1.0, 0.0, 1.0);
  Point pp8(1.0, 1.0, 1.0);

  Weighted_point wpp1(pp1, 1.0);
  Weighted_point wpp2(pp2, 2.0);
  Weighted_point wpp3(pp3, 1.0);
  Weighted_point wpp4(pp4, 4.0);
  Weighted_point wpp5(pp5, 1.0);
  Weighted_point wpp6(pp6, 1.0);
  Weighted_point wpp7(pp7, 1.0);
  Weighted_point wpp8(pp8, 8.0);

  Cls T3;

  T3.insert(wpp1);
  Vertex_handle v2 = T3.insert(wpp2);
  assert( T3.nearest_power_vertex(Point(0.5,0.5,0.5)) == v2);
  
  T3.insert(wpp3);
  Vertex_handle v4 = T3.insert(wpp4);
  assert( T3.nearest_power_vertex(Point(0.5,0.5,0.5)) == v4);

  T3.insert(wpp5);
  T3.insert(wpp6);
  T3.insert(wpp7);
  // Avoid inserting the same point twice, now that hidden points are handled,
  // insert (existing_point) returns Vertex_handle().
  // T3.insert(wpp8);
  Vertex_handle v8 = T3.insert(wpp8);
  Point query(0.5,0.5,0.5);
  assert(T3.nearest_power_vertex(query) == v8);
  assert(T3.nearest_power_vertex(Weighted_point(query,1.0)) == v8 );
  assert(T3.nearest_power_vertex_in_cell(query ,v8->cell()) == v8); 
  
  // test dual
  std::cout << " test dual member functions" << std::endl;
  Finite_cells_iterator fcit = T3.finite_cells_begin();
  for( ; fcit != T3.finite_cells_end(); ++fcit) {
    Point cc = T3.dual(fcit);
    Vertex_handle ncc = T3.nearest_power_vertex(cc);
    assert(fcit->has_vertex(ncc));
  }

  // test Gabriel
  std::cout << " test is_Gabriel " << std::endl;
  Point q0(0.,0.,0.);
  Point q1(2.,0.,0.);
  Point q2(0.,2.,0.);
  Point q3(0.,0.,2.);

  Weighted_point wq0(q0,0.);
  Weighted_point wq1(q1,0.);
  Weighted_point wq2(q2,0.);
  Weighted_point wq3(q3,0.);
  Weighted_point wq01(q0,2.);
  
  Cls T4;
  Vertex_handle v0 = T4.insert(wq0);
  Vertex_handle v1 = T4.insert(wq1);
  v2 = T4.insert(wq2);
  Vertex_handle v3 = T4.insert(wq3);
  Cell_handle c;
  int i,j,k,l;
  assert(T4.is_facet(v0,v1,v2,c,j,k,l));
  i = 6 - (j+k+l);
  Facet f = std::make_pair(c,i);
  assert(T4.is_Gabriel(c,i));
  assert(T4.is_Gabriel(f));
  assert(T4.is_facet(v1,v2,v3,c,j,k,l));
  i = 6 - (j+k+l);
  assert(!T4.is_Gabriel(c,i));
  assert(T4.is_edge(v0,v1,c,i,j));
  assert(T4.is_Gabriel(c,i,j));
  Edge e = make_triple(c,i,j);
  assert(T4.is_Gabriel(e));
  assert(T4.is_edge(v2,v3,c,i,j));
  assert(T4.is_Gabriel(c,i,j));
  
  Vertex_handle v01 = T4.insert(wq01);
  (void) v01; // kill warning
  assert(T4.is_edge(v2,v3,c,i,j));
  assert(!T4.is_Gabriel(c,i,j));

  Weighted_point wwq0(q0,0.);
  Weighted_point wwq1(q1,0.);
  Weighted_point wwq2(q2,0.);
  Weighted_point wwq3(q3,5.);
  Cls T5;
  v0 = T5.insert(wwq0);
  v1 = T5.insert(wwq1);
  v2 = T5.insert(wwq2);
  v3 = T5.insert(wwq3);
  assert(T5.nearest_power_vertex(v3->point().point()) == v3);
  assert(T5.nearest_power_vertex(v0->point().point()) == v3);
  assert(T5.is_Gabriel(v3));
  assert(!T5.is_Gabriel(v0));
}