Beispiel #1
0
static void parse_unixware(struct parsed_partitions *state,
			   sector_t offset, sector_t size, int origin)
{
#ifdef CONFIG_UNIXWARE_DISKLABEL
	Sector sect;
	struct unixware_disklabel *l;
	struct unixware_slice *p;

	l = read_part_sector(state, offset + 29, &sect);
	if (!l)
		return;
	if (le32_to_cpu(l->d_magic) != UNIXWARE_DISKMAGIC ||
	    le32_to_cpu(l->vtoc.v_magic) != UNIXWARE_DISKMAGIC2) {
		put_dev_sector(sect);
		return;
	}
	printk(" %s%d: <unixware:", state->name, origin);
	p = &l->vtoc.v_slice[1];
	/* I omit the 0th slice as it is the same as whole disk. */
	while (p - &l->vtoc.v_slice[0] < UNIXWARE_NUMSLICE) {
		if (state->next == state->limit)
			break;

		if (p->s_label != UNIXWARE_FS_UNUSED)
			put_partition(state, state->next++,
				      le32_to_cpu(p->start_sect),
				      le32_to_cpu(p->nr_sects));
		p++;
	}
	put_dev_sector(sect);
	printk(" >\n");
#endif
}
Beispiel #2
0
/* 
 * Create devices for BSD partitions listed in a disklabel, under a
 * dos-like partition. See extended_partition() for more information.
 */
static void do_bsd_partition(struct gendisk *hd, struct block_device *bdev,
	int minor, int *current_minor, char *name, int max_partitions)
{
	long offset = hd->part[minor].start_sect;
	Sector sect;
	struct bsd_disklabel *l;
	struct bsd_partition *p;
	int mask = (1 << hd->minor_shift) - 1;
	char buf[40];

	l = (struct bsd_disklabel *)read_dev_sector(bdev, offset+1, &sect);
	if (!l)
		return;
	if (le32_to_cpu(l->d_magic) != BSD_DISKMAGIC) {
		put_dev_sector(sect);
		return;
	}
	printk(" %s: <%s", partition_name(hd, minor, buf), name);

	if (le16_to_cpu(l->d_npartitions) < max_partitions)
		max_partitions = le16_to_cpu(l->d_npartitions);
	for (p = l->d_partitions; p - l->d_partitions <  max_partitions; p++) {
		if ((*current_minor & mask) == 0)
			break;
		if (p->p_fstype == BSD_FS_UNUSED) 
			continue;
		check_and_add_bsd_partition(hd, p, minor, current_minor);
	}
	put_dev_sector(sect);
	printk(" >\n");
}
static int emmc_read(struct mmc_emergency_info *emmc, void *holder,
		     char *buffer, off_t offset, int count, bool to_user)
{
	unsigned char *read_ptr;
	unsigned int sector_no;
	off_t sector_offset;
	Sector sect;
	int rc;

	if (!emmc) {
		pr_err("%s:invalid emmc infomation\n", __func__);
		return 0;
	}
	if (!emmc->bdev) {
		pr_err("%s:invalid emmc block device\n", __func__);
		return 0;
	}

	sector_no = offset >> SECTOR_SIZE_SHIFT;
	sector_offset = offset & (SECTOR_SIZE - 1);
	if (sector_no >= emmc->block_count) {
		pr_err("%s: reading an invalid address\n", __func__);
		return -EINVAL;
	}

	/* make sure the block device is open rw */
	rc = blkdev_get(emmc->bdev, FMODE_READ | FMODE_WRITE, holder);
	if (rc < 0) {
		pr_err("%s: blk_dev_get failed!\n", __func__);
		return 0;
	}

	read_ptr = read_dev_sector(emmc->bdev, sector_no + emmc->start_block,
				   &sect);
	if (!read_ptr) {
		put_dev_sector(sect);
		return -EINVAL;
	}
	/* count and read_ptr are updated to match flash page size */
	if (count + sector_offset > SECTOR_SIZE)
		count = SECTOR_SIZE - sector_offset;

	if (sector_offset)
		read_ptr += sector_offset;

	if (to_user) {
		if (copy_to_user(buffer, read_ptr, count)) {
			pr_err( "%s: Failed to copy buffer to User\n",
				__func__);
			return 0;
		}
	}
	else
		memcpy(buffer, read_ptr, count);

	put_dev_sector(sect);

	return count;
}
Beispiel #4
0
int tegra_msdos_parse(struct parsed_partitions *state, struct block_device *bdev, u64 mbr_offset)
{
	int sector_size = bdev_logical_block_size(bdev) / 512;
	Sector sect;
	unsigned char *data;
	struct partition *p;
	int slot;

	printk(KERN_INFO "tegra_msdos_parse: mbr_offset=%llu\n", mbr_offset);

	data = read_dev_sector(bdev, mbr_offset, &sect);
	if (!data) {
		printk(KERN_INFO "tegra_msdos_parse: read error. exit\n");
		return -1;
	}
	if (!msdos_magic_present(data + 510)) {
		printk(KERN_INFO "tegra_msdos_parse: no msdos magic\n");
		put_dev_sector(sect);
		return 0;
	}

	p = (struct partition *) (data + 0x1be);
	for (slot = 1; slot <= 4; slot++, p++) {
		if (p->boot_ind != 0 && p->boot_ind != 0x80) {  // 0x1be,0x1ce,0x1de,0x1fe
			printk("tegra_msdos_parse: slot %d, boot_ind=0x%x. exit\n", slot, p->boot_ind);
			put_dev_sector(sect);
			return 0;
		}
	}

	p = (struct partition *) (data + 0x1be);

	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		u64 start = START_SECT(p)*sector_size; // 0015f800	1439744
		u64 size = NR_SECTS(p)*sector_size;    // 01c41400	29627392
		printk(KERN_INFO "tegra_msdos_parse: slot %d, start=%llu size=%llu\n", slot, start, size);
		if (!size)
			continue;
		if (is_extended_partition(p)) {
			printk(KERN_INFO "tegra_msdos_parse: slot %d extended partition\n", slot);
			//put_partition(state, state->next++, start+mbr_offset, size == 1 ? 1 : 2);
			printk(" <");
			tegra_msdos_parse_extended(state, state->bdev, mbr_offset, start, size); 
			printk(" >");
			continue;
		}
		printk(KERN_INFO "tegra_msdos_parse: put_partition\n");
		put_partition(state, state->next++, start+mbr_offset, size);
	}

	printk("\n");
	printk(KERN_INFO "tegra_msdos_parse: done\n");

	put_dev_sector(sect);
	return 1;
}
Beispiel #5
0
int sgi_partition(struct parsed_partitions *state, struct block_device *bdev)
{
	int i, csum;
	__be32 magic;
	int slot = 1;
	unsigned int start, blocks;
	__be32 *ui, cs;
	Sector sect;
	struct sgi_disklabel *label;
	struct sgi_partition *p;
	char b[BDEVNAME_SIZE];

	label = (struct sgi_disklabel *) read_dev_sector(bdev, 0, &sect);
	if (!label)
		return -1;
	p = &label->partitions[0];
	magic = label->magic_mushroom;
	if(be32_to_cpu(magic) != SGI_LABEL_MAGIC) {
		/*printk("Dev %s SGI disklabel: bad magic %08x\n",
		       bdevname(bdev, b), be32_to_cpu(magic));*/
		put_dev_sector(sect);
		return 0;
	}
	ui = ((__be32 *) (label + 1)) - 1;
	for(csum = 0; ui >= ((__be32 *) label);) {
		cs = *ui--;
		csum += be32_to_cpu(cs);
	}
	if(csum) {
		printk(KERN_WARNING "Dev %s SGI disklabel: csum bad, label corrupted\n",
		       bdevname(bdev, b));
		put_dev_sector(sect);
		return 0;
	}
	/* All SGI disk labels have 16 partitions, disks under Linux only
	 * have 15 minor's.  Luckily there are always a few zero length
	 * partitions which we don't care about so we never overflow the
	 * current_minor.
	 */
	for(i = 0; i < 16; i++, p++) {
		blocks = be32_to_cpu(p->num_blocks);
		start  = be32_to_cpu(p->first_block);
		if (blocks) {
			put_partition(state, slot, start, blocks);
			if (be32_to_cpu(p->type) == LINUX_RAID_PARTITION)
				state->parts[slot].flags = ADDPART_FLAG_RAID;
		}
		slot++;
	}
	printk("\n");
	put_dev_sector(sect);
	return 1;
}
Beispiel #6
0
int sgi_partition(struct parsed_partitions *state)
{
	int i, csum;
	__be32 magic;
	int slot = 1;
	unsigned int start, blocks;
	__be32 *ui, cs;
	Sector sect;
	struct sgi_disklabel *label;
	struct sgi_partition *p;
	char b[BDEVNAME_SIZE];

	label = read_part_sector(state, 0, &sect);
	if (!label)
		return -1;
	p = &label->partitions[0];
	magic = label->magic_mushroom;
	if(be32_to_cpu(magic) != SGI_LABEL_MAGIC) {
		/*                                                
                                                */
		put_dev_sector(sect);
		return 0;
	}
	ui = ((__be32 *) (label + 1)) - 1;
	for(csum = 0; ui >= ((__be32 *) label);) {
		cs = *ui--;
		csum += be32_to_cpu(cs);
	}
	if(csum) {
		printk(KERN_WARNING "Dev %s SGI disklabel: csum bad, label corrupted\n",
		       bdevname(state->bdev, b));
		put_dev_sector(sect);
		return 0;
	}
	/*                                                               
                                                                
                                                                 
                  
  */
	for(i = 0; i < 16; i++, p++) {
		blocks = be32_to_cpu(p->num_blocks);
		start  = be32_to_cpu(p->first_block);
		if (blocks) {
			put_partition(state, slot, start, blocks);
			if (be32_to_cpu(p->type) == LINUX_RAID_PARTITION)
				state->parts[slot].flags = ADDPART_FLAG_RAID;
		}
		slot++;
	}
	strlcat(state->pp_buf, "\n", PAGE_SIZE);
	put_dev_sector(sect);
	return 1;
}
Beispiel #7
0
static void parse_solaris_x86(struct parsed_partitions *state,
			      sector_t offset, sector_t size, int origin)
{
#ifdef CONFIG_SOLARIS_X86_PARTITION
	Sector sect;
	struct solaris_x86_vtoc *v;
	int i;
	short max_nparts;

	v = read_part_sector(state, offset + 1, &sect);
	if (!v)
		return;
	if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) {
		put_dev_sector(sect);
		return;
	}
	{
		char tmp[1 + BDEVNAME_SIZE + 10 + 11 + 1];

		snprintf(tmp, sizeof(tmp), " %s%d: <solaris:", state->name, origin);
		strlcat(state->pp_buf, tmp, PAGE_SIZE);
	}
	if (le32_to_cpu(v->v_version) != 1) {
		char tmp[64];

		snprintf(tmp, sizeof(tmp), "  cannot handle version %d vtoc>\n",
			 le32_to_cpu(v->v_version));
		strlcat(state->pp_buf, tmp, PAGE_SIZE);
		put_dev_sector(sect);
		return;
	}
	/* Ensure we can handle previous case of VTOC with 8 entries gracefully */
	max_nparts = le16_to_cpu(v->v_nparts) > 8 ? SOLARIS_X86_NUMSLICE : 8;
	for (i = 0; i < max_nparts && state->next < state->limit; i++) {
		struct solaris_x86_slice *s = &v->v_slice[i];
		char tmp[3 + 10 + 1 + 1];

		if (s->s_size == 0)
			continue;
		snprintf(tmp, sizeof(tmp), " [s%d]", i);
		strlcat(state->pp_buf, tmp, PAGE_SIZE);
		/* solaris partitions are relative to current MS-DOS
		 * one; must add the offset of the current partition */
		put_partition(state, state->next++,
				 le32_to_cpu(s->s_start)+offset,
				 le32_to_cpu(s->s_size));
	}
	put_dev_sector(sect);
	strlcat(state->pp_buf, " >\n", PAGE_SIZE);
#endif
}
Beispiel #8
0
static void
solaris_x86_partition(struct gendisk *hd, struct block_device *bdev,
		int minor, int *current_minor)
{

#ifdef CONFIG_SOLARIS_X86_PARTITION
	long offset = hd->part[minor].start_sect;
	Sector sect;
	struct solaris_x86_vtoc *v;
	struct solaris_x86_slice *s;
	int mask = (1 << hd->minor_shift) - 1;
	int i;
	char buf[40];

	v = (struct solaris_x86_vtoc *)read_dev_sector(bdev, offset+1, &sect);
	if (!v)
		return;
	if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) {
		put_dev_sector(sect);
		return;
	}
	printk(" %s: <solaris:", partition_name(hd, minor, buf));
	if (le32_to_cpu(v->v_version) != 1) {
		printk("  cannot handle version %d vtoc>\n",
			le32_to_cpu(v->v_version));
		put_dev_sector(sect);
		return;
	}
	for (i=0; i<SOLARIS_X86_NUMSLICE; i++) {
		if ((*current_minor & mask) == 0)
			break;
		s = &v->v_slice[i];

		if (s->s_size == 0)
			continue;
		printk(" [s%d]", i);
		/* solaris partitions are relative to current MS-DOS
		 * one but add_gd_partition starts relative to sector
		 * zero of the disk.  Therefore, must add the offset
		 * of the current partition */
		add_gd_partition(hd, *current_minor,
				 le32_to_cpu(s->s_start)+offset,
				 le32_to_cpu(s->s_size));
		(*current_minor)++;
	}
	put_dev_sector(sect);
	printk(" >\n");
#endif
}
Beispiel #9
0
/*
 * Create devices for BSD partitions listed in a disklabel, under a
 * dos-like partition. See parse_extended() for more information.
 */
static void parse_bsd(struct parsed_partitions *state,
		      sector_t offset, sector_t size, int origin, char *flavour,
		      int max_partitions)
{
	Sector sect;
	struct bsd_disklabel *l;
	struct bsd_partition *p;
	char tmp[64];

	l = read_part_sector(state, offset + 1, &sect);
	if (!l)
		return;
	if (le32_to_cpu(l->d_magic) != BSD_DISKMAGIC) {
		put_dev_sector(sect);
		return;
	}

	snprintf(tmp, sizeof(tmp), " %s%d: <%s:", state->name, origin, flavour);
	strlcat(state->pp_buf, tmp, PAGE_SIZE);

	if (le16_to_cpu(l->d_npartitions) < max_partitions)
		max_partitions = le16_to_cpu(l->d_npartitions);
	for (p = l->d_partitions; p - l->d_partitions < max_partitions; p++) {
		sector_t bsd_start, bsd_size;

		if (state->next == state->limit)
			break;
		if (p->p_fstype == BSD_FS_UNUSED)
			continue;
		bsd_start = le32_to_cpu(p->p_offset);
		bsd_size = le32_to_cpu(p->p_size);
		if (offset == bsd_start && size == bsd_size)
			/* full parent partition, we have it already */
			continue;
		if (offset > bsd_start || offset+size < bsd_start+bsd_size) {
			strlcat(state->pp_buf, "bad subpartition - ignored\n", PAGE_SIZE);
			continue;
		}
		put_partition(state, state->next++, bsd_start, bsd_size);
	}
	put_dev_sector(sect);
	if (le16_to_cpu(l->d_npartitions) > max_partitions) {
		snprintf(tmp, sizeof(tmp), " (ignored %d more)",
			 le16_to_cpu(l->d_npartitions) - max_partitions);
		strlcat(state->pp_buf, tmp, PAGE_SIZE);
	}
	strlcat(state->pp_buf, " >\n", PAGE_SIZE);
}
Beispiel #10
0
static int aix_magic_present(struct parsed_partitions *state, unsigned char *p)
{
	struct partition *pt = (struct partition *) (p + 0x1be);
	Sector sect;
	unsigned char *d;
	int slot, ret = 0;

	if (!(p[0] == AIX_LABEL_MAGIC1 &&
		p[1] == AIX_LABEL_MAGIC2 &&
		p[2] == AIX_LABEL_MAGIC3 &&
		p[3] == AIX_LABEL_MAGIC4))
		return 0;
	/* Assume the partition table is valid if Linux partitions exists */
	for (slot = 1; slot <= 4; slot++, pt++) {
		if (pt->sys_ind == LINUX_SWAP_PARTITION ||
			pt->sys_ind == LINUX_RAID_PARTITION ||
			pt->sys_ind == LINUX_DATA_PARTITION ||
			pt->sys_ind == LINUX_LVM_PARTITION ||
			is_extended_partition(pt))
			return 0;
	}
	d = read_part_sector(state, 7, &sect);
	if (d) {
		if (d[0] == '_' && d[1] == 'L' && d[2] == 'V' && d[3] == 'M')
			ret = 1;
		put_dev_sector(sect);
	};
	return ret;
}
/**
 * read_lba(): Read bytes from disk, starting at given LBA
 * @state
 * @lba
 * @buffer
 * @size_t
 *
 * Description: Reads @count bytes from @state->bdev into @buffer.
 * Returns number of bytes read on success, 0 on error.
 */
static size_t read_lba(struct parsed_partitions *state,
		       u64 lba, u8 *buffer, size_t count)
{
	size_t totalreadcount = 0;
	struct block_device *bdev = state->bdev;
	sector_t n = lba * (bdev_logical_block_size(bdev) / 512);

	if (!buffer || lba > last_lba(bdev))
                return 0;

	while (count) {
		int copied = 512;
		Sector sect;
		unsigned char *data = read_part_sector(state, n++, &sect);
		if (!data)
			break;
		if (copied > count)
			copied = count;
		memcpy(buffer, data, copied);
		put_dev_sector(sect);
		buffer += copied;
		totalreadcount +=copied;
		count -= copied;
	}
	return totalreadcount;
}
Beispiel #12
0
static void parse_minix(struct parsed_partitions *state,
			sector_t offset, sector_t size, int origin)
{
#ifdef CONFIG_MINIX_SUBPARTITION
	Sector sect;
	unsigned char *data;
	struct partition *p;
	int i;

	data = read_part_sector(state, offset, &sect);
	if (!data)
		return;

	p = (struct partition *)(data + 0x1be);

	/* The first sector of a Minix partition can have either
	 * a secondary MBR describing its subpartitions, or
	 * the normal boot sector. */
	if (msdos_magic_present (data + 510) &&
	    SYS_IND(p) == MINIX_PARTITION) { /* subpartition table present */

		printk(" %s%d: <minix:", state->name, origin);
		for (i = 0; i < MINIX_NR_SUBPARTITIONS; i++, p++) {
			if (state->next == state->limit)
				break;
			/* add each partition in use */
			if (SYS_IND(p) == MINIX_PARTITION)
				put_partition(state, state->next++,
					      start_sect(p), nr_sects(p));
		}
		printk(" >\n");
	}
	put_dev_sector(sect);
#endif /* CONFIG_MINIX_SUBPARTITION */
}
Beispiel #13
0
int sysv68_partition(struct parsed_partitions *state)
{
	int i, slices;
	int slot = 1;
	Sector sect;
	unsigned char *data;
	struct dkblk0 *b;
	struct slice *slice;
	char tmp[64];

	data = read_part_sector(state, 0, &sect);
	if (!data)
		return -1;

	b = (struct dkblk0 *)data;
	if (memcmp(b->dk_vid.vid_mac, "MOTOROLA", sizeof(b->dk_vid.vid_mac))) {
		put_dev_sector(sect);
		return 0;
	}
	slices = be16_to_cpu(b->dk_ios.ios_slccnt);
	i = be32_to_cpu(b->dk_ios.ios_slcblk);
	put_dev_sector(sect);

	data = read_part_sector(state, i, &sect);
	if (!data)
		return -1;

	slices -= 1; /* last slice is the whole disk */
	snprintf(tmp, sizeof(tmp), "sysV68: %s(s%u)", state->name, slices);
	strlcat(state->pp_buf, tmp, PAGE_SIZE);
	slice = (struct slice *)data;
	for (i = 0; i < slices; i++, slice++) {
		if (slot == state->limit)
			break;
		if (be32_to_cpu(slice->nblocks)) {
			put_partition(state, slot,
				be32_to_cpu(slice->blkoff),
				be32_to_cpu(slice->nblocks));
			snprintf(tmp, sizeof(tmp), "(s%u)", i);
			strlcat(state->pp_buf, tmp, PAGE_SIZE);
		}
		slot++;
	}
	strlcat(state->pp_buf, "\n", PAGE_SIZE);
	put_dev_sector(sect);
	return 1;
}
Beispiel #14
0
int karma_partition(struct parsed_partitions *state)
{
	int i;
	int slot = 1;
	Sector sect;
	unsigned char *data;
	struct disklabel {
		u8 d_reserved[270];
		struct d_partition {
			__le32 p_res;
			u8 p_fstype;
			u8 p_res2[3];
			__le32 p_offset;
			__le32 p_size;
		} d_partitions[2];
		u8 d_blank[208];
		__le16 d_magic;
	} __attribute__((packed)) *label;
	struct d_partition *p;

	data = read_part_sector(state, 0, &sect);
	if (!data)
		return -1;

	label = (struct disklabel *)data;
	if (le16_to_cpu(label->d_magic) != KARMA_LABEL_MAGIC) {
		put_dev_sector(sect);
		return 0;
	}

	p = label->d_partitions;
	for (i = 0 ; i < 2; i++, p++) {
		if (slot == state->limit)
			break;

		if (p->p_fstype == 0x4d && le32_to_cpu(p->p_size)) {
			put_partition(state, slot, le32_to_cpu(p->p_offset),
				le32_to_cpu(p->p_size));
		}
		slot++;
	}
	printk("\n");
	put_dev_sector(sect);
	return 1;
}
Beispiel #15
0
int release_cmdline(struct inode *i, struct file *f)
{
    struct cmdline_priv *p =
        (struct cmdline_priv *)f->private_data;
    put_dev_sector(p->sect);
    blkdev_put(p->bdev, f->f_mode);
    kfree(p);
    return 0;
}
Beispiel #16
0
/* 
 * Create devices for BSD partitions listed in a disklabel, under a
 * dos-like partition. See parse_extended() for more information.
 */
static void
parse_bsd(struct parsed_partitions *state, struct block_device *bdev,
		u32 offset, u32 size, int origin, char *flavour,
		int max_partitions)
{
	Sector sect;
	struct bsd_disklabel *l;
	struct bsd_partition *p;

	l = (struct bsd_disklabel *)read_dev_sector(bdev, offset+1, &sect);
	if (!l)
		return;
	if (le32_to_cpu(l->d_magic) != BSD_DISKMAGIC) {
		put_dev_sector(sect);
		return;
	}
	printk(" %s%d: <%s:", state->name, origin, flavour);

	if (le16_to_cpu(l->d_npartitions) < max_partitions)
		max_partitions = le16_to_cpu(l->d_npartitions);
	for (p = l->d_partitions; p - l->d_partitions < max_partitions; p++) {
		u32 bsd_start, bsd_size;

		if (state->next == state->limit)
			break;
		if (p->p_fstype == BSD_FS_UNUSED) 
			continue;
		bsd_start = le32_to_cpu(p->p_offset);
		bsd_size = le32_to_cpu(p->p_size);
		if (offset == bsd_start && size == bsd_size)
			/* full parent partition, we have it already */
			continue;
		if (offset > bsd_start || offset+size < bsd_start+bsd_size) {
			printk("bad subpartition - ignored\n");
			continue;
		}
		put_partition(state, state->next++, bsd_start, bsd_size);
	}
	put_dev_sector(sect);
	if (le16_to_cpu(l->d_npartitions) > max_partitions)
		printk(" (ignored %d more)",
		       le16_to_cpu(l->d_npartitions) - max_partitions);
	printk(" >\n");
}
Beispiel #17
0
static void
parse_solaris_x86(struct parsed_partitions *state, struct block_device *bdev,
			u32 offset, u32 size, int origin)
{
#ifdef CONFIG_SOLARIS_X86_PARTITION
	Sector sect;
	struct solaris_x86_vtoc *v;
	int i;
	short max_nparts;

	v = (struct solaris_x86_vtoc *)read_dev_sector(bdev, offset+1, &sect);
	if (!v)
		return;
	if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) {
		put_dev_sector(sect);
		return;
	}
	printk(" %s%d: <solaris:", state->name, origin);
	if (le32_to_cpu(v->v_version) != 1) {
		printk("  cannot handle version %d vtoc>\n",
			le32_to_cpu(v->v_version));
		put_dev_sector(sect);
		return;
	}
	/* Ensure we can handle previous case of VTOC with 8 entries gracefully */
	max_nparts = le16_to_cpu (v->v_nparts) > 8 ? SOLARIS_X86_NUMSLICE : 8;
	for (i=0; i<max_nparts && state->next<state->limit; i++) {
		struct solaris_x86_slice *s = &v->v_slice[i];
		if (s->s_size == 0)
			continue;
		printk(" [s%d]", i);
		/* solaris partitions are relative to current MS-DOS
		 * one; must add the offset of the current partition */
		put_partition(state, state->next++,
				 le32_to_cpu(s->s_start)+offset,
				 le32_to_cpu(s->s_size));
	}
	put_dev_sector(sect);
	printk(" >\n");
#endif
}
static void emmc_panic_erase(unsigned char *buffer, Sector *sect)
{
	struct emmc_ipanic_data *ctx = &drv_ctx;
	struct mmc_emergency_info *emmc = ctx->emmc;
	unsigned char *read_buf_ptr = buffer;
	Sector new_sect;
	int rc;

	if (!emmc) {
		pr_err("%s:invalid emmc infomation\n", __func__);
		return;
	}

	if (!read_buf_ptr || !sect) {
		sect = &new_sect;
		if (!emmc->bdev) {
			pr_err("%s:invalid emmc block device\n",
				__func__);
			goto out;
		}
		/* make sure the block device is open rw */
		rc = blkdev_get(emmc->bdev, FMODE_READ | FMODE_WRITE, emmc_panic_erase);
		if (rc < 0) {
			pr_err("%s: blk_dev_get failed!\n", __func__);
			goto out;
		}

		/*read panic header */
		read_buf_ptr =
		    read_dev_sector(emmc->bdev, emmc->start_block, sect);
		if (!read_buf_ptr) {
			pr_err("%s: read sector error(%llu)!\n",
				__func__, (u64) emmc->start_block);
			goto out;
		}
	}

	/*write all zero to panic header */
	lock_page(sect->v);
	memset(read_buf_ptr, 0, SECTOR_SIZE);
	set_page_dirty(sect->v);
	unlock_page(sect->v);
	sync_blockdev(emmc->bdev);

	if (!read_buf_ptr)
		put_dev_sector(*sect);
out:
	memset(&ctx->hdr, 0, SECTOR_SIZE);
	return;
}
Beispiel #19
0
int ultrix_partition(struct parsed_partitions *state, struct block_device *bdev)
{
	int i;
	Sector sect;
	unsigned char *data;
	struct ultrix_disklabel {
		s32	pt_magic;	/* magic no. indicating part. info exits */
		s32	pt_valid;	/* set by driver if pt is current */
		struct  pt_info {
			s32		pi_nblocks; /* no. of sectors */
			u32		pi_blkoff;  /* block offset for start */
		} pt_part[8];
	} *label;

#define PT_MAGIC	0x032957	/* Partition magic number */
#define PT_VALID	1		/* Indicates if struct is valid */

	data = read_dev_sector(bdev, (16384 - sizeof(*label))/512, &sect);
	if (!data)
		return -1;
	
	label = (struct ultrix_disklabel *)(data + 512 - sizeof(*label));

	if (label->pt_magic == PT_MAGIC && label->pt_valid == PT_VALID) {
		for (i=0; i<8; i++)
			if (label->pt_part[i].pi_nblocks)
				put_partition(state, i+1, 
					      label->pt_part[i].pi_blkoff,
					      label->pt_part[i].pi_nblocks);
		put_dev_sector(sect);
		printk ("\n");
		return 1;
	} else {
		put_dev_sector(sect);
		return 0;
	}
}
Beispiel #20
0
/*
 * Create devices for Unixware partitions listed in a disklabel, under a
 * dos-like partition. See extended_partition() for more information.
 */
static void unixware_partition(struct gendisk *hd, struct block_device *bdev,
		int minor, int *current_minor)
{
#ifdef CONFIG_UNIXWARE_DISKLABEL
	long offset = hd->part[minor].start_sect;
	Sector sect;
	struct unixware_disklabel *l;
	struct unixware_slice *p;
	int mask = (1 << hd->minor_shift) - 1;
	char buf[40];

	l = (struct unixware_disklabel *)read_dev_sector(bdev, offset+29, &sect);
	if (!l)
		return;
	if (le32_to_cpu(l->d_magic) != UNIXWARE_DISKMAGIC ||
	    le32_to_cpu(l->vtoc.v_magic) != UNIXWARE_DISKMAGIC2) {
		put_dev_sector(sect);
		return;
	}
	printk(" %s: <unixware:", partition_name(hd, minor, buf));
	p = &l->vtoc.v_slice[1];
	/* I omit the 0th slice as it is the same as whole disk. */
	while (p - &l->vtoc.v_slice[0] < UNIXWARE_NUMSLICE) {
		if ((*current_minor & mask) == 0)
			break;

		if (p->s_label != UNIXWARE_FS_UNUSED) {
			add_gd_partition(hd, *current_minor, START_SECT(p),
					 NR_SECTS(p));
			(*current_minor)++;
		}
		p++;
	}
	put_dev_sector(sect);
	printk(" >\n");
#endif
}
Beispiel #21
0
/**
 * ldm_validate_vmdb - Read the VMDB and validate it
 * @state: Partition check state including device holding the LDM Database
 * @base:  Offset, into @bdev, of the database
 * @ldb:   Cache of the database structures
 *
 * Find the vmdb of the LDM Database stored on @bdev and return the parsed
 * information in @ldb.
 *
 * Return:  'true'   @ldb contains validated VBDB info
 *          'false'  @ldb contents are undefined
 */
static bool ldm_validate_vmdb(struct parsed_partitions *state,
			      unsigned long base, struct ldmdb *ldb)
{
	Sector sect;
	u8 *data;
	bool result = false;
	struct vmdb *vm;
	struct tocblock *toc;

	BUG_ON (!state || !ldb);

	vm  = &ldb->vm;
	toc = &ldb->toc;

	data = read_part_sector(state, base + OFF_VMDB, &sect);
	if (!data) {
		ldm_crit ("Disk read failed.");
		return false;
	}

	if (!ldm_parse_vmdb (data, vm))
		goto out;				/* Already logged */

	/* Are there uncommitted transactions? */
	if (get_unaligned_be16(data + 0x10) != 0x01) {
		ldm_crit ("Database is not in a consistent state.  Aborting.");
		goto out;
	}

	if (vm->vblk_offset != 512)
		ldm_info ("VBLKs start at offset 0x%04x.", vm->vblk_offset);

	/*
	 * The last_vblkd_seq can be before the end of the vmdb, just make sure
	 * it is not out of bounds.
	 */
	if ((vm->vblk_size * vm->last_vblk_seq) > (toc->bitmap1_size << 9)) {
		ldm_crit ("VMDB exceeds allowed size specified by TOCBLOCK.  "
				"Database is corrupt.  Aborting.");
		goto out;
	}

	result = true;
out:
	put_dev_sector (sect);
	return result;
}
Beispiel #22
0
/*
 * Uses kernel's function to read sector's data to read the requested block
 */
void read_block(char *dest, size_t size, sector_t block)
{
	// Sector size is 512, so we calculate the block's sector index
	sector_t sector = block * (dedup_get_block_size() / 512);
	Sector sect;
	// Read data
	void *tmp = read_dev_sector(dedup_bdev, sector, &sect);

	if (!tmp) {
		printk(KERN_ERR "failed to read sector.\n");
		return;
	}

	// Copy and release sector
	memcpy(dest, (char *)tmp, size);
	put_dev_sector(sect);
}
static void parse_solaris_x86(struct parsed_partitions *state,
			      sector_t offset, sector_t size, int origin)
{
#ifdef CONFIG_SOLARIS_X86_PARTITION
	Sector sect;
	struct solaris_x86_vtoc *v;
	int i;
	short max_nparts;

	v = read_part_sector(state, offset + 1, &sect);
	if (!v)
		return;
	if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) {
		put_dev_sector(sect);
		return;
	}
<<<<<<< HEAD
Beispiel #24
0
/*
 * Minix 2.0.0/2.0.2 subpartition support.
 * Anand Krishnamurthy <*****@*****.**>
 * Rajeev V. Pillai    <*****@*****.**>
 */
static void minix_partition(struct gendisk *hd, struct block_device *bdev,
		int minor, int *current_minor)
{
#ifdef CONFIG_MINIX_SUBPARTITION
	long offset = hd->part[minor].start_sect;
	Sector sect;
	unsigned char *data;
	struct partition *p;
	int mask = (1 << hd->minor_shift) - 1;
	int i;
	char buf[40];

	data = read_dev_sector(bdev, offset, &sect);
	if (!data)
		return;

	p = (struct partition *)(data + 0x1be);

	/* The first sector of a Minix partition can have either
	 * a secondary MBR describing its subpartitions, or
	 * the normal boot sector. */
	if (msdos_magic_present (data + 510) &&
	    SYS_IND(p) == MINIX_PARTITION) { /* subpartition table present */

		printk(" %s: <minix:", partition_name(hd, minor, buf));
		for (i = 0; i < MINIX_NR_SUBPARTITIONS; i++, p++) {
			if ((*current_minor & mask) == 0)
				break;
			/* add each partition in use */
			if (SYS_IND(p) == MINIX_PARTITION) {
				add_gd_partition(hd, *current_minor,
					      START_SECT(p), NR_SECTS(p));
				(*current_minor)++;
			}
		}
		printk(" >\n");
	}
	put_dev_sector(sect);
#endif /* CONFIG_MINIX_SUBPARTITION */
}
Beispiel #25
0
Datei: efi.c Projekt: 274914765/C
/**
 * read_lba(): Read bytes from disk, starting at given LBA
 * @bdev
 * @lba
 * @buffer
 * @size_t
 *
 * Description:  Reads @count bytes from @bdev into @buffer.
 * Returns number of bytes read on success, 0 on error.
 */
static size_t
read_lba(struct block_device *bdev, u64 lba, u8 * buffer, size_t count)
{
    size_t totalreadcount = 0;

    if (!bdev || !buffer || lba > last_lba(bdev))
                return 0;

    while (count) {
        int copied = 512;
        Sector sect;
        unsigned char *data = read_dev_sector(bdev, lba++, &sect);
        if (!data)
            break;
        if (copied > count)
            copied = count;
        memcpy(buffer, data, copied);
        put_dev_sector(sect);
        buffer += copied;
        totalreadcount +=copied;
        count -= copied;
    }
    return totalreadcount;
}
Beispiel #26
0
int sun_partition(struct parsed_partitions *state)
{
	int i;
	__be16 csum;
	int slot = 1;
	__be16 *ush;
	Sector sect;
	struct sun_disklabel {
		unsigned char info[128];   /* Informative text string */
		struct sun_vtoc {
		    __be32 version;     /* Layout version */
		    char   volume[8];   /* Volume name */
		    __be16 nparts;      /* Number of partitions */
		    struct sun_info {           /* Partition hdrs, sec 2 */
			__be16 id;
			__be16 flags;
		    } infos[8];
		    __be16 padding;     /* Alignment padding */
		    __be32 bootinfo[3];  /* Info needed by mboot */
		    __be32 sanity;       /* To verify vtoc sanity */
		    __be32 reserved[10]; /* Free space */
		    __be32 timestamp[8]; /* Partition timestamp */
		} vtoc;
		__be32 write_reinstruct; /* sectors to skip, writes */
		__be32 read_reinstruct;  /* sectors to skip, reads */
		unsigned char spare[148]; /* Padding */
		__be16 rspeed;     /* Disk rotational speed */
		__be16 pcylcount;  /* Physical cylinder count */
		__be16 sparecyl;   /* extra sects per cylinder */
		__be16 obs1;       /* gap1 */
		__be16 obs2;       /* gap2 */
		__be16 ilfact;     /* Interleave factor */
		__be16 ncyl;       /* Data cylinder count */
		__be16 nacyl;      /* Alt. cylinder count */
		__be16 ntrks;      /* Tracks per cylinder */
		__be16 nsect;      /* Sectors per track */
		__be16 obs3;       /* bhead - Label head offset */
		__be16 obs4;       /* ppart - Physical Partition */
		struct sun_partition {
			__be32 start_cylinder;
			__be32 num_sectors;
		} partitions[8];
		__be16 magic;      /* Magic number */
		__be16 csum;       /* Label xor'd checksum */
	} * label;
	struct sun_partition *p;
	unsigned long spc;
	char b[BDEVNAME_SIZE];
	int use_vtoc;
	int nparts;

	label = read_part_sector(state, 0, &sect);
	if (!label)
		return -1;

	p = label->partitions;
	if (be16_to_cpu(label->magic) != SUN_LABEL_MAGIC) {
/*		printk(KERN_INFO "Dev %s Sun disklabel: bad magic %04x\n",
		       bdevname(bdev, b), be16_to_cpu(label->magic)); */
		put_dev_sector(sect);
		return 0;
	}
	/* Look at the checksum */
	ush = ((__be16 *) (label+1)) - 1;
	for (csum = 0; ush >= ((__be16 *) label);)
		csum ^= *ush--;
	if (csum) {
		printk("Dev %s Sun disklabel: Csum bad, label corrupted\n",
		       bdevname(state->bdev, b));
		put_dev_sector(sect);
		return 0;
	}

	/* Check to see if we can use the VTOC table */
	use_vtoc = ((be32_to_cpu(label->vtoc.sanity) == SUN_VTOC_SANITY) &&
		    (be32_to_cpu(label->vtoc.version) == 1) &&
		    (be16_to_cpu(label->vtoc.nparts) <= 8));

	/* Use 8 partition entries if not specified in validated VTOC */
	nparts = (use_vtoc) ? be16_to_cpu(label->vtoc.nparts) : 8;

	/*
	 * So that old Linux-Sun partitions continue to work,
	 * alow the VTOC to be used under the additional condition ...
	 */
	use_vtoc = use_vtoc || !(label->vtoc.sanity ||
				 label->vtoc.version || label->vtoc.nparts);
	spc = be16_to_cpu(label->ntrks) * be16_to_cpu(label->nsect);
	for (i = 0; i < nparts; i++, p++) {
		unsigned long st_sector;
		unsigned int num_sectors;

		st_sector = be32_to_cpu(p->start_cylinder) * spc;
		num_sectors = be32_to_cpu(p->num_sectors);
		if (num_sectors) {
			put_partition(state, slot, st_sector, num_sectors);
			state->parts[slot].flags = 0;
			if (use_vtoc) {
				if (be16_to_cpu(label->vtoc.infos[i].id) == LINUX_RAID_PARTITION)
					state->parts[slot].flags |= ADDPART_FLAG_RAID;
				else if (be16_to_cpu(label->vtoc.infos[i].id) == SUN_WHOLE_DISK)
					state->parts[slot].flags |= ADDPART_FLAG_WHOLEDISK;
			}
		}
		slot++;
	}
	printk("\n");
	put_dev_sector(sect);
	return 1;
}
Beispiel #27
0
static void parse_extended(struct parsed_partitions *state,
			   sector_t first_sector, sector_t first_size)
{
	struct partition *p;
	Sector sect;
	unsigned char *data;
	sector_t this_sector, this_size;
	sector_t sector_size = bdev_logical_block_size(state->bdev) / 512;
	int loopct = 0;		/* number of links followed
				   without finding a data partition */
	int i;

	this_sector = first_sector;
	this_size = first_size;

	while (1) {
		if (++loopct > 100)
			return;
		if (state->next == state->limit)
			return;
		data = read_part_sector(state, this_sector, &sect);
		if (!data)
			return;

		if (!msdos_magic_present(data + 510))
			goto done; 

		p = (struct partition *) (data + 0x1be);

		/*
		 * Usually, the first entry is the real data partition,
		 * the 2nd entry is the next extended partition, or empty,
		 * and the 3rd and 4th entries are unused.
		 * However, DRDOS sometimes has the extended partition as
		 * the first entry (when the data partition is empty),
		 * and OS/2 seems to use all four entries.
		 */

		/* 
		 * First process the data partition(s)
		 */
		for (i=0; i<4; i++, p++) {
			sector_t offs, size, next;
			if (!nr_sects(p) || is_extended_partition(p))
				continue;

			/* Check the 3rd and 4th entries -
			   these sometimes contain random garbage */
			offs = start_sect(p)*sector_size;
			size = nr_sects(p)*sector_size;
			next = this_sector + offs;
			if (i >= 2) {
				if (offs + size > this_size)
					continue;
				if (next < first_sector)
					continue;
				if (next + size > first_sector + first_size)
					continue;
			}

			put_partition(state, state->next, next, size);
			if (SYS_IND(p) == LINUX_RAID_PARTITION)
				state->parts[state->next].flags = ADDPART_FLAG_RAID;
			loopct = 0;
			if (++state->next == state->limit)
				goto done;
		}
		/*
		 * Next, process the (first) extended partition, if present.
		 * (So far, there seems to be no reason to make
		 *  parse_extended()  recursive and allow a tree
		 *  of extended partitions.)
		 * It should be a link to the next logical partition.
		 */
		p -= 4;
		for (i=0; i<4; i++, p++)
			if (nr_sects(p) && is_extended_partition(p))
				break;
		if (i == 4)
			goto done;	 /* nothing left to do */

		this_sector = first_sector + start_sect(p) * sector_size;
		this_size = nr_sects(p) * sector_size;
		put_dev_sector(sect);
	}
done:
	put_dev_sector(sect);
}
Beispiel #28
0
int msdos_partition(struct parsed_partitions *state)
{
	sector_t sector_size = bdev_logical_block_size(state->bdev) / 512;
	Sector sect;
	unsigned char *data;
	struct partition *p;
	struct fat_boot_sector *fb;
	int slot;

	data = read_part_sector(state, 0, &sect);
	if (!data)
		return -1;
	if (!msdos_magic_present(data + 510)) {
		put_dev_sector(sect);
		return 0;
	}

	if (aix_magic_present(state, data)) {
		put_dev_sector(sect);
		printk( " [AIX]");
		return 0;
	}

	/*
	 * Now that the 55aa signature is present, this is probably
	 * either the boot sector of a FAT filesystem or a DOS-type
	 * partition table. Reject this in case the boot indicator
	 * is not 0 or 0x80.
	 */
	p = (struct partition *) (data + 0x1be);
	for (slot = 1; slot <= 4; slot++, p++) {
		if (p->boot_ind != 0 && p->boot_ind != 0x80) {
			/*
			 * Even without a valid boot inidicator value
			 * its still possible this is valid FAT filesystem
			 * without a partition table.
			 */
			fb = (struct fat_boot_sector *) data;
			if (slot == 1 && fb->reserved && fb->fats
				&& fat_valid_media(fb->media)) {
				printk("\n");
				put_dev_sector(sect);
				return 1;
			} else {
				put_dev_sector(sect);
				return 0;
			}
		}
	}

#ifdef CONFIG_EFI_PARTITION
	p = (struct partition *) (data + 0x1be);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		/* If this is an EFI GPT disk, msdos should ignore it. */
		if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) {
			put_dev_sector(sect);
			return 0;
		}
	}
#endif
	p = (struct partition *) (data + 0x1be);

	/*
	 * Look for partitions in two passes:
	 * First find the primary and DOS-type extended partitions.
	 * On the second pass look inside *BSD, Unixware and Solaris partitions.
	 */

	state->next = 5;
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		sector_t start = start_sect(p)*sector_size;
		sector_t size = nr_sects(p)*sector_size;
		if (!size)
			continue;
		if (is_extended_partition(p)) {
			/*
			 * prevent someone doing mkfs or mkswap on an
			 * extended partition, but leave room for LILO
			 * FIXME: this uses one logical sector for > 512b
			 * sector, although it may not be enough/proper.
			 */
			sector_t n = 2;
			n = min(size, max(sector_size, n));
			put_partition(state, slot, start, n);

			printk(" <");
			parse_extended(state, start, size);
			printk(" >");
			continue;
		}
		put_partition(state, slot, start, size);
		if (SYS_IND(p) == LINUX_RAID_PARTITION)
			state->parts[slot].flags = ADDPART_FLAG_RAID;
		if (SYS_IND(p) == DM6_PARTITION)
			printk("[DM]");
		if (SYS_IND(p) == EZD_PARTITION)
			printk("[EZD]");
	}

	printk("\n");

	/* second pass - output for each on a separate line */
	p = (struct partition *) (0x1be + data);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		unsigned char id = SYS_IND(p);
		int n;

		if (!nr_sects(p))
			continue;

		for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++)
			;

		if (!subtypes[n].parse)
			continue;
		subtypes[n].parse(state, start_sect(p) * sector_size,
				  nr_sects(p) * sector_size, slot);
	}
	put_dev_sector(sect);
	return 1;
}
Beispiel #29
0
int osf_partition(struct parsed_partitions *state, struct block_device *bdev)
{
	int i;
	int slot = 1;
	unsigned int npartitions;
	Sector sect;
	unsigned char *data;
	struct disklabel {
		__le32 d_magic;
		__le16 d_type,d_subtype;
		u8 d_typename[16];
		u8 d_packname[16];
		__le32 d_secsize;
		__le32 d_nsectors;
		__le32 d_ntracks;
		__le32 d_ncylinders;
		__le32 d_secpercyl;
		__le32 d_secprtunit;
		__le16 d_sparespertrack;
		__le16 d_sparespercyl;
		__le32 d_acylinders;
		__le16 d_rpm, d_interleave, d_trackskew, d_cylskew;
		__le32 d_headswitch, d_trkseek, d_flags;
		__le32 d_drivedata[5];
		__le32 d_spare[5];
		__le32 d_magic2;
		__le16 d_checksum;
		__le16 d_npartitions;
		__le32 d_bbsize, d_sbsize;
		struct d_partition {
			__le32 p_size;
			__le32 p_offset;
			__le32 p_fsize;
			u8  p_fstype;
			u8  p_frag;
			__le16 p_cpg;
		} d_partitions[MAX_OSF_PARTITIONS];
	} * label;
	struct d_partition * partition;

	data = read_dev_sector(bdev, 0, &sect);
	if (!data)
		return -1;

	label = (struct disklabel *) (data+64);
	partition = label->d_partitions;
	if (le32_to_cpu(label->d_magic) != DISKLABELMAGIC) {
		put_dev_sector(sect);
		return 0;
	}
	if (le32_to_cpu(label->d_magic2) != DISKLABELMAGIC) {
		put_dev_sector(sect);
		return 0;
	}
	npartitions = le16_to_cpu(label->d_npartitions);
	if (npartitions > MAX_OSF_PARTITIONS) {
		put_dev_sector(sect);
		return 0;
	}
	for (i = 0 ; i < npartitions; i++, partition++) {
		if (slot == state->limit)
		        break;
		if (le32_to_cpu(partition->p_size))
			put_partition(state, slot,
				le32_to_cpu(partition->p_offset),
				le32_to_cpu(partition->p_size));
		slot++;
	}
	printk("\n");
	put_dev_sector(sect);
	return 1;
}
Beispiel #30
0
int msdos_partition(struct parsed_partitions *state, struct block_device *bdev)
{
	int sector_size = bdev_hardsect_size(bdev) / 512;
	Sector sect;
	unsigned char *data;
	struct partition *p;
	int slot;

	data = read_dev_sector(bdev, 0, &sect);
	if (!data)
		return -1;
	if (!msdos_magic_present(data + 510)) {
		put_dev_sector(sect);
		return 0;
	}

	if (aix_magic_present(data, bdev)) {
		put_dev_sector(sect);
		printk( " [AIX]");
		return 0;
	}

	/*
	 * Now that the 55aa signature is present, this is probably
	 * either the boot sector of a FAT filesystem or a DOS-type
	 * partition table. Reject this in case the boot indicator
	 * is not 0 or 0x80.
	 */
	p = (struct partition *) (data + 0x1be);
	for (slot = 1; slot <= 4; slot++, p++) {
		if (p->boot_ind != 0 && p->boot_ind != 0x80) {
			put_dev_sector(sect);
			return 0;
		}
	}

#ifdef CONFIG_EFI_PARTITION
	p = (struct partition *) (data + 0x1be);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		/* If this is an EFI GPT disk, msdos should ignore it. */
		if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) {
			put_dev_sector(sect);
			return 0;
		}
	}
#endif
	p = (struct partition *) (data + 0x1be);

	/*
	 * Look for partitions in two passes:
	 * First find the primary and DOS-type extended partitions.
	 * On the second pass look inside *BSD, Unixware and Solaris partitions.
	 */

	state->next = 5;
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		u32 start = START_SECT(p)*sector_size;
		u32 size = NR_SECTS(p)*sector_size;
		if (!size)
			continue;
		if (is_extended_partition(p)) {
			/* prevent someone doing mkfs or mkswap on an
			   extended partition, but leave room for LILO */
			put_partition(state, slot, start, size == 1 ? 1 : 2);
			printk(" <");
			parse_extended(state, bdev, start, size);
			printk(" >");
			continue;
		}
		put_partition(state, slot, start, size);
		if (SYS_IND(p) == LINUX_RAID_PARTITION)
			state->parts[slot].flags = 1;
		if (SYS_IND(p) == DM6_PARTITION)
			printk("[DM]");
		if (SYS_IND(p) == EZD_PARTITION)
			printk("[EZD]");
	}

	printk("\n");

	/* second pass - output for each on a separate line */
	p = (struct partition *) (0x1be + data);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		unsigned char id = SYS_IND(p);
		int n;

		if (!NR_SECTS(p))
			continue;

		for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++)
			;

		if (!subtypes[n].parse)
			continue;
		subtypes[n].parse(state, bdev, START_SECT(p)*sector_size,
						NR_SECTS(p)*sector_size, slot);
	}
	put_dev_sector(sect);
	return 1;
}