void VisualOdometry::confirmTrials() { // empty check if (trials.empty()) return; // triangulate landmarks // prepare points cv::Mat pts1(2, trials.size(), cv::DataType<float>::type), pts2(2, trials.size(), cv::DataType<float>::type); int col = 0; for (auto it = trials.begin(); it != trials.end(); it++) { cv::KeyPoint k1, k2; it->firstPointPair(k1, k2); pts1.at<float>(0, col) = k1.pt.x; pts1.at<float>(1, col) = k1.pt.y; pts2.at<float>(0, col) = k2.pt.x; pts2.at<float>(1, col) = k2.pt.y; col++; } cv::Mat pts3D; triangulate(pts1, pts2, pts3D); // convert to world coordinate int sframe = trials.back().getStartFrame(); cv::Mat posR, posT; graph.getPose(sframe, posR, posT); cv::Mat posRT = fullRT(posR, posT); pts3D = posRT * pts3D; int colcount = 0; for (auto it = trials.begin(); it != trials.end(); it++) { // add location to landmark data structure cv::Point3f p = cv::Point3f(pts3D.at<float>(0, colcount), pts3D.at<float>(1, colcount), pts3D.at<float>(2, colcount)); it->setLocation(p); colcount++; // add initial value of land mark to factor graph data structure graph.addLandMark(landmarkID, p); // move from trail to true landmarks landmarks[landmarkID] = *it; // add factors int curframe = it->getStartFrame(); for (int i = 0; i < it->getTraceSize(); i++) { cv::KeyPoint p1, p2; it->getPointPair(i, p1, p2); graph.addStereo(curframe, landmarkID, p1.pt, p2.pt); curframe++; } landmarkID++; } trials.clear(); }
Mat GetFundamentalMat(const vector<TrackedPoint> & trackedPoints, vector<TrackedPoint>* inliers, double ransac_max_dist, double ransac_p) { //vector<TrackedPoint> trackedPoints; //vector<matf> H_out; //NormalizePoints2(trackedPoints_, trackedPoints, H_out); const int method = FM_RANSAC; //const int method = FM_LMEDS; const double param1 = ransac_max_dist; const double param2 = ransac_p; #ifdef OPENCV_2_1 matf pts1(trackedPoints.size(), 2), pts2(trackedPoints.size(), 2); for (size_t i = 0; i < trackedPoints.size(); ++i) { pts1(i, 0) = trackedPoints[i].x1; pts2(i, 1) = trackedPoints[i].y1; pts2(i, 0) = trackedPoints[i].x2; pts2(i, 1) = trackedPoints[i].y2; } CvMat pts1cv = pts1; CvMat pts2cv = pts2; matf mat(3, 3); CvMat matcv = mat; Mat_<uchar> status(1, trackedPoints.size()); CvMat statuscv = status; cvFindFundamentalMat(&pts1cv, &pts2cv, &matcv, method, param1, param2, &statuscv); #else Mat_<Vec2f> pts1(trackedPoints.size(), 1), pts2(trackedPoints.size(), 1); for (size_t i = 0; i < trackedPoints.size(); ++i) { pts1(i, 0) = Vec2f(trackedPoints[i].x1, trackedPoints[i].y1); pts2(i, 0) = Vec2f(trackedPoints[i].x2, trackedPoints[i].y2); } vector<unsigned char> status; Mat mat = findFundamentalMat(pts1, pts2, method, param1, param2, status); #endif if (inliers) { inliers->clear(); for (size_t i = 0; i < trackedPoints.size(); ++i) #ifdef OPENCV_2_1 if (status(0, i)) #else if (status[i]) #endif inliers->push_back(trackedPoints[i]); } //return H_out[1].inv().t() * (matf)mat * H_out[0].inv(); return mat; }
int spheroidsToSTL(const string& out, const shared_ptr<DemField>& dem, Real tol, const string& solid, int mask, bool append, bool clipCell, bool merge){ if(tol==0 || isnan(tol)) throw std::runtime_error("tol must be non-zero."); #ifndef WOO_GTS if(merge) throw std::runtime_error("woo.triangulated.spheroidsToSTL: merge=True only possible in builds with the 'gts' feature."); #endif // first traversal to find reference radius auto particleOk=[&](const shared_ptr<Particle>&p){ return (mask==0 || (p->mask & mask)) && (p->shape->isA<Sphere>() || p->shape->isA<Ellipsoid>() || p->shape->isA<Capsule>()); }; int numTri=0; if(tol<0){ LOG_DEBUG("tolerance is negative, taken as relative to minimum radius."); Real minRad=Inf; for(const auto& p: *dem->particles){ if(particleOk(p)) minRad=min(minRad,p->shape->equivRadius()); } if(isinf(minRad) || isnan(minRad)) throw std::runtime_error("Minimum radius not found (relative tolerance specified); no matching particles?"); tol=-minRad*tol; LOG_DEBUG("Minimum radius "<<minRad<<"."); } LOG_DEBUG("Triangulation tolerance is "<<tol); std::ofstream stl(out,append?(std::ofstream::app|std::ofstream::binary):std::ofstream::binary); // binary better, anyway if(!stl.good()) throw std::runtime_error("Failed to open output file "+out+" for writing."); Scene* scene=dem->scene; if(!scene) throw std::logic_error("DEM field has not associated scene?"); // periodicity, cache that for later use AlignedBox3r cell; /* wasteful memory-wise, but we need to store the whole triangulation in case *merge* is in effect, when it is only an intermediary result and will not be output as-is */ vector<vector<Vector3r>> ppts; vector<vector<Vector3i>> ttri; vector<Particle::id_t> iid; for(const auto& p: *dem->particles){ if(!particleOk(p)) continue; const auto sphere=dynamic_cast<Sphere*>(p->shape.get()); const auto ellipsoid=dynamic_cast<Ellipsoid*>(p->shape.get()); const auto capsule=dynamic_cast<Capsule*>(p->shape.get()); vector<Vector3r> pts; vector<Vector3i> tri; if(sphere || ellipsoid){ Real r=sphere?sphere->radius:ellipsoid->semiAxes.minCoeff(); // 1 is for icosahedron int tess=ceil(M_PI/(5*acos(1-tol/r))); LOG_DEBUG("Tesselation level for #"<<p->id<<": "<<tess); tess=max(tess,0); auto uSphTri(CompUtils::unitSphereTri20(/*0 for icosahedron*/max(tess-1,0))); const auto& uPts=std::get<0>(uSphTri); // unit sphere point coords pts.resize(uPts.size()); const auto& node=(p->shape->nodes[0]); Vector3r scale=(sphere?sphere->radius*Vector3r::Ones():ellipsoid->semiAxes); for(size_t i=0; i<uPts.size(); i++){ pts[i]=node->loc2glob(uPts[i].cwiseProduct(scale)); } tri=std::get<1>(uSphTri); // this makes a copy, but we need out own for capsules } if(capsule){ #ifdef WOO_VTK int subdiv=max(4.,ceil(M_PI/(acos(1-tol/capsule->radius)))); std::tie(pts,tri)=VtkExport::triangulateCapsule(static_pointer_cast<Capsule>(p->shape),subdiv); #else throw std::runtime_error("Triangulation of capsules is (for internal and entirely fixable reasons) only available when compiled with the 'vtk' features."); #endif } // do not write out directly, store first for later ppts.push_back(pts); ttri.push_back(tri); LOG_TRACE("#"<<p->id<<" triangulated: "<<tri.size()<<","<<pts.size()<<" faces,vertices."); if(scene->isPeriodic){ // make sure we have aabb, in skewed coords and such if(!p->shape->bound){ // this is a bit ugly, but should do the trick; otherwise we would recompute all that ourselves here if(sphere) Bo1_Sphere_Aabb().go(p->shape); else if(ellipsoid) Bo1_Ellipsoid_Aabb().go(p->shape); else if(capsule) Bo1_Capsule_Aabb().go(p->shape); } assert(p->shape->bound); const AlignedBox3r& box(p->shape->bound->box); AlignedBox3r cell(Vector3r::Zero(),scene->cell->getSize()); // possibly in skewed coords // central offset Vector3i off0; scene->cell->canonicalizePt(p->shape->nodes[0]->pos,off0); // computes off0 Vector3i off; // offset from the original cell //cerr<<"#"<<p->id<<" at "<<p->shape->nodes[0]->pos.transpose()<<", off0="<<off0<<endl; for(off[0]=off0[0]-1; off[0]<=off0[0]+1; off[0]++) for(off[1]=off0[1]-1; off[1]<=off0[1]+1; off[1]++) for(off[2]=off0[2]-1; off[2]<=off0[2]+1; off[2]++){ Vector3r dx=scene->cell->intrShiftPos(off); //cerr<<" off="<<off.transpose()<<", dx="<<dx.transpose()<<endl; AlignedBox3r boxOff(box); boxOff.translate(dx); //cerr<<" boxOff="<<boxOff.min()<<";"<<boxOff.max()<<" | cell="<<cell.min()<<";"<<cell.max()<<endl; if(boxOff.intersection(cell).isEmpty()) continue; // copy the entire triangulation, offset by dx vector<Vector3r> pts2(pts); for(auto& p: pts2) p+=dx; vector<Vector3i> tri2(tri); // same topology ppts.push_back(pts2); ttri.push_back(tri2); LOG_TRACE(" offset "<<off.transpose()<<": #"<<p->id<<": "<<tri2.size()<<","<<pts2.size()<<" faces,vertices."); } } } if(!merge){ LOG_DEBUG("Will export (unmerged) "<<ppts.size()<<" particles to STL."); stl<<"solid "<<solid<<"\n"; for(size_t i=0; i<ppts.size(); i++){ const auto& pts(ppts[i]); const auto& tri(ttri[i]); LOG_TRACE("Exporting "<<i<<" with "<<tri.size()<<" faces."); for(const Vector3i& t: tri){ Vector3r pp[]={pts[t[0]],pts[t[1]],pts[t[2]]}; // skip triangles which are entirely out of the canonical periodic cell if(scene->isPeriodic && clipCell && (!scene->cell->isCanonical(pp[0]) && !scene->cell->isCanonical(pp[1]) && !scene->cell->isCanonical(pp[2]))) continue; numTri++; Vector3r n=(pp[1]-pp[0]).cross(pp[2]-pp[1]).normalized(); stl<<" facet normal "<<n.x()<<" "<<n.y()<<" "<<n.z()<<"\n"; stl<<" outer loop\n"; for(auto p: {pp[0],pp[1],pp[2]}){ stl<<" vertex "<<p[0]<<" "<<p[1]<<" "<<p[2]<<"\n"; } stl<<" endloop\n"; stl<<" endfacet\n"; } } stl<<"endsolid "<<solid<<"\n"; stl.close(); return numTri; } #if WOO_GTS /***** Convert all triangulation to GTS surfaces, find their distances, isolate connected components, merge these components incrementally and write to STL *****/ // total number of points const size_t N(ppts.size()); // bounds for collision detection struct Bound{ Bound(Real _coord, int _id, bool _isMin): coord(_coord), id(_id), isMin(_isMin){}; Bound(): coord(NaN), id(-1), isMin(false){}; // just for allocation Real coord; int id; bool isMin; bool operator<(const Bound& b) const { return coord<b.coord; } }; vector<Bound> bounds[3]={vector<Bound>(2*N),vector<Bound>(2*N),vector<Bound>(2*N)}; /* construct GTS surface objects; all objects must be deleted explicitly! */ vector<GtsSurface*> ssurf(N); vector<vector<GtsVertex*>> vvert(N); vector<vector<GtsEdge*>> eedge(N); vector<AlignedBox3r> boxes(N); for(size_t i=0; i<N; i++){ LOG_TRACE("** Creating GTS surface for #"<<i<<", with "<<ttri[i].size()<<" faces, "<<ppts[i].size()<<" vertices."); AlignedBox3r box; // new surface object ssurf[i]=gts_surface_new(gts_surface_class(),gts_face_class(),gts_edge_class(),gts_vertex_class()); // copy over all vertices vvert[i].reserve(ppts[i].size()); eedge[i].reserve(size_t(1.5*ttri[i].size())); // each triangle consumes 1.5 edges, for closed surfs for(size_t v=0; v<ppts[i].size(); v++){ vvert[i].push_back(gts_vertex_new(gts_vertex_class(),ppts[i][v][0],ppts[i][v][1],ppts[i][v][2])); box.extend(ppts[i][v]); } // create faces, and create edges on the fly as needed std::map<std::pair<int,int>,int> edgeIndices; for(size_t t=0; t<ttri[i].size(); t++){ //const Vector3i& t(ttri[i][t]); //LOG_TRACE("Face with vertices "<<ttri[i][t][0]<<","<<ttri[i][t][1]<<","<<ttri[i][t][2]); Vector3i eIxs; for(int a:{0,1,2}){ int A(ttri[i][t][a]), B(ttri[i][t][(a+1)%3]); auto AB=std::make_pair(min(A,B),max(A,B)); auto ABI=edgeIndices.find(AB); if(ABI==edgeIndices.end()){ // this edge not created yet edgeIndices[AB]=eedge[i].size(); // last index eIxs[a]=eedge[i].size(); //LOG_TRACE(" New edge #"<<eIxs[a]<<": "<<A<<"--"<<B<<" (length "<<(ppts[i][A]-ppts[i][B]).norm()<<")"); eedge[i].push_back(gts_edge_new(gts_edge_class(),vvert[i][A],vvert[i][B])); } else { eIxs[a]=ABI->second; //LOG_TRACE(" Found edge #"<<ABI->second<<" for "<<A<<"--"<<B); } } //LOG_TRACE(" New face: edges "<<eIxs[0]<<"--"<<eIxs[1]<<"--"<<eIxs[2]); GtsFace* face=gts_face_new(gts_face_class(),eedge[i][eIxs[0]],eedge[i][eIxs[1]],eedge[i][eIxs[2]]); gts_surface_add_face(ssurf[i],face); } // make sure the surface is OK if(!gts_surface_is_orientable(ssurf[i])) LOG_ERROR("Surface of #"+to_string(iid[i])+" is not orientable (expect troubles)."); if(!gts_surface_is_closed(ssurf[i])) LOG_ERROR("Surface of #"+to_string(iid[i])+" is not closed (expect troubles)."); assert(!gts_surface_is_self_intersecting(ssurf[i])); // copy bounds LOG_TRACE("Setting bounds of surf #"<<i); boxes[i]=box; for(int ax:{0,1,2}){ bounds[ax][2*i+0]=Bound(box.min()[ax],/*id*/i,/*isMin*/true); bounds[ax][2*i+1]=Bound(box.max()[ax],/*id*/i,/*isMin*/false); } } /* broad-phase collision detection between GTS surfaces only those will be probed with exact algorithms below and merged if needed */ for(int ax:{0,1,2}) std::sort(bounds[ax].begin(),bounds[ax].end()); vector<Bound>& bb(bounds[0]); // run the search along x-axis, does not matter really std::list<std::pair<int,int>> int0; // broad-phase intersections for(size_t i=0; i<2*N; i++){ if(!bb[i].isMin) continue; // only start with lower bound // go up to the upper bound, but handle overflow safely (no idea why it would happen here) as well for(size_t j=i+1; j<2*N && bb[j].id!=bb[i].id; j++){ if(bb[j].isMin) continue; // this is handled by symmetry #if EIGEN_VERSION_AT_LEAST(3,2,5) if(!boxes[bb[i].id].intersects(boxes[bb[j].id])) continue; // no intersection along all axes #else // old, less elegant if(boxes[bb[i].id].intersection(boxes[bb[j].id]).isEmpty()) continue; #endif int0.push_back(std::make_pair(min(bb[i].id,bb[j].id),max(bb[i].id,bb[j].id))); LOG_TRACE("Broad-phase collision "<<int0.back().first<<"+"<<int0.back().second); } } /* narrow-phase collision detection between GTS surface this must be done via gts_surface_inter_new, since gts_surface_distance always succeeds */ std::list<std::pair<int,int>> int1; for(const std::pair<int,int> ij: int0){ LOG_TRACE("Testing narrow-phase collision "<<ij.first<<"+"<<ij.second); #if 0 GtsRange gr1, gr2; gts_surface_distance(ssurf[ij.first],ssurf[ij.second],/*delta ??*/(gfloat).2,&gr1,&gr2); if(gr1.min>0 && gr2.min>0) continue; LOG_TRACE(" GTS reports collision "<<ij.first<<"+"<<ij.second<<" (min. distances "<<gr1.min<<", "<<gr2.min); #else GtsSurface *s1(ssurf[ij.first]), *s2(ssurf[ij.second]); GNode* t1=gts_bb_tree_surface(s1); GNode* t2=gts_bb_tree_surface(s2); GtsSurfaceInter* I=gts_surface_inter_new(gts_surface_inter_class(),s1,s2,t1,t2,/*is_open_1*/false,/*is_open_2*/false); GSList* l=gts_surface_intersection(s1,s2,t1,t2); // list of edges describing intersection int n1=g_slist_length(l); // extra check by looking at number of faces of the intersected surface #if 1 GtsSurface* s12=gts_surface_new(gts_surface_class(),gts_face_class(),gts_edge_class(),gts_vertex_class()); gts_surface_inter_boolean(I,s12,GTS_1_OUT_2); gts_surface_inter_boolean(I,s12,GTS_2_OUT_1); int n2=gts_surface_face_number(s12); gts_object_destroy(GTS_OBJECT(s12)); #endif gts_bb_tree_destroy(t1,TRUE); gts_bb_tree_destroy(t2,TRUE); gts_object_destroy(GTS_OBJECT(I)); g_slist_free(l); if(n1==0) continue; #if 1 if(n2==0){ LOG_ERROR("n1==0 but n2=="<<n2<<" (no narrow-phase collision)"); continue; } #endif LOG_TRACE(" GTS reports collision "<<ij.first<<"+"<<ij.second<<" ("<<n<<" edges describe the intersection)"); #endif int1.push_back(ij); } /* connected components on the graph: graph nodes are 0…(N-1), graph edges are in int1 see http://stackoverflow.com/a/37195784/761090 */ typedef boost::subgraph<boost::adjacency_list<boost::vecS,boost::vecS,boost::undirectedS,boost::property<boost::vertex_index_t,int>,boost::property<boost::edge_index_t,int>>> Graph; Graph graph(N); for(const auto& ij: int1) boost::add_edge(ij.first,ij.second,graph); vector<size_t> clusters(boost::num_vertices(graph)); size_t numClusters=boost::connected_components(graph,clusters.data()); for(size_t n=0; n<numClusters; n++){ // beginning cluster #n // first, count how many surfaces are in this cluster; if 1, things are easier int numThisCluster=0; int cluster1st=-1; for(size_t i=0; i<N; i++){ if(clusters[i]!=n) continue; numThisCluster++; if(cluster1st<0) cluster1st=(int)i; } GtsSurface* clusterSurf=NULL; LOG_DEBUG("Cluster "<<n<<" has "<<numThisCluster<<" surfaces."); if(numThisCluster==1){ clusterSurf=ssurf[cluster1st]; } else { clusterSurf=ssurf[cluster1st]; // surface of the cluster itself LOG_TRACE(" Initial cluster surface from "<<cluster1st<<"."); /* composed surface */ for(size_t i=0; i<N; i++){ if(clusters[i]!=n || ((int)i)==cluster1st) continue; LOG_TRACE(" Adding "<<i<<" to the cluster"); // ssurf[i] now belongs to cluster #n // trees need to be rebuild every time anyway, since the merged surface keeps changing in every cycle //if(gts_surface_face_number(clusterSurf)==0) LOG_ERROR("clusterSurf has 0 faces."); //if(gts_surface_face_number(ssurf[i])==0) LOG_ERROR("Surface #"<<i<<" has 0 faces."); GNode* t1=gts_bb_tree_surface(clusterSurf); GNode* t2=gts_bb_tree_surface(ssurf[i]); GtsSurfaceInter* I=gts_surface_inter_new(gts_surface_inter_class(),clusterSurf,ssurf[i],t1,t2,/*is_open_1*/false,/*is_open_2*/false); GtsSurface* merged=gts_surface_new(gts_surface_class(),gts_face_class(),gts_edge_class(),gts_vertex_class()); gts_surface_inter_boolean(I,merged,GTS_1_OUT_2); gts_surface_inter_boolean(I,merged,GTS_2_OUT_1); gts_object_destroy(GTS_OBJECT(I)); gts_bb_tree_destroy(t1,TRUE); gts_bb_tree_destroy(t2,TRUE); if(gts_surface_face_number(merged)==0){ LOG_ERROR("Cluster #"<<n<<": 0 faces after fusing #"<<i<<" (why?), adding #"<<i<<" separately!"); // this will cause an extra 1-particle cluster to be created clusters[i]=numClusters; numClusters+=1; } else { // not from global vectors (cleanup at the end), explicit delete! if(clusterSurf!=ssurf[cluster1st]) gts_object_destroy(GTS_OBJECT(clusterSurf)); clusterSurf=merged; } } } #if 0 LOG_TRACE(" GTS surface cleanups..."); pygts_vertex_cleanup(clusterSurf,.1*tol); // cleanup 10× smaller than tolerance pygts_edge_cleanup(clusterSurf); pygts_face_cleanup(clusterSurf); #endif LOG_TRACE(" STL: cluster "<<n<<" output"); stl<<"solid "<<solid<<"_"<<n<<"\n"; /* output cluster to STL here */ _gts_face_to_stl_data data(stl,scene,clipCell,numTri); gts_surface_foreach_face(clusterSurf,(GtsFunc)_gts_face_to_stl,(gpointer)&data); stl<<"endsolid\n"; if(clusterSurf!=ssurf[cluster1st]) gts_object_destroy(GTS_OBJECT(clusterSurf)); } // this deallocates also edges and vertices for(size_t i=0; i<ssurf.size(); i++) gts_object_destroy(GTS_OBJECT(ssurf[i])); return numTri; #endif /* WOO_GTS */ }
void MimRec::calc_distance() { int countPoints = -1; for (int i = 0; i < numberOfFFP; i++) { cv::Vec2f pts1(getX(i), getY(i)); float ptsYAxis1 = getY(i); for (int j = i; j < numberOfFFP; j++) { countPoints++; cv::Vec2f pts2(getX(j), getY(j)); current_distances[countPoints] = cv::norm(pts1, pts2); float ptsYAxis2 = getY(j); distancesYAxis[countPoints] = ptsYAxis1 - ptsYAxis2; } } //special values for Lid Tightener cv::Vec2f middlePointrightEye((getX(47) + getX(44)) / 2, (getY(47) + getY(44)) / 2); cv::Vec2f ptlidright(getX(45), getY(45)); current_distances[0] = cv::norm(middlePointrightEye, ptlidright); cv::Vec2f middlePointLeftEye((getX(22) + getX(19)) / 2, (getY(22) + getY(19)) / 2); cv::Vec2f ptlidLeft(getX(20), getY(20)); current_distances[1] = cv::norm(middlePointLeftEye, ptlidLeft); cv::Vec2f ptLowerlidright(getX(46), getY(46)); current_distances[5461] = cv::norm(middlePointrightEye, ptLowerlidright); cv::Vec2f ptLowerlidLeft(getX(21), getY(21)); current_distances[5462] = cv::norm(middlePointLeftEye, ptLowerlidLeft); //angle between 7-8-30 for Lip Corner Depressor current_distances[5463] = acos((pow(current_distances[826], 2) + pow(current_distances[708], 2) - pow(current_distances[730], 2)) / (2 * abs(current_distances[826]) * abs(current_distances[708]))); current_distances[5463] *= 180.f / 3.14f; current_distances[5464] = acos((pow(current_distances[851], 2) + pow(current_distances[708], 2) - pow(current_distances[755], 2)) / (2 * abs(current_distances[708]) * abs(current_distances[851]))); current_distances[5464] *= 180.f / 3.14f; //angle between 6-5-30 for Lip Corner Puller current_distances[5465] = acos((pow(current_distances[535], 2) + pow(current_distances[511], 2) - pow(current_distances[633], 2)) / (2 * abs(current_distances[535]) * abs(current_distances[511]))); current_distances[5465] *= 180.f / 3.14f; current_distances[5466] = acos((pow(current_distances[560], 2) + pow(current_distances[511], 2) - pow(current_distances[658], 2)) / (2 * abs(current_distances[560]) * abs(current_distances[511]))); current_distances[5466] *= 180.f / 3.14f; //angle between 6 -55 -30 for funneler current_distances[5467] = acos((pow(current_distances[633], 2) + pow(current_distances[658], 2) - pow(current_distances[2710], 2)) / (2 * abs(current_distances[633]) * abs(current_distances[658]))); current_distances[5467] *= 180 / 3.14f; //angle between 22-19-16 for Inner Brow Raiser left current_distances[5468] = acos((pow(current_distances[1808], 2) + pow(current_distances[1547], 2) - pow(current_distances[1550], 2)) / (2 * abs(current_distances[1808]) * abs(current_distances[1547]))); current_distances[5468] *= 180.f / 3.14f; //angle between 41-44-47 für Inner Brow Raiser right current_distances[5469] = acos((pow(current_distances[3447], 2) + pow(current_distances[3633], 2) - pow(current_distances[3450], 2)) / (2 * abs(current_distances[3447]) * abs(current_distances[3633]))); current_distances[5469] *= 180.f / 3.14f; //angle between 22-17-19 for Outer Brow Raiser left current_distances[5470] = acos((pow(current_distances[1637], 2) + pow(current_distances[1808], 2) - pow(current_distances[1634], 2)) / (2 * abs(current_distances[1637]) * abs(current_distances[1808]))); current_distances[5470] *= 180.f / 3.14f; //angle between 44-42-47 für Outer Brow Raiser right current_distances[5471] = acos((pow(current_distances[3633], 2) + pow(current_distances[3512], 2) - pow(current_distances[3509], 2)) / (2 * abs(current_distances[3633]) * abs(current_distances[3512]))); current_distances[5471] *= 180.f / 3.14f; //cheek raiser cv::Vec2f cheek1(getX(26), getY(26)); current_distances[5472] = cv::norm(middlePointrightEye, cheek1); //lip stretcher current_distances[5473] = abs(getX(55) - getX(30)); }
long VisualOdometry::run(const cv::Mat& left_frame, const cv::Mat& right_frame) { // print frame info cout << "start>> landmarks:" << landmarks.size() << " trials:" << trials.size() << endl; // run time counting long t1 = cv::getTickCount(); // state machine switch (state) { case VO_START: graph.addFirstPose(frameCount); featureAssoc->initTrials(left_frame, right_frame, frameCount, trials); featureAssoc->visualizePair(trials); state = VO_BOOT; break; case VO_BOOT: featureAssoc->processImage(left_frame, right_frame, frameCount, landmarks, trials, unmatched); if (trials.size() < trialThre+200) { cout << "--confirm all initial trials--" << endl; confirmTrials(); trialState = false; state = VO_NORMAL; } graph.advancePoseTrivial(frameCount); break; case VO_NORMAL: // abnormal case if(landmarks.empty()) { cerr<<"!!!!!!!!!!!!ERROR::NO LANDMARKS!!!!!!!!!!!"<<endl; graph.advancePoseTrivial(frameCount); break; } // reset inlier for (auto it = landmarks.begin(); it != landmarks.end(); it++) { it->second.setInlier(false); } // run tracker featureAssoc->processImage(left_frame, right_frame, frameCount, landmarks, trials, unmatched); // print frame info cout << "track>> landmarks:" << landmarks.size() << " trials:" << trials.size() << endl; // confirm all trails if (trialState && trials.size() < trialThre) { cout << "--confirm all trials--" << endl; confirmTrials(); trialState = false; } // prepare points cv::Mat pts1(2, landmarks.size(), cv::DataType<float>::type), pts2(2, landmarks.size(), cv::DataType<float>::type); vector<cv::Point2f> imgPts; int colcount = 0; for (auto it = landmarks.begin(); it != landmarks.end(); it++) { cv::KeyPoint k1, k2; it->second.prevPointPair(k1, k2); pts1.at<float>(0, colcount) = k1.pt.x; pts1.at<float>(1, colcount) = k1.pt.y; pts2.at<float>(0, colcount) = k2.pt.x; pts2.at<float>(1, colcount) = k2.pt.y; imgPts.push_back(it->second.curLeftPoint().pt); colcount++; } // triangulate 3D points cv::Mat pts3D; triangulate(pts1, pts2, pts3D); // prepare 3D points cv::Mat R, Rvec, Tvec, inliers; vector<cv::Point3f> objPts; for (int c = 0; c < pts3D.cols; c++) { objPts.push_back(cv::Point3f(pts3D.at<float>(0, c), pts3D.at<float>(1, c), pts3D.at<float>(2, c))); } // incremental 3D-2D VO cv::solvePnPRansac(objPts, imgPts, camera.intrinsic, cv::noArray(), Rvec, Tvec, false, 3000, 1.0, 0.99, inliers, cv::SOLVEPNP_P3P); cv::Rodrigues(Rvec, R); //cout << R << Tvec << endl; //cout << inliers << endl; cout << "P3P points:" << imgPts.size() << " inliers:" << inliers.rows << endl; //set inliers int j = 0, count = 0; if (inliers.rows > 0) { for (auto it = landmarks.begin(); it != landmarks.end(); it++) { if (count++ == inliers.at<int>(j, 0)) { it->second.setInlier(true); if (++j >= inliers.rows) break; } } } else { cerr<<"!!!!!!!!!!!!WARNING::PNP FAILED!!!!!!!!!!!"<<endl; R = cv::Mat::eye(3, 3, cv::DataType<float>::type); Tvec = cv::Mat::zeros(3, 1, cv::DataType<float>::type); cv::randn(Tvec,cv::Scalar::all(0),cv::Scalar::all(0.001)); } // add stereo factors for (auto it = landmarks.begin(); it != landmarks.end(); it++) { if (it->second.isInlier()) { cv::KeyPoint p1, p2; it->second.curPointPair(p1, p2); graph.addStereo(frameCount, it->first, p1.pt, p2.pt); } } // add initial pose estimation allR.push_back(R); allT.push_back(Tvec); graph.advancePose(frameCount, R, Tvec); //--------loop constraint hack------------- #if LOOP if(frameCount == 3700) graph.addLoopConstraint(0,3700); #endif //--------loop constraint hack-------------- // run bundle adjustment long u1 = cv::getTickCount(); //graph.batchUpdate(); graph.increUpdate(); long u2 = cv::getTickCount(); cout << "optimization:" << float(u2 - u1) / cv::getTickFrequency() << endl; updateLandmark(); if (!trialState && landmarks.size() < landmarkThre) { cout << "--init new trails--" << endl; featureAssoc->refreshTrials(left_frame, right_frame, frameCount, unmatched, trials); featureAssoc->visualizePair(trials); trialState = true; if (trials.size() < directAddThre || landmarks.size() < lowlandThre) { //just add them don't wait cerr<<"!!!!!!!!!!!!WARNING::LOW LANDMARKS!!!!!!!!!!!"<<endl; confirmTrials(); trialState = false; } } break; } // advance frame count number frameCount++; // count runing time long t2 = cv::getTickCount(); // print info cout << "end>> landmarks:" << landmarks.size() << " trials:" << trials.size() << endl; cout << "time:" << float(t2 - t1) / cv::getTickFrequency() << endl; // return running time return t2 - t1; }