Beispiel #1
0
/*** do cyclic coordinate descent optimization for fixed lambda1
 * repeat coordinate descent algorithm until solution is converged ***/
bool
cdescent_do_update_one_cycle (cdescent *cd)
{
	int					ccd_iter = 0;
	bool				converged = false;

	update_one_cycle	update_func;

	update_func = (cd->rule == CDESCENT_SELECTION_RULE_STOCHASTIC) ?
			cdescent_do_update_once_cycle_stochastic : cdescent_do_update_once_cycle_cyclic;


	if (!cd) error_and_exit ("cdescent_do_cyclic_update", "cdescent *cd is empty.", __FILE__, __LINE__);

	while (!converged) {

		converged = update_func (cd);

		if (++ccd_iter >= cd->maxiter) {
			printf_warning ("cdescent_do_cyclic_update", "reaching max number of iterations.", __FILE__, __LINE__);
			break;
		}

	}
	cd->total_iter += ccd_iter;
	return converged;
}
Beispiel #2
0
/*** do reweighted coordinate descent optimization.
 * The weight for L1 norm is updated by calling reweighting function
 * cd->path->func using beta of the previous iteration. ***/
bool
cdescent_do_reweighting (cdescent *cd)
{
	int			iter;
	double		dnrm1;
	bool		converged = true;

	if (!cd->rwt) error_and_exit ("cdescent_do_reweighting", "cd->rwt is empty.", __FILE__, __LINE__);
	if (!cd->rwt->func) error_and_exit ("cdescent_do_reweighting", "cd->rwt->func is empty.", __FILE__, __LINE__);

	iter = 0;
	do {
		double		nrm1_prev = cd->nrm1;
		mm_dense	*w = cd->rwt->func->function (cd, cd->rwt->func->data);
		cdescent_set_penalty_factor (cd, w, cd->rwt->func->tau);
		mm_real_free (w);

		if (!(converged = cdescent_do_update_one_cycle (cd))) break;

		if (++iter > cd->rwt->maxiter) {
			printf_warning ("cdescent_do_reweighting", "reaching max number of iterations.", __FILE__, __LINE__);
			break;
		}

		dnrm1 = fabs (cd->nrm1 - nrm1_prev);
	} while (dnrm1 > cd->rwt->tolerance);

	return converged;
}
void	team_list_init(void)
{
    char	*name;

    if (g_server.team_list != NULL)
        return ;
    g_server.team_list = list_create();
    name = strtok(g_server.param.team_names, "\n");
    while (name)
    {
        team_create(++g_server.param.team_max_id, name);
        name = strtok(NULL, "\n");
    }
    free(g_server.param.team_names);
    if (g_server.team_list->size < 1)
    {
        printf_warning("No team names specified, defaulting to \"%s\"",
                       DEFAULT_N);
        team_create(++g_server.param.team_max_id, DEFAULT_N);
    }
}
Beispiel #4
0
/*** do pathwise cyclic coordinate descent optimization.
 * The regression is starting at the smallest value lambda1_max for which
 * the entire vector beta = 0, and decreasing sequence of values for lambda1
 * while log10(lambda1) >= path->log10_lambda1_lower.
 * log10(lambda1_max) is identical with log10 ( max ( abs(X' * y) ) ), where this
 * value is stored in cd->lreg->log10camax.
 * The interval of decreasing sequence on the log10 scale is path->dlog10_lambda1. ***/
bool
cdescent_do_pathwise_optimization (cdescent *cd)
{
	int			iter = 0;
	double		logt;
	bool		stop_flag = false;

	bool		converged;

	FILE		*fp_path = NULL;
	FILE		*fp_bic = NULL;

	if (!cd) error_and_exit ("cdescent_do_pathwise_optimization", "cdescent *cd is empty.", __FILE__, __LINE__);
	if (!cd->path) error_and_exit ("cdescent_do_pathwise_optimization", "cd->path is empty.", __FILE__, __LINE__);

	// reset cdescent object if need
	if (cd->was_modified) cdescent_reset (cd);
	// reset pathwise object if need
	if (cd->path->was_modified) pathwise_reset (cd->path);

	/* warm start */
	stop_flag = set_logt (cd->path->log10_lambda_lower, cd->path->log10_lambda_upper, &logt);

	if (cd->path->output_fullpath) {
		if (!(fp_path = fopen (cd->path->fn_path, "w"))) {
			char	msg[80];
			sprintf (msg, "cannot open file %s.", cd->path->fn_path);
			printf_warning ("cdescent_do_pathwise_optimization", msg, __FILE__, __LINE__);
		}
		if (fp_path) fprintf_solutionpath (fp_path, iter, cd->beta);
	}
	if (cd->path->output_bic_info) {
		if (!(fp_bic = fopen (cd->path->fn_bic, "w"))) {
			char	msg[80];
			sprintf (msg, "cannot open file %s.", cd->path->fn_bic);
			printf_warning ("cdescent_do_pathwise_optimization", msg, __FILE__, __LINE__);
		}
		// output BIC info headers
		if (fp_bic) fprintf (fp_bic, "# nrm1\t\tBIC\t\tRSS\t\tdf\t\tnrm2\t\tlambda1\tlambda2\n");
	}

	if (cd->path->verbos) fprintf (stderr, "starting pathwise optimization.\n");

	while (1) {
		bic_info	*info;

		iter++;

		cdescent_set_log10_lambda (cd, logt);
		if (cd->path->verbos) fprintf (stderr, "%d-th iteration lambda1 = %.4e, lamba2 = %.4e ", iter, cd->lambda1, cd->lambda2);


		if (!(converged = cdescent_do_update_one_cycle (cd))) break;

		// reweighting
		if (cd->rwt && !(converged = cdescent_do_reweighting (cd))) break;

		// output solution path
		if (fp_path) fprintf_solutionpath (fp_path, iter, cd->beta);

		info = cdescent_eval_bic (cd);
		// if bic_val < min_bic_val, update min_bic_val, lambda1_opt, nrm1_opt and beta_opt
		if (info->bic_val < cd->path->min_bic_val) {
			store_optimal (cd, iter);
			cd->path->min_bic_val = info->bic_val;
			if (!cd->path->was_modified) cd->path->was_modified = true;
		}
		if (cd->path->verbos) fprintf (stderr, "bic = %.4e ... ", info->bic_val);
		// output BIC info
		if (fp_bic) {
			// |beta|  BIC  RSS  df  ||beta||^2 lambda2
			fprintf (fp_bic, "%.8e\t%.8e\t%.8e\t%.8e\t%.8e\t%.8e\t%.8e\n", cd->nrm1, info->bic_val, info->rss, info->df, mm_real_xj_ssq (cd->beta, 0), cd->lambda1, cd->lambda2);
			fflush (fp_bic);
		}
		free (info);

		if (stop_flag) break;

		/* if logt - dlog10_lambda1 < log10_lambda1, logt = log10_lambda1 and stop_flag is set to true
		 * else logt -= dlog10_lambda1 */
		stop_flag = set_logt (cd->path->log10_lambda_lower, logt - cd->path->dlog10_lambda, &logt);

		if (cd->path->verbos) fprintf (stderr, "done.\n");

	}

	if (fp_path) fclose (fp_path);
	if (fp_bic) fclose (fp_bic);

	return converged;
}