Beispiel #1
0
/*
** Load the record ID rid and up to N-1 closest descendants into
** the "ok" table.
*/
void compute_descendants(int rid, int N) {
    Bag seen;
    PQueue queue;
    Stmt ins;
    Stmt q;

    bag_init(&seen);
    pqueue_init(&queue);
    bag_insert(&seen, rid);
    pqueue_insert(&queue, rid, 0.0, 0);
    db_prepare(&ins, "INSERT OR IGNORE INTO ok VALUES(:rid)");
    db_prepare(&q, "SELECT cid, mtime FROM plink WHERE pid=:rid");
    while( (N--)>0 && (rid = pqueue_extract(&queue, 0))!=0 ) {
        db_bind_int(&ins, ":rid", rid);
        db_step(&ins);
        db_reset(&ins);
        db_bind_int(&q, ":rid", rid);
        while( db_step(&q)==SQLITE_ROW ) {
            int pid = db_column_int(&q, 0);
            double mtime = db_column_double(&q, 1);
            if( bag_insert(&seen, pid) ) {
                pqueue_insert(&queue, pid, mtime, 0);
            }
        }
        db_reset(&q);
    }
    bag_clear(&seen);
    pqueue_clear(&queue);
    db_finalize(&ins);
    db_finalize(&q);
}
Beispiel #2
0
int
main(void)
	{
	pitem *item;
	pqueue pq;

	pq = pqueue_new();

	item = pitem_new(3, NULL);
	pqueue_insert(pq, item);

	item = pitem_new(1, NULL);
	pqueue_insert(pq, item);

	item = pitem_new(2, NULL);
	pqueue_insert(pq, item);

	item = pqueue_find(pq, 1);
	fprintf(stderr, "found %ld\n", item->priority);

	item = pqueue_find(pq, 2);
	fprintf(stderr, "found %ld\n", item->priority);

	item = pqueue_find(pq, 3);
	fprintf(stderr, "found %ld\n", item ? item->priority: 0);

	pqueue_print(pq);

	for(item = pqueue_pop(pq); item != NULL; item = pqueue_pop(pq))
		pitem_free(item);

	pqueue_free(pq);
	return 0;
	}
int main(void)
{
	int i;
	int p;

	pqueue_t *pq;
	node_t   *ns;
	node_t   *n;

	/* We will need (N + 1) slots in "pris" vector. Extra one slot for spare
	 * usages. */
	pris = malloc(5 * sizeof(int *));
	for (i = 0; i < 5; i++)
		pris[i] = malloc(2 * sizeof(int));

	pris[0][0] = 4; pris[0][1] = 2;
	pris[1][0] = 3; pris[1][1] = 7;
	pris[2][0] = 3; pris[2][1] = 1;
	pris[3][0] = 5; pris[3][1] = 6;
	p = 4;									/* Initialize spare slot. */

	pq = pqueue_init(10, cmp_pri, get_pri, set_pri, get_pos, set_pos);
	ns = malloc(4 * sizeof(node_t));

	ns[0].pri = 0; ns[0].val = 0; pqueue_insert(pq, &ns[0]);
	ns[1].pri = 1; ns[0].val = 1; pqueue_insert(pq, &ns[1]);
	ns[2].pri = 2; ns[0].val = 2; pqueue_insert(pq, &ns[2]);
	ns[3].pri = 3; ns[0].val = 3; pqueue_insert(pq, &ns[3]);

	printf("initial:\n"); pqueue_print(pq, stdout, pr_node);

	n = pqueue_pop(pq);
	printf("[pop] pri: %d, val: %d, real-pri: [%d %d]\n",
		   n->pri, n->val, pris[n->pri][0], pris[n->pri][1]);
	printf("after first pop:\n"); pqueue_print(pq, stdout, pr_node);

	pris[p][0] = 3; pris[p][1] = 0;
	pqueue_change_priority(pq, p, &ns[3]);	/* 3: (5,6) -> (3,0) */
	p = 3;									/* Move spare slot to 3. */
	printf("after 3: (5,6) -> (3,0):\n"); pqueue_print(pq, stdout, pr_node);

	pris[p][0] = 3; pris[p][1] = -1;
	pqueue_change_priority(pq, p, &ns[0]);	/* 0: (4,2) -> (3,-1) */
	p = 0;									/* Move spare slot to 0. */
	printf("after 0: (4,2) -> (3,-1):\n"); pqueue_print(pq, stdout, pr_node);

	while ((n = pqueue_pop(pq)))
		printf("[pop] pri: %d, val: %d, real-pri: [%d %d]\n",
			   n->pri, n->val, pris[n->pri][0], pris[n->pri][1]);

	pqueue_free(pq);
	free(ns);
	free(pris);

	return 0;
}
Beispiel #4
0
void test_pqueue_is_empty_after_last_element_is_removed(void)
{
	setup();

	pqueue_insert(pqueue, (void *) 0UL);
	pqueue_insert(pqueue, (void *) 1UL);

	pqueue_remove_top(pqueue);
	pqueue_remove_top(pqueue);

	assert_true(pqueue_is_empty(pqueue));

	teardown();
}
Beispiel #5
0
void test_pqueue_returns_highest_priority_element_first(void)
{
	setup();

	pqueue_insert(pqueue, (void *) 2UL);
	pqueue_insert(pqueue, (void *) 1UL);
	pqueue_insert(pqueue, (void *) 0UL);

	assert_ptr_equals((void *) 0UL, pqueue_remove_top(pqueue));
	assert_ptr_equals((void *) 1UL, pqueue_remove_top(pqueue));
	assert_ptr_equals((void *) 2UL, pqueue_remove_top(pqueue));

	teardown();
}
Beispiel #6
0
squeue_event *squeue_add_tv(squeue_t *q, struct timeval *tv, void *data)
{
	squeue_event *evt;

	if (!q)
		return NULL;

	evt = calloc(1, sizeof(*evt));
	if (!evt)
		return NULL;

	/* we can't schedule events in the past */
	if (tv->tv_sec < time(NULL))
		tv->tv_sec = time(NULL);
	evt->when.tv_sec = tv->tv_sec;
	if (sizeof(evt->when.tv_sec) > 4) {
		/*
		 * Only use bottom sizeof(pqueue_pri_t)-SQ_BITS bits on
		 * 64-bit systems, or we may get entries at the head
		 * of the queue are actually scheduled to run several
		 * hundred thousand years from now.
		 */
		evt->when.tv_sec &= (1ULL << ((sizeof(pqueue_pri_t) * 8) - SQ_BITS)) - 1;
	}
	evt->when.tv_usec = tv->tv_usec;
	evt->data = data;

	evt->pri = evt_compute_pri(&evt->when);

	if (!pqueue_insert(q, evt))
		return evt;

	free(evt);
	return NULL;
}
Beispiel #7
0
int update(float value, float* time, int i)
/* update gridpoint i with new value and modify wave front */
{
    int its;

#ifdef _OPENMP
    its = omp_get_thread_num();
#else
    its = 0;
#endif
    
    /* only update when smaller than current value */
    if (value < time[i]) {
	time[i] = value;
	if (in[its][i] == SF_OUT) { 
	    in[its][i] = SF_FRONT;      
	    pqueue_insert(time+i);
	    return 1;
	} else {
	    assert(in[its][i] == SF_FRONT);
	    pqueue_update(i);
	}
    }

    return 0;
}
Beispiel #8
0
} T_END_TEST

T_TEST(t_pqueue_alt_insert) {
	struct pqueue* q = pqueue_create(comp);
	int i;
	int num = 10;

	T_ASSERT(q);

	for (i = 0; i < num; i++) {
		T_ASSERT(0 == pqueue_insert(q, (void*)((i % 2) ? i : num - i - (num % 2 ? 1 : 2))));
	}
	
	T_ASSERT(!pqueue_is_empty(q));

	i = 0;
	while (!pqueue_is_empty(q)) {
		T_ASSERT(i == (int)pqueue_peek(q));
		T_ASSERT(i == (int)pqueue_pop(q));
		i++;
	}

	T_ASSERT(i == num);

	pqueue_destroy(q);
} T_END_TEST
Beispiel #9
0
squeue_event *squeue_add_tv(squeue_t *q, struct timeval *tv, void *data)
{
	squeue_event *evt;

	if (!q)
		return NULL;

	evt = calloc(1, sizeof(*evt));
	if (!evt)
		return NULL;

	/* we can't schedule events in the past */
	if (tv->tv_sec < time(NULL))
		tv->tv_sec = time(NULL);
	evt->when.tv_sec = tv->tv_sec;
	evt->when.tv_usec = tv->tv_usec;
	evt->data = data;

	evt->pri = evt_compute_pri(&evt->when);

	if (!pqueue_insert(q, evt))
		return evt;

	return NULL;
}
static int
dtls1_buffer_handshake_fragment(SSL *s, struct hm_header_st* msg_hdr)
{
    hm_fragment *frag = NULL;
    pitem *item = NULL;
	PQ_64BIT seq64;

    frag = dtls1_hm_fragment_new(msg_hdr->frag_len);
    if ( frag == NULL)
        goto err;

    memcpy(frag->fragment, &(s->init_buf->data[s->init_num]),
        msg_hdr->frag_len + DTLS1_HM_HEADER_LENGTH);

    memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr));

    pq_64bit_init(&seq64);
    pq_64bit_assign_word(&seq64, msg_hdr->seq);

    item = pitem_new(seq64, frag);
    if ( item == NULL)
        goto err;

    pq_64bit_free(&seq64);

    pqueue_insert(s->d1->buffered_messages, item);
    return 1;

err:
    if ( frag != NULL) dtls1_hm_fragment_free(frag);
    if ( item != NULL) OPENSSL_free(item);
    return 0;
}
Beispiel #11
0
int put_parcel(PQueue *parcels, const Parcel *parcel) {

Parcel             *data;

/*****************************************************************************
*                                                                            *
*  Allocate storage for the parcel.                                          *
*                                                                            *
*****************************************************************************/

if ((data = (Parcel *)malloc(sizeof(Parcel))) == NULL)
   return -1;

/*****************************************************************************
*                                                                            *
*  Insert the parcel into the priority queue.                                *
*                                                                            *
*****************************************************************************/

memcpy(data, parcel, sizeof(Parcel));

if (pqueue_insert(parcels, data) != 0)
   return -1;

return 0;

}
int dtls1_buffer_record(SSL *s, record_pqueue *queue, unsigned char *priority)
{
    DTLS1_RECORD_DATA *rdata;
    pitem *item;

    /* Limit the size of the queue to prevent DOS attacks */
    if (pqueue_size(queue->q) >= 100)
        return 0;

    rdata = OPENSSL_malloc(sizeof(*rdata));
    item = pitem_new(priority, rdata);
    if (rdata == NULL || item == NULL) {
        OPENSSL_free(rdata);
        pitem_free(item);
        SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
        return -1;
    }

    rdata->packet = s->rlayer.packet;
    rdata->packet_length = s->rlayer.packet_length;
    memcpy(&(rdata->rbuf), &s->rlayer.rbuf, sizeof(SSL3_BUFFER));
    memcpy(&(rdata->rrec), &s->rlayer.rrec, sizeof(SSL3_RECORD));

    item->data = rdata;

#ifndef OPENSSL_NO_SCTP
    /* Store bio_dgram_sctp_rcvinfo struct */
    if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
        (SSL_get_state(s) == TLS_ST_SR_FINISHED
         || SSL_get_state(s) == TLS_ST_CR_FINISHED)) {
        BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SCTP_GET_RCVINFO,
                 sizeof(rdata->recordinfo), &rdata->recordinfo);
    }
#endif

    s->rlayer.packet = NULL;
    s->rlayer.packet_length = 0;
    memset(&s->rlayer.rbuf, 0, sizeof(s->rlayer.rbuf));
    memset(&s->rlayer.rrec, 0, sizeof(s->rlayer.rrec));

    if (!ssl3_setup_buffers(s)) {
        SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
        OPENSSL_free(rdata->rbuf.buf);
        OPENSSL_free(rdata);
        pitem_free(item);
        return (-1);
    }

    /* insert should not fail, since duplicates are dropped */
    if (pqueue_insert(queue->q, item) == NULL) {
        SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
        OPENSSL_free(rdata->rbuf.buf);
        OPENSSL_free(rdata);
        pitem_free(item);
        return (-1);
    }

    return (1);
}
Beispiel #13
0
static int
dtls1_process_out_of_seq_message(SSL *s, struct hm_header_st* msg_hdr, int *ok)
{
	int i=-1;
	hm_fragment *frag = NULL;
	pitem *item = NULL;
	PQ_64BIT seq64;
	unsigned long frag_len = msg_hdr->frag_len;

	if ((msg_hdr->frag_off+frag_len) > msg_hdr->msg_len)
		goto err;

	if (msg_hdr->seq <= s->d1->handshake_read_seq)
		{
		unsigned char devnull [256];

		while (frag_len)
			{
			i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
				devnull,
				frag_len>sizeof(devnull)?sizeof(devnull):frag_len,0);
			if (i<=0) goto err;
			frag_len -= i;
			}
		}

	frag = dtls1_hm_fragment_new(frag_len);
	if ( frag == NULL)
		goto err;

	memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr));

	if (frag_len)
		{
		/* read the body of the fragment (header has already been read */
		i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
			frag->fragment,frag_len,0);
		if (i<=0 || (unsigned long)i!=frag_len)
			goto err;
		}

	pq_64bit_init(&seq64);
	pq_64bit_assign_word(&seq64, msg_hdr->seq);

	item = pitem_new(seq64, frag);
	pq_64bit_free(&seq64);
	if ( item == NULL)
		goto err;

	pqueue_insert(s->d1->buffered_messages, item);
	return DTLS1_HM_FRAGMENT_RETRY;

err:
	if ( frag != NULL) dtls1_hm_fragment_free(frag);
	if ( item != NULL) OPENSSL_free(item);
	*ok = 0;
	return i;
	}
Beispiel #14
0
void test_pqueue_is_not_empty_after_insert(void)
{
	setup();

	pqueue_insert(pqueue, (void *) 0UL);
	assert_false(pqueue_is_empty(pqueue));

	teardown();
}
Beispiel #15
0
int
dtls1_buffer_message(SSL *s, int is_ccs)
	{
	pitem *item;
	hm_fragment *frag;
	PQ_64BIT seq64;
	unsigned int epoch = s->d1->w_epoch;

	/* this function is called immediately after a message has 
	 * been serialized */
	OPENSSL_assert(s->init_off == 0);

	frag = dtls1_hm_fragment_new(s->init_num);

	memcpy(frag->fragment, s->init_buf->data, s->init_num);

	if ( is_ccs)
		{
		OPENSSL_assert(s->d1->w_msg_hdr.msg_len + 
			DTLS1_CCS_HEADER_LENGTH <= (unsigned int)s->init_num);
		epoch++;
		}
	else
		{
		OPENSSL_assert(s->d1->w_msg_hdr.msg_len + 
			DTLS1_HM_HEADER_LENGTH == (unsigned int)s->init_num);
		}

	frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len;
	frag->msg_header.seq = s->d1->w_msg_hdr.seq;
	frag->msg_header.type = s->d1->w_msg_hdr.type;
	frag->msg_header.frag_off = 0;
	frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len;
	frag->msg_header.is_ccs = is_ccs;

	pq_64bit_init(&seq64);
	pq_64bit_assign_word(&seq64, epoch<<16 | frag->msg_header.seq);

	item = pitem_new(seq64, frag);
	pq_64bit_free(&seq64);
	if ( item == NULL)
		{
		dtls1_hm_fragment_free(frag);
		return 0;
		}

#if 0
	fprintf( stderr, "buffered messge: \ttype = %xx\n", msg_buf->type);
	fprintf( stderr, "\t\t\t\t\tlen = %d\n", msg_buf->len);
	fprintf( stderr, "\t\t\t\t\tseq_num = %d\n", msg_buf->seq_num);
#endif

	pqueue_insert(s->d1->sent_messages, item);
	return 1;
	}
Beispiel #16
0
int
main(void)
	{
	pitem *item;
	pqueue pq;

	int one = 1;
	int two = 2;
	int three = 3;

	pq = pqueue_new();

	item = pitem_new((unsigned char*)&three, NULL);
	pqueue_insert(pq, item);

	item = pitem_new((unsigned char*)&one, NULL);
	pqueue_insert(pq, item);

	item = pitem_new((unsigned char*)&two, NULL);
	pqueue_insert(pq, item);

	item = pqueue_find(pq, (unsigned char*)&one);
	TINYCLR_SSL_FPRINTF(OPENSSL_TYPE__FILE_STDERR, "found %ld\n", item->priority);

	item = pqueue_find(pq, (unsigned char*)&two);
	TINYCLR_SSL_FPRINTF(OPENSSL_TYPE__FILE_STDERR, "found %ld\n", item->priority);

	item = pqueue_find(pq, (unsigned char*)&three);
	TINYCLR_SSL_FPRINTF(OPENSSL_TYPE__FILE_STDERR, "found %ld\n", item ? item->priority: 0);

	pqueue_print(pq);

	for(item = pqueue_pop(pq); item != NULL; item = pqueue_pop(pq))
		pitem_free(item);

	pqueue_free(pq);
	return 0;
	}
Beispiel #17
0
int main(void)
{
    pitem *item;
    pqueue pq;

    pq = pqueue_new();

    item = pitem_new(prio3, NULL);
    pqueue_insert(pq, item);

    item = pitem_new(prio1, NULL);
    pqueue_insert(pq, item);

    item = pitem_new(prio2, NULL);
    pqueue_insert(pq, item);

    item = pqueue_find(pq, prio1);
    fprintf(stderr, "found %p\n", item->priority);

    item = pqueue_find(pq, prio2);
    fprintf(stderr, "found %p\n", item->priority);

    item = pqueue_find(pq, prio3);
    fprintf(stderr, "found %p\n", item ? item->priority : 0);

    pqueue_print(pq);

    if (!pqueue_test(pq))
        return 1;

    for (item = pqueue_pop(pq); item != NULL; item = pqueue_pop(pq))
        pitem_free(item);

    pqueue_free(pq);

    return 0;
}
Beispiel #18
0
} T_END_TEST

T_TEST(t_pqueue_duplicate) {
	struct pqueue* q = pqueue_create(comp);
	void* v = (void*)0xdeadbeef;

	T_ASSERT(q);

	T_ASSERT(0 == pqueue_insert(q, v));
	T_ASSERT(0 == pqueue_insert(q, v));

	T_ASSERT(!pqueue_is_empty(q));
	T_ASSERT(v == pqueue_peek(q));
	T_ASSERT(v == pqueue_pop(q));
	
	T_ASSERT(!pqueue_is_empty(q));
	T_ASSERT(v == pqueue_peek(q));
	T_ASSERT(v == pqueue_pop(q));

	T_ASSERT(pqueue_is_empty(q));

	pqueue_destroy(q);

} T_END_TEST
Beispiel #19
0
int neighbors_nearsource(float* time /* time */,
			 float* xs   /* source location [3] */)
/* initialize point source */
{
    int its;
    int ic, i, j, is[3];
    double delta[3], delta2;

#ifdef _OPENMP
    its = omp_get_thread_num();
#else
    its = 0;
#endif
    
    /* initialize everywhere */
    for (i=0; i < n[0]*n[1]*n[2]; i++) {
	in[its][i] = SF_OUT;
	time[i] = SF_HUGE;
	offsets[its][i] = -1;
    }

    /* Find index of the source location and project it to the grid */
    delta2 = 0.;

    for (j=0; j < 3; j++) {
	is[j] = xs[j]/d[j]+0.5;

	if (is[j] < 0) {
	    is[j]=0;
	} else if (is[j] >= n[j]) {
	    is[j]=n[j]-1;
	}

	delta[j] = xs[j]-is[j]*d[j];
	delta2 += delta[j]*delta[j];
    }
    
    /* source index */
    ic = is[0]+n[0]*(is[1]+n[1]*is[2]);
    
    /* initialize source */
    time[ic] = sqrtf(((double)v[ic])*delta2);
/*  TEMP: the next line seems to be redundant; to be checked later...*/
    in[its][ic] = SF_IN;
    pqueue_insert(time+ic);
    
    return (n[0]*n[1]*n[2]-1);
}
Beispiel #20
0
int main (int argc, char *argv[])
{
	int i;
	struct pqueue *pqueue;
	pqueue = pqueue_create(0, compare, NULL);
	if (pqueue == NULL) {
		return -1;
	}
	for (i = 1; i < argc; i++) {
		pqueue_insert(pqueue, argv[i]);
	}
	printf("%s ", (char *) pqueue_pop(pqueue));
	printf("%s ", (char *) pqueue_pop(pqueue));
	printf("%s ", (char *) pqueue_pop(pqueue));
	pqueue_destroy(pqueue);
	return 0;
}
static int trivial() {
  pqueue q = pqueue_new();
  if (q == NULL) {
    return 0;
  }
  int32_t data = 0xdeadbeef;
  uint8_t priority[8] = {0};
  pitem *item = pitem_new(priority, &data);
  if (item == NULL ||
      pqueue_insert(q, item) != item ||
      pqueue_size(q) != 1 ||
      pqueue_peek(q) != item ||
      pqueue_pop(q) != item ||
      pqueue_size(q) != 0 ||
      pqueue_pop(q) != NULL) {
    return 0;
  }
  pitem_free(item);
  pqueue_free(q);
  return 1;
}
Beispiel #22
0
//doesn't check for existence
Element * hash_table_insert(Key key, HashTable * hash_table,int alloc_size){
  
  int hashval = hash_value(key,hash_table->number_buckets);

  return pqueue_insert(key, &(hash_table->table[hashval]), hash_table->kmer_size,alloc_size);
}
Beispiel #23
0
static int
dtls1_process_out_of_seq_message(SSL *s, struct hm_header_st* msg_hdr, int *ok)
{
	int i=-1;
	hm_fragment *frag = NULL;
	pitem *item = NULL;
	PQ_64BIT seq64;
	unsigned long frag_len = msg_hdr->frag_len;

	if ((msg_hdr->frag_off+frag_len) > msg_hdr->msg_len)
		goto err;

	/* Try to find item in queue, to prevent duplicate entries */
	pq_64bit_init(&seq64);
	pq_64bit_assign_word(&seq64, msg_hdr->seq);
	item = pqueue_find(s->d1->buffered_messages, seq64);
	pq_64bit_free(&seq64);

	/* If we already have an entry and this one is a fragment,
	 * don't discard it and rather try to reassemble it.
	 */
	if (item != NULL && frag_len < msg_hdr->msg_len)
		item = NULL;

	/* Discard the message if sequence number was already there, is
	 * too far in the future, already in the queue or if we received
	 * a FINISHED before the SERVER_HELLO, which then must be a stale
	 * retransmit.
	 */
	if (msg_hdr->seq <= s->d1->handshake_read_seq ||
		msg_hdr->seq > s->d1->handshake_read_seq + 10 || item != NULL ||
		(s->d1->handshake_read_seq == 0 && msg_hdr->type == SSL3_MT_FINISHED))
		{
		unsigned char devnull [256];

		while (frag_len)
			{
			i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
				devnull,
				frag_len>sizeof(devnull)?sizeof(devnull):frag_len,0);
			if (i<=0) goto err;
			frag_len -= i;
			}
		}
	else
		{
		if (frag_len && frag_len < msg_hdr->msg_len)
			return dtls1_reassemble_fragment(s, msg_hdr, ok);

		frag = dtls1_hm_fragment_new(frag_len, 0);
		if ( frag == NULL)
			goto err;

		memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr));

		if (frag_len)
			{
			/* read the body of the fragment (header has already been read) */
			i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
				frag->fragment,frag_len,0);
			if (i<=0 || (unsigned long)i!=frag_len)
				goto err;
			}

		pq_64bit_init(&seq64);
		pq_64bit_assign_word(&seq64, msg_hdr->seq);

		item = pitem_new(seq64, frag);
		pq_64bit_free(&seq64);
		if ( item == NULL)
			goto err;

		pqueue_insert(s->d1->buffered_messages, item);
		}

	return DTLS1_HM_FRAGMENT_RETRY;

err:
	if ( frag != NULL) dtls1_hm_fragment_free(frag);
	if ( item != NULL) OPENSSL_free(item);
	*ok = 0;
	return i;
	}
Beispiel #24
0
static int
dtls1_reassemble_fragment(SSL *s, struct hm_header_st* msg_hdr, int *ok)
	{
	hm_fragment *frag = NULL;
	pitem *item = NULL;
	int i = -1, is_complete;
	PQ_64BIT seq64;
	unsigned long frag_len = msg_hdr->frag_len, max_len;

	if ((msg_hdr->frag_off+frag_len) > msg_hdr->msg_len)
		goto err;

	/* Determine maximum allowed message size. Depends on (user set)
	 * maximum certificate length, but 16k is minimum.
	 */
	if (DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH < s->max_cert_list)
		max_len = s->max_cert_list;
	else
		max_len = DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH;

	if ((msg_hdr->frag_off+frag_len) > max_len)
		goto err;

	/* Try to find item in queue */
	pq_64bit_init(&seq64);
	pq_64bit_assign_word(&seq64, msg_hdr->seq);
	item = pqueue_find(s->d1->buffered_messages, seq64);
	pq_64bit_free(&seq64);

	if (item == NULL)
		{
		frag = dtls1_hm_fragment_new(msg_hdr->msg_len, 1);
		if ( frag == NULL)
			goto err;
		memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr));
		frag->msg_header.frag_len = frag->msg_header.msg_len;
		frag->msg_header.frag_off = 0;
		}
	else
		{
		frag = (hm_fragment*) item->data;
		if (frag->msg_header.msg_len != msg_hdr->msg_len)
			{
			item = NULL;
			frag = NULL;
			goto err;
			}
		}


	/* If message is already reassembled, this must be a
	 * retransmit and can be dropped.
	 */
	if (frag->reassembly == NULL)
		{
		unsigned char devnull [256];

		while (frag_len)
			{
			i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
				devnull,
				frag_len>sizeof(devnull)?sizeof(devnull):frag_len,0);
			if (i<=0) goto err;
			frag_len -= i;
			}
		return DTLS1_HM_FRAGMENT_RETRY;
		}

	/* read the body of the fragment (header has already been read */
	i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
		frag->fragment + msg_hdr->frag_off,frag_len,0);
	if (i<=0 || (unsigned long)i!=frag_len)
		goto err;

	RSMBLY_BITMASK_MARK(frag->reassembly, (long)msg_hdr->frag_off,
	                    (long)(msg_hdr->frag_off + frag_len));

	RSMBLY_BITMASK_IS_COMPLETE(frag->reassembly, (long)msg_hdr->msg_len,
	                           is_complete);

	if (is_complete)
		{
		OPENSSL_free(frag->reassembly);
		frag->reassembly = NULL;
		}

	if (item == NULL)
		{
		pq_64bit_init(&seq64);
		pq_64bit_assign_word(&seq64, msg_hdr->seq);
		item = pitem_new(seq64, frag);
		pq_64bit_free(&seq64);

		if (item == NULL)
			{
			i = -1;
			goto err;
			}

		pqueue_insert(s->d1->buffered_messages, item);
		}

	return DTLS1_HM_FRAGMENT_RETRY;

err:
	if (frag != NULL) dtls1_hm_fragment_free(frag);
	if (item != NULL) OPENSSL_free(item);
	*ok = 0;
	return i;
	}
Beispiel #25
0
int
dtls1_buffer_message(SSL *s, int is_ccs)
	{
	pitem *item;
	hm_fragment *frag;
	PQ_64BIT seq64;

	/* this function is called immediately after a message has 
	 * been serialized */
	OPENSSL_assert(s->init_off == 0);

	frag = dtls1_hm_fragment_new(s->init_num, 0);

	memcpy(frag->fragment, s->init_buf->data, s->init_num);

	if ( is_ccs)
		{
		OPENSSL_assert(s->d1->w_msg_hdr.msg_len + 
			DTLS1_CCS_HEADER_LENGTH <= (unsigned int)s->init_num);
		}
	else
		{
		OPENSSL_assert(s->d1->w_msg_hdr.msg_len + 
			DTLS1_HM_HEADER_LENGTH == (unsigned int)s->init_num);
		}

	frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len;
	frag->msg_header.seq = s->d1->w_msg_hdr.seq;
	frag->msg_header.type = s->d1->w_msg_hdr.type;
	frag->msg_header.frag_off = 0;
	frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len;
	frag->msg_header.is_ccs = is_ccs;

	/* save current state*/
	frag->msg_header.saved_retransmit_state.enc_write_ctx = s->enc_write_ctx;
	frag->msg_header.saved_retransmit_state.write_hash = s->write_hash;
	frag->msg_header.saved_retransmit_state.compress = s->compress;
	frag->msg_header.saved_retransmit_state.session = s->session;
	frag->msg_header.saved_retransmit_state.epoch = s->d1->w_epoch;

	pq_64bit_init(&seq64);

	pq_64bit_assign_word(&seq64,
						 dtls1_get_queue_priority(frag->msg_header.seq,
												  frag->msg_header.is_ccs));
		
	item = pitem_new(seq64, frag);
	pq_64bit_free(&seq64);
	if ( item == NULL)
		{
		dtls1_hm_fragment_free(frag);
		return 0;
		}

#if 0
	fprintf( stderr, "buffered messge: \ttype = %xx\n", msg_buf->type);
	fprintf( stderr, "\t\t\t\t\tlen = %d\n", msg_buf->len);
	fprintf( stderr, "\t\t\t\t\tseq_num = %d\n", msg_buf->seq_num);
#endif

	pqueue_insert(s->d1->sent_messages, item);
	return 1;
	}
Beispiel #26
0
/*
 * Solves the puzzle and prints results.
 * Returns 1 on success and 0 on nonexistence of a solution.
 */
static int solve(int *start, int *end)
{
    Grid *root, *goal, *cur, *child, *iter, **result;
    Pqueue *pq;
    Set *visited;
    int goal_grid_code, child_code;
    int i, ch;
    int path_length;

    root = (Grid *) malloc(sizeof(Grid));
    memcpy(root->g, start, sizeof(int) * 9);
    root->parent = NULL;
    root->hole = 1;
    root->depth = 0;

    goal = (Grid *) malloc(sizeof(Grid));
    memcpy(goal->g, end, sizeof(int) * 9);
    goal_grid_code = grid_code(goal);
    get_correct_positions(goal);

    path_length = 0;
    i = 0;
    pq = pqueue_new();
    visited = set_new(4);
    pqueue_insert(pq, root);
    set_insert(visited, grid_code(root));


    while (!empty(pq)) {
        cur = pqueue_extract_min(pq);
        if (verbose) {
            fprintf(output, "%d.\n", ++i);
            fprintf(output, "Depth: %d\n", cur->depth);
            fprintf(output, "Grid:\n");
            grid_print(output, cur);
            fprintf(output, "f: %2d\n", weight(cur));
            fprintf(output, "\n");
        }
        if (grid_code(cur) == goal_grid_code)
            break;

        ch = 0;

#define ADD_CHILD() {                                                         \
    child_code = grid_code(child);                                            \
    if (!set_contains(visited, child_code)) {                                 \
        set_insert(visited, child_code);                                      \
        pqueue_insert(pq, child);                                             \
        cur->child[ch++] = child;                                             \
    } else                                                                    \
        free(child);                                                          \
}

        /* Hole not on the left wall. */
        if (cur->hole % 3 > 0) {
            child = make_child(cur);
            grid_move_hole(child, child->hole - 1);
            ADD_CHILD();
        }
        /* Hole not on the right wall. */
        if (cur->hole % 3 < 2) {
            child = make_child(cur);
            grid_move_hole(child, child->hole + 1);
            ADD_CHILD();
        }
        /* Hole not on the top wall. */
        if (cur->hole / 3 > 0) {
            child = make_child(cur);
            grid_move_hole(child, child->hole - 3);
            ADD_CHILD();
        }
        /* Hole not on the bottom wall. */
        if (cur->hole / 3 < 2) {
            child = make_child(cur);
            grid_move_hole(child, child->hole + 3);
            ADD_CHILD();
        }
#undef ADD_CHILD

        /* End of children character. */
        cur->child[ch] = NULL;

        if (verbose) {
            fprintf(output, "Children:\n");
            grid_children(output, cur);
            fprintf(output, "------------------------\n");
            fprintf(output, "\n");
            STEP();
        }
    }

    if (grid_code(cur) != goal_grid_code)
        return 0;

    /* Collect result path. */
    for (iter = cur; iter != NULL; iter = iter->parent)
        path_length ++;

    result = (Grid**) malloc(sizeof(Grid*) * path_length);

    i = path_length - 1;
    for (iter = cur; iter != NULL; iter = iter->parent)
        result[i--] = iter;

    if (verbose)
        fprintf(output, "Solution sequence:\n");

    for (i = 0; i < path_length; i++) {
        grid_print(output, result[i]);
        STEP();
        fprintf(output, "\n");
    }


    /* Clean up. */
    grid_dispose(root);
    set_dispose(visited);
    pqueue_dispose(pq);
    free(result);
    free(goal);

    return 1;
}
Beispiel #27
0
/**
 * Expects a file like:
 **/
void read_data_events(char *mmaped_file) {
   /** Header **/
   FILE *data = open_file(mmaped_file);
   if(!data) {
      printf("#Warning: data file %s not found\n", mmaped_file);
      return;
   }

   if(!data_events)
      data_events = pqueue_init(10, cmp_pri, get_pri, set_pri, get_pos, set_pos);

   rbtree metadata = rbtree_create();

   char line[512];
   struct data_ev *event;
   int nb_lines = 0;
   uint64_t type;


   while(fgets(line, sizeof(line), data)) {
      nb_lines++;
      event = malloc(sizeof(*event));

      if(sscanf(line, "%lu %lu %lu %lu %d %u", &event->rdt, &event->malloc.begin, &event->malloc.end, &type, &event->cpu, &event->tid) != 6) {
         goto test_info;
      }
      if(type == 0) {               // free
         event->type = FREE;
      } else if(type == 2) {        // munmap
         event->type = FREE;        //munmap is not handled correctly yet => fake free
      } else {                      // malloc / mmap
         event->type = MALLOC;
         event->malloc.end = event->malloc.begin + event->malloc.end;
         if(type == 1) {
            char * val = rbtree_lookup(metadata, (void*)event->rdt, pointer_cmp);
            if(val)
               event->malloc.info = val;
            else
               asprintf(&event->malloc.info, "datasize%lu-%d", event->malloc.end - event->malloc.begin, nb_lines);
         } else {
            /*#define MAP_SHARED    0x01 
            #define MAP_PRIVATE     0x02*/
            if(event->malloc.end - event->malloc.begin == 8392704) { /* All stacks seem to be of that size */
               asprintf(&event->malloc.info, "thread-stack-%d", nb_lines);
            } else if(type & 0x01) {
               asprintf(&event->malloc.info, "mmap-shared%lu-%d", event->malloc.end - event->malloc.begin, nb_lines);
            } else if(type & 0x02) {
               asprintf(&event->malloc.info, "mmap-priv%lu-%d", event->malloc.end - event->malloc.begin, nb_lines);
            } else {
               asprintf(&event->malloc.info, "mmap-??%lu-%d", event->malloc.end - event->malloc.begin, nb_lines);
            }
         }
      }


      pqueue_insert(data_events, event);
      total_data_samples++;
      continue;

test_info:;
      uint64_t time, loc;
      int read;
      if(sscanf(line, "#%lu 0x%lx %n\n", &time, &loc, &read) != 2) {
         //printf("fail %s %d\n", line, read);
         goto fail;
      }
      char *met_value = strdup(line + read);
      int met_len = strlen(met_value)-1;
      if(met_len < 5) // malloc probably not correctly resolved
         asprintf(&met_value, "%lu", time);
      else
         met_value[met_len] = '\0';
      rbtree_insert(metadata, (void*)time, met_value, pointer_cmp);

fail:
      //printf("#Unrecognized line: %s", line);
      free(event);
      continue;
   }

   if(!active_data)
      active_data = rbtree_create();

   if(verbose)
      printf("#All data events added successfully ; now processing samples\n");
}
Beispiel #28
0
static int build_tree(int *freqs, BiTree **tree) {

BiTree             *init,
                   *merge,
                   *left,
                   *right;

PQueue             pqueue;

HuffNode           *data;

int                size,
                   c;

/*****************************************************************************
*                                                                            *
*  Initialize the priority queue of binary trees.                            *
*                                                                            *
*****************************************************************************/

*tree = NULL;

pqueue_init(&pqueue, compare_freq, destroy_tree);

for (c = 0; c <= UCHAR_MAX; c++) {

   if (freqs[c] != 0) {

      /***********************************************************************
      *                                                                      *
      *  Set up a binary tree for the current symbol and its frequency.      *
      *                                                                      *
      ***********************************************************************/

      if ((init = (BiTree *)malloc(sizeof(BiTree))) == NULL) {

         pqueue_destroy(&pqueue);
         return -1;

      }

      bitree_init(init, free);

      if ((data = (HuffNode *)malloc(sizeof(HuffNode))) == NULL) {

         pqueue_destroy(&pqueue);
         return -1;

      }

      data->symbol = c;
      data->freq = freqs[c];

      if (bitree_ins_left(init, NULL, data) != 0) {

         free(data);
         bitree_destroy(init);
         free(init);
         pqueue_destroy(&pqueue);
         return -1;

      }

      /***********************************************************************
      *                                                                      *
      *  Insert the binary tree into the priority queue.                     *
      *                                                                      *
      ***********************************************************************/

      if (pqueue_insert(&pqueue, init) != 0) {

         bitree_destroy(init);
         free(init);
         pqueue_destroy(&pqueue);
         return -1;

      }

   }

}

/*****************************************************************************
*                                                                            *
*  Build a Huffman tree by merging trees in the priority queue.              *
*                                                                            *
*****************************************************************************/

size = pqueue_size(&pqueue);

for (c = 1; c <= size - 1; c++) {

   /**************************************************************************
   *                                                                         *
   *  Allocate storage for the next merged tree.                             *
   *                                                                         *
   **************************************************************************/

   if ((merge = (BiTree *)malloc(sizeof(BiTree))) == NULL) {

      pqueue_destroy(&pqueue);
      return -1;

   }

   /**************************************************************************
   *                                                                         *
   *  Extract the two trees whose root nodes have the smallest frequencies.  *
   *                                                                         *
   **************************************************************************/

   if (pqueue_extract(&pqueue, (void **)&left) != 0) {

      pqueue_destroy(&pqueue);
      free(merge);
      return -1;

   }

   if (pqueue_extract(&pqueue, (void **)&right) != 0) {

      pqueue_destroy(&pqueue);
      free(merge);
      return -1;

   }

   /**************************************************************************
   *                                                                         *
   *  Allocate storage for the data in the root node of the merged tree.     *
   *                                                                         *
   **************************************************************************/

   if ((data = (HuffNode *)malloc(sizeof(HuffNode))) == NULL) {

      pqueue_destroy(&pqueue);
      free(merge);
      return -1;

   }

   memset(data, 0, sizeof(HuffNode));

   /**************************************************************************
   *                                                                         *
   *  Sum the frequencies in the root nodes of the trees being merged.       *
   *                                                                         *
   **************************************************************************/

   data->freq = ((HuffNode *)bitree_data(bitree_root(left)))->freq +
      ((HuffNode *)bitree_data(bitree_root(right)))->freq;

   /**************************************************************************
   *                                                                         *
   *  Merge the two trees.                                                   *
   *                                                                         *
   **************************************************************************/

   if (bitree_merge(merge, left, right, data) != 0) {

      pqueue_destroy(&pqueue);
      free(merge);
      return -1;

   }

   /**************************************************************************
   *                                                                         *
   *  Insert the merged tree into the priority queue and free the others.    *
   *                                                                         *
   **************************************************************************/

   if (pqueue_insert(&pqueue, merge) != 0) {

      pqueue_destroy(&pqueue);
      bitree_destroy(merge);
      free(merge);
      return -1;

   }

   free(left);
   free(right);

}

/*****************************************************************************
*                                                                            *
*  The last tree in the priority queue is the Huffman tree.                  *
*                                                                            *
*****************************************************************************/

if (pqueue_extract(&pqueue, (void **)tree) != 0) {

   pqueue_destroy(&pqueue);
   return -1;

   }

else {

   pqueue_destroy(&pqueue);

}

return 0;

}
Beispiel #29
0
static int
dtls1_process_out_of_seq_message(SSL *s, struct hm_header_st* msg_hdr, int *ok)
{
	int i=-1;
	hm_fragment *frag = NULL;
	pitem *item = NULL;
	PQ_64BIT seq64;
	unsigned long frag_len = msg_hdr->frag_len;

	if ((msg_hdr->frag_off+frag_len) > msg_hdr->msg_len)
		goto err;

	/* Try to find item in queue, to prevent duplicate entries */
	pq_64bit_init(&seq64);
	pq_64bit_assign_word(&seq64, msg_hdr->seq);
	item = pqueue_find(s->d1->buffered_messages, seq64);
	pq_64bit_free(&seq64);
	
	/* Discard the message if sequence number was already there, is
	 * too far in the future or the fragment is already in the queue */
	if (msg_hdr->seq <= s->d1->handshake_read_seq ||
		msg_hdr->seq > s->d1->handshake_read_seq + 10 || item != NULL)
		{
		unsigned char devnull [256];

		while (frag_len)
			{
			i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
				devnull,
				frag_len>sizeof(devnull)?sizeof(devnull):frag_len,0);
			if (i<=0) goto err;
			frag_len -= i;
			}
		}

	if (frag_len)
	{
		frag = dtls1_hm_fragment_new(frag_len);
		if ( frag == NULL)
			goto err;

		memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr));

		/* read the body of the fragment (header has already been read) */
		i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
			frag->fragment,frag_len,0);
		if (i<=0 || (unsigned long)i!=frag_len)
			goto err;

		pq_64bit_init(&seq64);
		pq_64bit_assign_word(&seq64, msg_hdr->seq);

		item = pitem_new(seq64, frag);
		pq_64bit_free(&seq64);
		if ( item == NULL)
			goto err;

		pqueue_insert(s->d1->buffered_messages, item);
	}

	return DTLS1_HM_FRAGMENT_RETRY;

err:
	if ( frag != NULL) dtls1_hm_fragment_free(frag);
	if ( item != NULL) OPENSSL_free(item);
	*ok = 0;
	return i;
	}
Beispiel #30
0
int main(int argc, char **argv) {

PQueue             pqueue;

void               *data;

int                intval[30],
                   i;

/*****************************************************************************
*                                                                            *
*  Initialize the priority queue.                                            *
*                                                                            *
*****************************************************************************/

pqueue_init(&pqueue, compare_int, NULL);

/*****************************************************************************
*                                                                            *
*  Perform some priority queue operations.                                   *
*                                                                            *
*****************************************************************************/

i = 0;

intval[i] = 5;
fprintf(stdout, "Inserting %03d\n", intval[i]);
if (pqueue_insert(&pqueue, &intval[i]) != 0)
   return 1;
print_pqueue(&pqueue);
i++;

intval[i] = 10;
fprintf(stdout, "Inserting %03d\n", intval[i]);
if (pqueue_insert(&pqueue, &intval[i]) != 0)
   return 1;
print_pqueue(&pqueue);
i++;

intval[i] = 20;
fprintf(stdout, "Inserting %03d\n", intval[i]);
if (pqueue_insert(&pqueue, &intval[i]) != 0)
   return 1;
print_pqueue(&pqueue);
i++;

intval[i] = 1;
fprintf(stdout, "Inserting %03d\n", intval[i]);
if (pqueue_insert(&pqueue, &intval[i]) != 0)
   return 1;
print_pqueue(&pqueue);
i++;

intval[i] = 25;
fprintf(stdout, "Inserting %03d\n", intval[i]);
if (pqueue_insert(&pqueue, &intval[i]) != 0)
   return 1;
print_pqueue(&pqueue);
i++;

intval[i] = 22;
fprintf(stdout, "Inserting %03d\n", intval[i]);
if (pqueue_insert(&pqueue, &intval[i]) != 0)
   return 1;
print_pqueue(&pqueue);
i++;

intval[i] = 12;
fprintf(stdout, "Inserting %03d\n", intval[i]);
if (pqueue_insert(&pqueue, &intval[i]) != 0)
   return 1;
print_pqueue(&pqueue);
i++;

while (pqueue_size(&pqueue) > 0) {

   fprintf(stdout, "Peeking at the highest priority element..Value=%03d\n",
      *(int *)pqueue_peek(&pqueue));
   if (pqueue_extract(&pqueue, (void **)&data) != 0)
      return 1;
   fprintf(stdout, "Extracting %03d\n", *(int *)data);
   print_pqueue(&pqueue);

}

/*****************************************************************************
*                                                                            *
*  Destroy the priority queue.                                               *
*                                                                            *
*****************************************************************************/

fprintf(stdout, "Destroying the pqueue\n");
pqueue_destroy(&pqueue);

return 0;

}