static DerivedMesh * applyModifier(ModifierData *md, Object *ob,
						DerivedMesh *derivedData,
						int UNUSED(useRenderParams),
						int UNUSED(isFinalCalc))
{
	DerivedMesh *dm = derivedData, *result;
	ParticleInstanceModifierData *pimd= (ParticleInstanceModifierData*) md;
	ParticleSimulationData sim;
	ParticleSystem *psys= NULL;
	ParticleData *pa= NULL, *pars= NULL;
	MFace *mface, *orig_mface;
	MVert *mvert, *orig_mvert;
	int i,totvert, totpart=0, totface, maxvert, maxface, first_particle=0;
	short track=ob->trackflag%3, trackneg, axis = pimd->axis;
	float max_co=0.0, min_co=0.0, temp_co[3], cross[3];
	float *size=NULL;

	trackneg=((ob->trackflag>2)?1:0);

	if(pimd->ob==ob){
		pimd->ob= NULL;
		return derivedData;
	}

	if(pimd->ob){
		psys = BLI_findlink(&pimd->ob->particlesystem,pimd->psys-1);
		if(psys==NULL || psys->totpart==0)
			return derivedData;
	}
	else return derivedData;

	if(pimd->flag & eParticleInstanceFlag_Parents)
		totpart+=psys->totpart;
	if(pimd->flag & eParticleInstanceFlag_Children){
		if(totpart==0)
			first_particle=psys->totpart;
		totpart+=psys->totchild;
	}

	if(totpart==0)
		return derivedData;

	sim.scene = md->scene;
	sim.ob = pimd->ob;
	sim.psys = psys;
	sim.psmd = psys_get_modifier(pimd->ob, psys);

	if(pimd->flag & eParticleInstanceFlag_UseSize) {
		int p;
		float *si;
		si = size = MEM_callocN(totpart * sizeof(float), "particle size array");

		if(pimd->flag & eParticleInstanceFlag_Parents) {
			for(p=0, pa= psys->particles; p<psys->totpart; p++, pa++, si++)
				*si = pa->size;
		}

		if(pimd->flag & eParticleInstanceFlag_Children) {
			ChildParticle *cpa = psys->child;

			for(p=0; p<psys->totchild; p++, cpa++, si++) {
				*si = psys_get_child_size(psys, cpa, 0.0f, NULL);
			}
		}
	}

	pars=psys->particles;

	totvert=dm->getNumVerts(dm);
	totface=dm->getNumFaces(dm);

	maxvert=totvert*totpart;
	maxface=totface*totpart;

	psys->lattice=psys_get_lattice(&sim);

	if(psys->flag & (PSYS_HAIR_DONE|PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED){

		float min_r[3], max_r[3];
		INIT_MINMAX(min_r, max_r);
		dm->getMinMax(dm, min_r, max_r);
		min_co=min_r[track];
		max_co=max_r[track];
	}

	result = CDDM_from_template(dm, maxvert,dm->getNumEdges(dm)*totpart,maxface);

	mvert=result->getVertArray(result);
	orig_mvert=dm->getVertArray(dm);

	for(i=0; i<maxvert; i++){
		MVert *inMV;
		MVert *mv = mvert + i;
		ParticleKey state;

		inMV = orig_mvert + i%totvert;
		DM_copy_vert_data(dm, result, i%totvert, i, 1);
		*mv = *inMV;

		/*change orientation based on object trackflag*/
		copy_v3_v3(temp_co, mv->co);
		mv->co[axis]=temp_co[track];
		mv->co[(axis+1)%3]=temp_co[(track+1)%3];
		mv->co[(axis+2)%3]=temp_co[(track+2)%3];

		if((psys->flag & (PSYS_HAIR_DONE|PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED) && pimd->flag & eParticleInstanceFlag_Path){
			float ran = 0.0f;
			if(pimd->random_position != 0.0f) {
				BLI_srandom(psys->seed + (i/totvert)%totpart);
				ran = pimd->random_position * BLI_frand();
			}

			if(pimd->flag & eParticleInstanceFlag_KeepShape) {
				state.time = pimd->position * (1.0f - ran);
			}
			else {
				state.time=(mv->co[axis]-min_co)/(max_co-min_co) * pimd->position * (1.0f - ran);

				if(trackneg)
					state.time=1.0f-state.time;

				mv->co[axis] = 0.0;
			}

			psys_get_particle_on_path(&sim, first_particle + i/totvert, &state,1);

			normalize_v3(state.vel);

			/* TODO: incremental rotations somehow */
			if(state.vel[axis] < -0.9999f || state.vel[axis] > 0.9999f) {
				state.rot[0] = 1;
				state.rot[1] = state.rot[2] = state.rot[3] = 0.0f;
			}
			else {
				float temp[3] = {0.0f,0.0f,0.0f};
				temp[axis] = 1.0f;

				cross_v3_v3v3(cross, temp, state.vel);

				/* state.vel[axis] is the only component surviving from a dot product with the axis */
				axis_angle_to_quat(state.rot,cross,saacos(state.vel[axis]));
			}

		}
		else{
			state.time=-1.0;
			psys_get_particle_state(&sim, first_particle + i/totvert, &state,1);
		}

		mul_qt_v3(state.rot,mv->co);
		if(pimd->flag & eParticleInstanceFlag_UseSize)
			mul_v3_fl(mv->co, size[i/totvert]);
		VECADD(mv->co,mv->co,state.co);
	}

	mface=result->getFaceArray(result);
	orig_mface=dm->getFaceArray(dm);

	for(i=0; i<maxface; i++){
		MFace *inMF;
		MFace *mf = mface + i;

		if(pimd->flag & eParticleInstanceFlag_Parents){
			if(i/totface>=psys->totpart){
				if(psys->part->childtype==PART_CHILD_PARTICLES)
					pa=psys->particles+(psys->child+i/totface-psys->totpart)->parent;
				else
					pa= NULL;
			}
			else
				pa=pars+i/totface;
		}
		else{
			if(psys->part->childtype==PART_CHILD_PARTICLES)
				pa=psys->particles+(psys->child+i/totface)->parent;
			else
				pa= NULL;
		}

		if(pa){
			if(pa->alive==PARS_UNBORN && (pimd->flag&eParticleInstanceFlag_Unborn)==0) continue;
			if(pa->alive==PARS_ALIVE && (pimd->flag&eParticleInstanceFlag_Alive)==0) continue;
			if(pa->alive==PARS_DEAD && (pimd->flag&eParticleInstanceFlag_Dead)==0) continue;
		}

		inMF = orig_mface + i%totface;
		DM_copy_face_data(dm, result, i%totface, i, 1);
		*mf = *inMF;

		mf->v1+=(i/totface)*totvert;
		mf->v2+=(i/totface)*totvert;
		mf->v3+=(i/totface)*totvert;
		if(mf->v4)
			mf->v4+=(i/totface)*totvert;
	}

	CDDM_calc_edges(result);
	CDDM_calc_normals(result);

	if(psys->lattice){
		end_latt_deform(psys->lattice);
		psys->lattice= NULL;
	}

	if(size)
		MEM_freeN(size);

	return result;
}
Beispiel #2
0
static DerivedMesh * explodeMesh(ExplodeModifierData *emd, 
		ParticleSystemModifierData *psmd, Scene *scene, Object *ob, 
  DerivedMesh *to_explode)
{
	DerivedMesh *explode, *dm=to_explode;
	MFace *mf= NULL, *mface;
	/* ParticleSettings *part=psmd->psys->part; */ /* UNUSED */
	ParticleSimulationData sim= {NULL};
	ParticleData *pa=NULL, *pars=psmd->psys->particles;
	ParticleKey state, birth;
	EdgeHash *vertpahash;
	EdgeHashIterator *ehi;
	float *vertco= NULL, imat[4][4];
	float rot[4];
	float cfra;
	/* float timestep; */
	int *facepa=emd->facepa;
	int totdup=0,totvert=0,totface=0,totpart=0;
	int i, j, v, mindex=0;
	MTFace *mtface = NULL, *mtf;

	totface= dm->getNumFaces(dm);
	totvert= dm->getNumVerts(dm);
	mface= dm->getFaceArray(dm);
	totpart= psmd->psys->totpart;

	sim.scene= scene;
	sim.ob= ob;
	sim.psys= psmd->psys;
	sim.psmd= psmd;

	/* timestep= psys_get_timestep(&sim); */

	//if(part->flag & PART_GLOB_TIME)
		cfra= BKE_curframe(scene);
	//else
	//	cfra=bsystem_time(scene, ob,(float)scene->r.cfra,0.0);

	/* hash table for vertice <-> particle relations */
	vertpahash= BLI_edgehash_new();

	for (i=0; i<totface; i++) {
		/* do mindex + totvert to ensure the vertex index to be the first
		 * with BLI_edgehashIterator_getKey */
		if(facepa[i]==totpart || cfra < (pars+facepa[i])->time)
			mindex = totvert+totpart;
		else 
			mindex = totvert+facepa[i];

		mf= &mface[i];

		/* set face vertices to exist in particle group */
		BLI_edgehash_insert(vertpahash, mf->v1, mindex, NULL);
		BLI_edgehash_insert(vertpahash, mf->v2, mindex, NULL);
		BLI_edgehash_insert(vertpahash, mf->v3, mindex, NULL);
		if(mf->v4)
			BLI_edgehash_insert(vertpahash, mf->v4, mindex, NULL);
	}

	/* make new vertice indexes & count total vertices after duplication */
	ehi= BLI_edgehashIterator_new(vertpahash);
	for(; !BLI_edgehashIterator_isDone(ehi); BLI_edgehashIterator_step(ehi)) {
		BLI_edgehashIterator_setValue(ehi, SET_INT_IN_POINTER(totdup));
		totdup++;
	}
	BLI_edgehashIterator_free(ehi);

	/* the final duplicated vertices */
	explode= CDDM_from_template(dm, totdup, 0,totface);
	mtface = CustomData_get_layer_named(&explode->faceData, CD_MTFACE, emd->uvname);
	/*dupvert= CDDM_get_verts(explode);*/

	/* getting back to object space */
	invert_m4_m4(imat,ob->obmat);

	psmd->psys->lattice = psys_get_lattice(&sim);

	/* duplicate & displace vertices */
	ehi= BLI_edgehashIterator_new(vertpahash);
	for(; !BLI_edgehashIterator_isDone(ehi); BLI_edgehashIterator_step(ehi)) {
		MVert source;
		MVert *dest;

		/* get particle + vertex from hash */
		BLI_edgehashIterator_getKey(ehi, &j, &i);
		i -= totvert;
		v= GET_INT_FROM_POINTER(BLI_edgehashIterator_getValue(ehi));

		dm->getVert(dm, j, &source);
		dest = CDDM_get_vert(explode,v);

		DM_copy_vert_data(dm,explode,j,v,1);
		*dest = source;

		if(i!=totpart) {
			/* get particle */
			pa= pars+i;

			psys_get_birth_coordinates(&sim, pa, &birth, 0, 0);

			state.time=cfra;
			psys_get_particle_state(&sim, i, &state, 1);

			vertco=CDDM_get_vert(explode,v)->co;
			mul_m4_v3(ob->obmat,vertco);

			sub_v3_v3(vertco, birth.co);

			/* apply rotation, size & location */
			sub_qt_qtqt(rot, state.rot, birth.rot);
			mul_qt_v3(rot, vertco);

			if(emd->flag & eExplodeFlag_PaSize)
				mul_v3_fl(vertco,pa->size);

			add_v3_v3(vertco, state.co);

			mul_m4_v3(imat, vertco);
		}
	}
	BLI_edgehashIterator_free(ehi);

	/*map new vertices to faces*/
	for (i=0; i<totface; i++) {
		MFace source;
		int orig_v4;

		if(facepa[i]!=totpart)
		{
			pa=pars+facepa[i];

			if(pa->alive==PARS_UNBORN && (emd->flag&eExplodeFlag_Unborn)==0) continue;
			if(pa->alive==PARS_ALIVE && (emd->flag&eExplodeFlag_Alive)==0) continue;
			if(pa->alive==PARS_DEAD && (emd->flag&eExplodeFlag_Dead)==0) continue;
		}

		dm->getFace(dm,i,&source);
		mf=CDDM_get_face(explode,i);
		
		orig_v4 = source.v4;

		if(facepa[i]!=totpart && cfra < pa->time)
			mindex = totvert+totpart;
		else 
			mindex = totvert+facepa[i];

		source.v1 = edgecut_get(vertpahash, source.v1, mindex);
		source.v2 = edgecut_get(vertpahash, source.v2, mindex);
		source.v3 = edgecut_get(vertpahash, source.v3, mindex);
		if(source.v4)
			source.v4 = edgecut_get(vertpahash, source.v4, mindex);

		DM_copy_face_data(dm,explode,i,i,1);

		*mf = source;

		/* override uv channel for particle age */
		if(mtface) {
			float age = (cfra - pa->time)/pa->lifetime;
			/* Clamp to this range to avoid flipping to the other side of the coordinates. */
			CLAMP(age, 0.001f, 0.999f);

			mtf = mtface + i;

			mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = age;
			mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = 0.5f;
		}

		test_index_face(mf, &explode->faceData, i, (orig_v4 ? 4 : 3));
	}

	/* cleanup */
	BLI_edgehash_free(vertpahash, NULL);

	/* finalization */
	CDDM_calc_edges(explode);
	CDDM_calc_normals(explode);

	if(psmd->psys->lattice){
		end_latt_deform(psmd->psys->lattice);
		psmd->psys->lattice= NULL;
	}

	return explode;
}
Beispiel #3
0
static void pointdensity_cache_psys(Render *re, PointDensity *pd, Object *ob, ParticleSystem *psys)
{
	DerivedMesh* dm;
	ParticleKey state;
	ParticleSimulationData sim= {NULL};
	ParticleData *pa=NULL;
	float cfra = BKE_curframe(re->scene);
	int i, childexists;
	int total_particles, offset=0;
	int data_used = point_data_used(pd);
	float partco[3];
	float obview[4][4];
	
	/* init everything */
	if (!psys || !ob || !pd) return;

	mul_m4_m4m4(obview, re->viewinv, ob->obmat);
	
	/* Just to create a valid rendering context for particles */
	psys_render_set(ob, psys, re->viewmat, re->winmat, re->winx, re->winy, 0);
	
	dm = mesh_create_derived_render(re->scene, ob,CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL);
	
	if ( !psys_check_enabled(ob, psys)) {
		psys_render_restore(ob, psys);
		return;
	}
	
	sim.scene= re->scene;
	sim.ob= ob;
	sim.psys= psys;

	/* in case ob->imat isn't up-to-date */
	invert_m4_m4(ob->imat, ob->obmat);
	
	total_particles = psys->totpart+psys->totchild;
	psys->lattice=psys_get_lattice(&sim);
	
	pd->point_tree = BLI_bvhtree_new(total_particles, 0.0, 4, 6);
	alloc_point_data(pd, total_particles, data_used);
	pd->totpoints = total_particles;
	if (data_used & POINT_DATA_VEL) offset = pd->totpoints*3;
	
	if (psys->totchild > 0 && !(psys->part->draw & PART_DRAW_PARENT))
		childexists = 1;
	
	for (i=0, pa=psys->particles; i < total_particles; i++, pa++) {

		state.time = cfra;
		if(psys_get_particle_state(&sim, i, &state, 0)) {
			
			VECCOPY(partco, state.co);
			
			if (pd->psys_cache_space == TEX_PD_OBJECTSPACE)
				mul_m4_v3(ob->imat, partco);
			else if (pd->psys_cache_space == TEX_PD_OBJECTLOC) {
				sub_v3_v3(partco, ob->loc);
			} else {
				/* TEX_PD_WORLDSPACE */
			}
			
			BLI_bvhtree_insert(pd->point_tree, i, partco, 1);
			
			if (data_used & POINT_DATA_VEL) {
				pd->point_data[i*3 + 0] = state.vel[0];
				pd->point_data[i*3 + 1] = state.vel[1];
				pd->point_data[i*3 + 2] = state.vel[2];
			} 
			if (data_used & POINT_DATA_LIFE) {
				float pa_time;
				
				if (i < psys->totpart) {
					pa_time = (cfra - pa->time)/pa->lifetime;
				} else {
					ChildParticle *cpa= (psys->child + i) - psys->totpart;
					float pa_birthtime, pa_dietime;
					
					pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
				}
				
				pd->point_data[offset + i] = pa_time;
				
			}
		}
	}
	
	BLI_bvhtree_balance(pd->point_tree);
	dm->release(dm);
	
	if(psys->lattice){
		end_latt_deform(psys->lattice);
		psys->lattice=0;
	}
	
	psys_render_restore(ob, psys);
}
Beispiel #4
0
static void new_particle_duplilist(ListBase *lb, ID *id, Scene *scene, Object *par, float par_space_mat[][4], ParticleSystem *psys, int level, int animated)
{
	GroupObject *go;
	Object *ob=NULL, **oblist=NULL, obcopy, *obcopylist=NULL;
	DupliObject *dob;
	ParticleDupliWeight *dw;
	ParticleSettings *part;
	ParticleData *pa;
	ChildParticle *cpa=NULL;
	ParticleKey state;
	ParticleCacheKey *cache;
	float ctime, pa_time, scale = 1.0f;
	float tmat[4][4], mat[4][4], pamat[4][4], vec[3], size=0.0;
	float (*obmat)[4], (*oldobmat)[4];
	int a, b, counter, hair = 0;
	int totpart, totchild, totgroup=0 /*, pa_num */;

	int no_draw_flag = PARS_UNEXIST;

	if (psys==NULL) return;
	
	/* simple preventing of too deep nested groups */
	if (level>MAX_DUPLI_RECUR) return;
	
	part=psys->part;

	if (part==NULL)
		return;

	if (!psys_check_enabled(par, psys))
		return;

	if (G.rendering == 0)
		no_draw_flag |= PARS_NO_DISP;
	
	ctime = BKE_curframe(scene); /* NOTE: in old animsys, used parent object's timeoffset... */

	totpart = psys->totpart;
	totchild = psys->totchild;

	BLI_srandom(31415926 + psys->seed);

	if ((psys->renderdata || part->draw_as==PART_DRAW_REND) && ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR)) {
		ParticleSimulationData sim= {NULL};
		sim.scene= scene;
		sim.ob= par;
		sim.psys= psys;
		sim.psmd= psys_get_modifier(par, psys);
		/* make sure emitter imat is in global coordinates instead of render view coordinates */
		invert_m4_m4(par->imat, par->obmat);

		/* first check for loops (particle system object used as dupli object) */
		if (part->ren_as == PART_DRAW_OB) {
			if (ELEM(part->dup_ob, NULL, par))
				return;
		}
		else { /*PART_DRAW_GR */
			if (part->dup_group == NULL || part->dup_group->gobject.first == NULL)
				return;

			for (go=part->dup_group->gobject.first; go; go=go->next)
				if (go->ob == par)
					return;
		}

		/* if we have a hair particle system, use the path cache */
		if (part->type == PART_HAIR) {
			if (psys->flag & PSYS_HAIR_DONE)
				hair= (totchild == 0 || psys->childcache) && psys->pathcache;
			if (!hair)
				return;
			
			/* we use cache, update totchild according to cached data */
			totchild = psys->totchildcache;
			totpart = psys->totcached;
		}

		psys_check_group_weights(part);

		psys->lattice = psys_get_lattice(&sim);

		/* gather list of objects or single object */
		if (part->ren_as==PART_DRAW_GR) {
			group_handle_recalc_and_update(scene, par, part->dup_group);

			if (part->draw & PART_DRAW_COUNT_GR) {
				for (dw=part->dupliweights.first; dw; dw=dw->next)
					totgroup += dw->count;
			}
			else {
				for (go=part->dup_group->gobject.first; go; go=go->next)
					totgroup++;
			}

			/* we also copy the actual objects to restore afterwards, since
			 * where_is_object_time will change the object which breaks transform */
			oblist = MEM_callocN(totgroup*sizeof(Object *), "dupgroup object list");
			obcopylist = MEM_callocN(totgroup*sizeof(Object), "dupgroup copy list");

			
			if (part->draw & PART_DRAW_COUNT_GR && totgroup) {
				dw = part->dupliweights.first;

				for (a=0; a<totgroup; dw=dw->next) {
					for (b=0; b<dw->count; b++, a++) {
						oblist[a] = dw->ob;
						obcopylist[a] = *dw->ob;
					}
				}
			}
			else {
				go = part->dup_group->gobject.first;
				for (a=0; a<totgroup; a++, go=go->next) {
					oblist[a] = go->ob;
					obcopylist[a] = *go->ob;
				}
			}
		}
		else {
			ob = part->dup_ob;
			obcopy = *ob;
		}

		if (totchild==0 || part->draw & PART_DRAW_PARENT)
			a = 0;
		else
			a = totpart;

		for (pa=psys->particles,counter=0; a<totpart+totchild; a++,pa++,counter++) {
			if (a<totpart) {
				/* handle parent particle */
				if (pa->flag & no_draw_flag)
					continue;

				/* pa_num = pa->num; */ /* UNUSED */
				pa_time = pa->time;
				size = pa->size;
			}
			else {
				/* handle child particle */
				cpa = &psys->child[a - totpart];

				/* pa_num = a; */ /* UNUSED */
				pa_time = psys->particles[cpa->parent].time;
				size = psys_get_child_size(psys, cpa, ctime, NULL);
			}

			/* some hair paths might be non-existent so they can't be used for duplication */
			if (hair &&
				((a < totpart && psys->pathcache[a]->steps < 0) ||
				(a >= totpart && psys->childcache[a-totpart]->steps < 0)))
				continue;

			if (part->ren_as==PART_DRAW_GR) {
				/* prevent divide by zero below [#28336] */
				if (totgroup == 0)
					continue;

				/* for groups, pick the object based on settings */
				if (part->draw&PART_DRAW_RAND_GR)
					b= BLI_rand() % totgroup;
				else
					b= a % totgroup;

				ob = oblist[b];
				obmat = oblist[b]->obmat;
				oldobmat = obcopylist[b].obmat;
			}
			else {
				obmat= ob->obmat;
				oldobmat= obcopy.obmat;
			}

			if (hair) {
				/* hair we handle separate and compute transform based on hair keys */
				if (a < totpart) {
					cache = psys->pathcache[a];
					psys_get_dupli_path_transform(&sim, pa, NULL, cache, pamat, &scale);
				}
				else {
					cache = psys->childcache[a-totpart];
					psys_get_dupli_path_transform(&sim, NULL, cpa, cache, pamat, &scale);
				}

				copy_v3_v3(pamat[3], cache->co);
				pamat[3][3]= 1.0f;
				
			}
			else {
				/* first key */
				state.time = ctime;
				if (psys_get_particle_state(&sim, a, &state, 0) == 0) {
					continue;
				}
				else {
					float tquat[4];
					normalize_qt_qt(tquat, state.rot);
					quat_to_mat4(pamat, tquat);
					copy_v3_v3(pamat[3], state.co);
					pamat[3][3]= 1.0f;
				}
			}

			if (part->ren_as==PART_DRAW_GR && psys->part->draw & PART_DRAW_WHOLE_GR) {
				for (go= part->dup_group->gobject.first, b=0; go; go= go->next, b++) {

					copy_m4_m4(tmat, oblist[b]->obmat);
					/* apply particle scale */
					mul_mat3_m4_fl(tmat, size*scale);
					mul_v3_fl(tmat[3], size*scale);
					/* group dupli offset, should apply after everything else */
					if (!is_zero_v3(part->dup_group->dupli_ofs))
						sub_v3_v3v3(tmat[3], tmat[3], part->dup_group->dupli_ofs);
					/* individual particle transform */
					mult_m4_m4m4(tmat, pamat, tmat);

					if (par_space_mat)
						mult_m4_m4m4(mat, par_space_mat, tmat);
					else
						copy_m4_m4(mat, tmat);

					dob= new_dupli_object(lb, go->ob, mat, par->lay, counter, OB_DUPLIPARTS, animated);
					copy_m4_m4(dob->omat, obcopylist[b].obmat);
					if (G.rendering)
						psys_get_dupli_texture(psys, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
				}
			}
			else {
				/* to give ipos in object correct offset */
				where_is_object_time(scene, ob, ctime-pa_time);

				copy_v3_v3(vec, obmat[3]);
				obmat[3][0] = obmat[3][1] = obmat[3][2] = 0.0f;

				/* particle rotation uses x-axis as the aligned axis, so pre-rotate the object accordingly */
				if ((part->draw & PART_DRAW_ROTATE_OB) == 0) {
					float xvec[3], q[4];
					xvec[0] = -1.f;
					xvec[1] = xvec[2] = 0;
					vec_to_quat(q, xvec, ob->trackflag, ob->upflag);
					quat_to_mat4(obmat, q);
					obmat[3][3]= 1.0f;
				}
				
				/* Normal particles and cached hair live in global space so we need to
				 * remove the real emitter's transformation before 2nd order duplication.
				 */
				if (par_space_mat && GS(id->name) != ID_GR)
					mult_m4_m4m4(mat, psys->imat, pamat);
				else
					copy_m4_m4(mat, pamat);

				mult_m4_m4m4(tmat, mat, obmat);
				mul_mat3_m4_fl(tmat, size*scale);

				if (par_space_mat)
					mult_m4_m4m4(mat, par_space_mat, tmat);
				else
					copy_m4_m4(mat, tmat);

				if (part->draw & PART_DRAW_GLOBAL_OB)
					add_v3_v3v3(mat[3], mat[3], vec);

				dob= new_dupli_object(lb, ob, mat, ob->lay, counter, GS(id->name) == ID_GR ? OB_DUPLIGROUP : OB_DUPLIPARTS, animated);
				copy_m4_m4(dob->omat, oldobmat);
				if (G.rendering)
					psys_get_dupli_texture(psys, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
			}
		}

		/* restore objects since they were changed in where_is_object_time */
		if (part->ren_as==PART_DRAW_GR) {
			for (a=0; a<totgroup; a++)
				*(oblist[a])= obcopylist[a];
		}
		else
			*ob= obcopy;
	}

	/* clean up */
	if (oblist)
		MEM_freeN(oblist);
	if (obcopylist)
		MEM_freeN(obcopylist);

	if (psys->lattice) {
		end_latt_deform(psys->lattice);
		psys->lattice = NULL;
	}
}
Beispiel #5
0
static void new_particle_duplilist(ListBase *lb, ID *id, Scene *scene, Object *par, float par_space_mat[][4], ParticleSystem *psys, int level, int animated)
{
	GroupObject *go;
	Object *ob=0, **oblist=0, obcopy, *obcopylist=0;
	DupliObject *dob;
	ParticleDupliWeight *dw;
	ParticleSimulationData sim = {scene, par, psys, psys_get_modifier(par, psys)};
	ParticleSettings *part;
	ParticleData *pa;
	ChildParticle *cpa=0;
	ParticleKey state;
	ParticleCacheKey *cache;
	float ctime, pa_time, scale = 1.0f;
	float tmat[4][4], mat[4][4], pamat[4][4], vec[3], size=0.0;
	float (*obmat)[4], (*oldobmat)[4];
	int lay, a, b, counter, hair = 0;
	int totpart, totchild, totgroup=0, pa_num;

	if(psys==0) return;
	
	/* simple preventing of too deep nested groups */
	if(level>MAX_DUPLI_RECUR) return;
	
	part=psys->part;

	if(part==0)
		return;

	if(!psys_check_enabled(par, psys))
		return;

	ctime = bsystem_time(scene, par, (float)scene->r.cfra, 0.0);

	totpart = psys->totpart;
	totchild = psys->totchild;

	BLI_srandom(31415926 + psys->seed);
	
	lay= scene->lay;
	if((psys->renderdata || part->draw_as==PART_DRAW_REND) &&
		((part->ren_as == PART_DRAW_OB && part->dup_ob) ||
		(part->ren_as == PART_DRAW_GR && part->dup_group && part->dup_group->gobject.first))) {

		psys_check_group_weights(part);

		/* if we have a hair particle system, use the path cache */
		if(part->type == PART_HAIR) {
			if(psys->flag & PSYS_HAIR_DONE)
				hair= (totchild == 0 || psys->childcache) && psys->pathcache;
			if(!hair)
				return;
			
			/* we use cache, update totchild according to cached data */
			totchild = psys->totchildcache;
			totpart = psys->totcached;
		}

		psys->lattice = psys_get_lattice(&sim);

		/* gather list of objects or single object */
		if(part->ren_as==PART_DRAW_GR) {
			group_handle_recalc_and_update(scene, par, part->dup_group);

			if(part->draw & PART_DRAW_COUNT_GR) {
				for(dw=part->dupliweights.first; dw; dw=dw->next)
					totgroup += dw->count;
			}
			else {
				for(go=part->dup_group->gobject.first; go; go=go->next)
					totgroup++;
			}

			/* we also copy the actual objects to restore afterwards, since
			 * where_is_object_time will change the object which breaks transform */
			oblist = MEM_callocN(totgroup*sizeof(Object *), "dupgroup object list");
			obcopylist = MEM_callocN(totgroup*sizeof(Object), "dupgroup copy list");

			
			if(part->draw & PART_DRAW_COUNT_GR && totgroup) {
				dw = part->dupliweights.first;

				for(a=0; a<totgroup; dw=dw->next) {
					for(b=0; b<dw->count; b++, a++) {
						oblist[a] = dw->ob;
						obcopylist[a] = *dw->ob;
					}
				}
			}
			else {
				go = part->dup_group->gobject.first;
				for(a=0; a<totgroup; a++, go=go->next) {
					oblist[a] = go->ob;
					obcopylist[a] = *go->ob;
				}
			}
		}
		else {
			ob = part->dup_ob;
			obcopy = *ob;
		}

		if(totchild==0 || part->draw & PART_DRAW_PARENT)
			a = 0;
		else
			a = totpart;

		for(pa=psys->particles,counter=0; a<totpart+totchild; a++,pa++,counter++) {
			if(a<totpart) {
				/* handle parent particle */
				if(pa->flag & (PARS_UNEXIST+PARS_NO_DISP))
					continue;

				pa_num = pa->num;
				pa_time = pa->time;
				size = pa->size;
			}
			else {
				/* handle child particle */
				cpa = &psys->child[a - totpart];

				pa_num = a;
				pa_time = psys->particles[cpa->parent].time;
				size = psys_get_child_size(psys, cpa, ctime, 0);
			}

			if(part->ren_as==PART_DRAW_GR) {
				/* for groups, pick the object based on settings */
				if(part->draw&PART_DRAW_RAND_GR)
					b= BLI_rand() % totgroup;
				else if(part->from==PART_FROM_PARTICLE)
					b= pa_num % totgroup;
				else
					b= a % totgroup;

				ob = oblist[b];
				obmat = oblist[b]->obmat;
				oldobmat = obcopylist[b].obmat;
			}
			else {
				obmat= ob->obmat;
				oldobmat= obcopy.obmat;
			}

			if(hair) {
				/* hair we handle separate and compute transform based on hair keys */
				if(a < totpart) {
					cache = psys->pathcache[a];
					psys_get_dupli_path_transform(&sim, pa, 0, cache, pamat, &scale);
				}
				else {
					cache = psys->childcache[a-totpart];
					psys_get_dupli_path_transform(&sim, 0, cpa, cache, pamat, &scale);
				}

				VECCOPY(pamat[3], cache->co);
				pamat[3][3]= 1.0f;
				
			}
			else {
				/* first key */
				state.time = ctime;
				if(psys_get_particle_state(&sim, a, &state, 0) == 0)
					continue;

				QuatToMat4(state.rot, pamat);
				VECCOPY(pamat[3], state.co);
				pamat[3][3]= 1.0f;
			}

			if(part->ren_as==PART_DRAW_GR && psys->part->draw & PART_DRAW_WHOLE_GR) {
				for(go= part->dup_group->gobject.first, b=0; go; go= go->next, b++) {
					Mat4MulMat4(tmat, oblist[b]->obmat, pamat);
					Mat4MulFloat3((float *)tmat, size*scale);
					if(par_space_mat)
						Mat4MulMat4(mat, tmat, par_space_mat);
					else
						Mat4CpyMat4(mat, tmat);

					dob= new_dupli_object(lb, go->ob, mat, par->lay, counter, OB_DUPLIPARTS, animated);
					Mat4CpyMat4(dob->omat, obcopylist[b].obmat);
					if(G.rendering)
						psys_get_dupli_texture(par, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
				}
			}
			else {
				/* to give ipos in object correct offset */
				where_is_object_time(scene, ob, ctime-pa_time);

				VECCOPY(vec, obmat[3]);
				obmat[3][0] = obmat[3][1] = obmat[3][2] = 0.0f;
				
				Mat4CpyMat4(mat, pamat);

				Mat4MulMat4(tmat, obmat, mat);
				Mat4MulFloat3((float *)tmat, size*scale);

				if(part->draw & PART_DRAW_GLOBAL_OB)
					VECADD(tmat[3], tmat[3], vec);

				if(par_space_mat)
					Mat4MulMat4(mat, tmat, par_space_mat);
				else
					Mat4CpyMat4(mat, tmat);

				dob= new_dupli_object(lb, ob, mat, ob->lay, counter, OB_DUPLIPARTS, animated);
				Mat4CpyMat4(dob->omat, oldobmat);
				if(G.rendering)
					psys_get_dupli_texture(par, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
			}
		}

		/* restore objects since they were changed in where_is_object_time */
		if(part->ren_as==PART_DRAW_GR) {
			for(a=0; a<totgroup; a++)
				*(oblist[a])= obcopylist[a];
		}
		else
			*ob= obcopy;
	}

	/* clean up */
	if(oblist)
		MEM_freeN(oblist);
	if(obcopylist)
		MEM_freeN(obcopylist);

	if(psys->lattice) {
		end_latt_deform(psys->lattice);
		psys->lattice = NULL;
	}
}
Beispiel #6
0
static DerivedMesh *applyModifier(ModifierData *md, Object *ob,
                                  DerivedMesh *derivedData,
                                  ModifierApplyFlag UNUSED(flag))
{
	DerivedMesh *dm = derivedData, *result;
	ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *) md;
	ParticleSimulationData sim;
	ParticleSystem *psys = NULL;
	ParticleData *pa = NULL;
	MPoly *mpoly, *orig_mpoly;
	MLoop *mloop, *orig_mloop;
	MVert *mvert, *orig_mvert;
	int totvert, totpoly, totloop /* , totedge */;
	int maxvert, maxpoly, maxloop, totpart = 0, first_particle = 0;
	int k, p, p_skip;
	short track = ob->trackflag % 3, trackneg, axis = pimd->axis;
	float max_co = 0.0, min_co = 0.0, temp_co[3], cross[3];
	float *size = NULL;

	trackneg = ((ob->trackflag > 2) ? 1 : 0);

	if (pimd->ob == ob) {
		pimd->ob = NULL;
		return derivedData;
	}

	if (pimd->ob) {
		psys = BLI_findlink(&pimd->ob->particlesystem, pimd->psys - 1);
		if (psys == NULL || psys->totpart == 0)
			return derivedData;
	}
	else {
		return derivedData;
	}

	if (pimd->flag & eParticleInstanceFlag_Parents)
		totpart += psys->totpart;
	if (pimd->flag & eParticleInstanceFlag_Children) {
		if (totpart == 0)
			first_particle = psys->totpart;
		totpart += psys->totchild;
	}

	if (totpart == 0)
		return derivedData;

	sim.scene = md->scene;
	sim.ob = pimd->ob;
	sim.psys = psys;
	sim.psmd = psys_get_modifier(pimd->ob, psys);

	if (pimd->flag & eParticleInstanceFlag_UseSize) {
		float *si;
		si = size = MEM_callocN(totpart * sizeof(float), "particle size array");

		if (pimd->flag & eParticleInstanceFlag_Parents) {
			for (p = 0, pa = psys->particles; p < psys->totpart; p++, pa++, si++)
				*si = pa->size;
		}

		if (pimd->flag & eParticleInstanceFlag_Children) {
			ChildParticle *cpa = psys->child;

			for (p = 0; p < psys->totchild; p++, cpa++, si++) {
				*si = psys_get_child_size(psys, cpa, 0.0f, NULL);
			}
		}
	}

	totvert = dm->getNumVerts(dm);
	totpoly = dm->getNumPolys(dm);
	totloop = dm->getNumLoops(dm);
	/* totedge = dm->getNumEdges(dm); */ /* UNUSED */

	/* count particles */
	maxvert = 0;
	maxpoly = 0;
	maxloop = 0;

	for (p = 0; p < totpart; p++) {
		if (particle_skip(pimd, psys, p))
			continue;

		maxvert += totvert;
		maxpoly += totpoly;
		maxloop += totloop;
	}

	psys->lattice = psys_get_lattice(&sim);

	if (psys->flag & (PSYS_HAIR_DONE | PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED) {
		float min_r[3], max_r[3];
		INIT_MINMAX(min_r, max_r);
		dm->getMinMax(dm, min_r, max_r);
		min_co = min_r[track];
		max_co = max_r[track];
	}

	result = CDDM_from_template(dm, maxvert, 0, 0, maxloop, maxpoly);

	mvert = result->getVertArray(result);
	orig_mvert = dm->getVertArray(dm);

	mpoly = result->getPolyArray(result);
	orig_mpoly = dm->getPolyArray(dm);
	mloop = result->getLoopArray(result);
	orig_mloop = dm->getLoopArray(dm);

	for (p = 0, p_skip = 0; p < totpart; p++) {
		/* skip particle? */
		if (particle_skip(pimd, psys, p))
			continue;

		/* set vertices coordinates */
		for (k = 0; k < totvert; k++) {
			ParticleKey state;
			MVert *inMV;
			MVert *mv = mvert + p_skip * totvert + k;

			inMV = orig_mvert + k;
			DM_copy_vert_data(dm, result, k, p_skip * totvert + k, 1);
			*mv = *inMV;

			/*change orientation based on object trackflag*/
			copy_v3_v3(temp_co, mv->co);
			mv->co[axis] = temp_co[track];
			mv->co[(axis + 1) % 3] = temp_co[(track + 1) % 3];
			mv->co[(axis + 2) % 3] = temp_co[(track + 2) % 3];

			/* get particle state */
			if ((psys->flag & (PSYS_HAIR_DONE | PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED) &&
				(pimd->flag & eParticleInstanceFlag_Path))
			{
				float ran = 0.0f;
				if (pimd->random_position != 0.0f) {
					ran = pimd->random_position * BLI_hash_frand(psys->seed + p);
				}

				if (pimd->flag & eParticleInstanceFlag_KeepShape) {
					state.time = pimd->position * (1.0f - ran);
				}
				else {
					state.time = (mv->co[axis] - min_co) / (max_co - min_co) * pimd->position * (1.0f - ran);

					if (trackneg)
						state.time = 1.0f - state.time;

					mv->co[axis] = 0.0;
				}

				psys_get_particle_on_path(&sim, first_particle + p, &state, 1);

				normalize_v3(state.vel);

				/* TODO: incremental rotations somehow */
				if (state.vel[axis] < -0.9999f || state.vel[axis] > 0.9999f) {
					unit_qt(state.rot);
				}
				else {
					float temp[3] = {0.0f, 0.0f, 0.0f};
					temp[axis] = 1.0f;

					cross_v3_v3v3(cross, temp, state.vel);

					/* state.vel[axis] is the only component surviving from a dot product with the axis */
					axis_angle_to_quat(state.rot, cross, saacos(state.vel[axis]));
				}
			}
			else {
				state.time = -1.0;
				psys_get_particle_state(&sim, first_particle + p, &state, 1);
			}

			mul_qt_v3(state.rot, mv->co);
			if (pimd->flag & eParticleInstanceFlag_UseSize)
				mul_v3_fl(mv->co, size[p]);
			add_v3_v3(mv->co, state.co);
		}

		/* create polys and loops */
		for (k = 0; k < totpoly; k++) {
			MPoly *inMP = orig_mpoly + k;
			MPoly *mp = mpoly + p_skip * totpoly + k;

			DM_copy_poly_data(dm, result, k, p_skip * totpoly + k, 1);
			*mp = *inMP;
			mp->loopstart += p_skip * totloop;

			{
				MLoop *inML = orig_mloop + inMP->loopstart;
				MLoop *ml = mloop + mp->loopstart;
				int j = mp->totloop;

				DM_copy_loop_data(dm, result, inMP->loopstart, mp->loopstart, j);
				for (; j; j--, ml++, inML++) {
					ml->v = inML->v + (p_skip * totvert);
				}
			}
		}

		p_skip++;
	}

	CDDM_calc_edges(result);

	if (psys->lattice) {
		end_latt_deform(psys->lattice);
		psys->lattice = NULL;
	}

	if (size)
		MEM_freeN(size);

	result->dirty |= DM_DIRTY_NORMALS;

	return result;
}