Beispiel #1
0
void SQPInternal::init(){
  // Call the init method of the base class
  NLPSolverInternal::init();
    
  // Read options
  maxiter_ = getOption("maxiter");
  maxiter_ls_ = getOption("maxiter_ls");
  c1_ = getOption("c1");
  beta_ = getOption("beta");
  merit_memsize_ = getOption("merit_memory");
  lbfgs_memory_ = getOption("lbfgs_memory");
  tol_pr_ = getOption("tol_pr");
  tol_du_ = getOption("tol_du");
  regularize_ = getOption("regularize");
  if(getOption("hessian_approximation")=="exact")
    hess_mode_ = HESS_EXACT;
  else if(getOption("hessian_approximation")=="limited-memory")
    hess_mode_ = HESS_BFGS;
   
  if (hess_mode_== HESS_EXACT && H_.isNull()) {
    if (!getOption("generate_hessian")){
      casadi_error("SQPInternal::evaluate: you set option 'hessian_approximation' to 'exact', but no hessian was supplied. Try with option \"generate_hessian\".");
    }
  }
  
  // If the Hessian is generated, we use exact approximation by default
  if (bool(getOption("generate_hessian"))){
    setOption("hessian_approximation", "exact");
  }
  
  // Allocate a QP solver
  CRSSparsity H_sparsity = hess_mode_==HESS_EXACT ? H_.output().sparsity() : sp_dense(n_,n_);
  H_sparsity = H_sparsity + DMatrix::eye(n_).sparsity();
  CRSSparsity A_sparsity = J_.isNull() ? CRSSparsity(0,n_,false) : J_.output().sparsity();

  QPSolverCreator qp_solver_creator = getOption("qp_solver");
  qp_solver_ = qp_solver_creator(H_sparsity,A_sparsity);

  // Set options if provided
  if(hasSetOption("qp_solver_options")){
    Dictionary qp_solver_options = getOption("qp_solver_options");
    qp_solver_.setOption(qp_solver_options);
  }
  qp_solver_.init();
  
  // Lagrange multipliers of the NLP
  mu_.resize(m_);
  mu_x_.resize(n_);
  
  // Lagrange gradient in the next iterate
  gLag_.resize(n_);
  gLag_old_.resize(n_);

  // Current linearization point
  x_.resize(n_);
  x_cand_.resize(n_);
  x_old_.resize(n_);

  // Constraint function value
  gk_.resize(m_);
  gk_cand_.resize(m_);
  
  // Hessian approximation
  Bk_ = DMatrix(H_sparsity);
  
  // Jacobian
  Jk_ = DMatrix(A_sparsity);

  // Bounds of the QP
  qp_LBA_.resize(m_);
  qp_UBA_.resize(m_);
  qp_LBX_.resize(n_);
  qp_UBX_.resize(n_);

  // QP solution
  dx_.resize(n_);
  qp_DUAL_X_.resize(n_);
  qp_DUAL_A_.resize(m_);

  // Gradient of the objective
  gf_.resize(n_);

  // Create Hessian update function
  if(hess_mode_ == HESS_BFGS){
    // Create expressions corresponding to Bk, x, x_old, gLag and gLag_old
    SXMatrix Bk = ssym("Bk",H_sparsity);
    SXMatrix x = ssym("x",input(NLP_X_INIT).sparsity());
    SXMatrix x_old = ssym("x",x.sparsity());
    SXMatrix gLag = ssym("gLag",x.sparsity());
    SXMatrix gLag_old = ssym("gLag_old",x.sparsity());
    
    SXMatrix sk = x - x_old;
    SXMatrix yk = gLag - gLag_old;
    SXMatrix qk = mul(Bk, sk);
    
    // Calculating theta
    SXMatrix skBksk = inner_prod(sk, qk);
    SXMatrix omega = if_else(inner_prod(yk, sk) < 0.2 * inner_prod(sk, qk),
                             0.8 * skBksk / (skBksk - inner_prod(sk, yk)),
                             1);
    yk = omega * yk + (1 - omega) * qk;
    SXMatrix theta = 1. / inner_prod(sk, yk);
    SXMatrix phi = 1. / inner_prod(qk, sk);
    SXMatrix Bk_new = Bk + theta * mul(yk, trans(yk)) - phi * mul(qk, trans(qk));
    
    // Inputs of the BFGS update function
    vector<SXMatrix> bfgs_in(BFGS_NUM_IN);
    bfgs_in[BFGS_BK] = Bk;
    bfgs_in[BFGS_X] = x;
    bfgs_in[BFGS_X_OLD] = x_old;
    bfgs_in[BFGS_GLAG] = gLag;
    bfgs_in[BFGS_GLAG_OLD] = gLag_old;
    bfgs_ = SXFunction(bfgs_in,Bk_new);
    bfgs_.setOption("number_of_fwd_dir",0);
    bfgs_.setOption("number_of_adj_dir",0);
    bfgs_.init();
    
    // Initial Hessian approximation
    B_init_ = DMatrix::eye(n_);
  }
  
  // Header
  if(bool(getOption("print_header"))){
    cout << "-------------------------------------------" << endl;
    cout << "This is CasADi::SQPMethod." << endl;
    switch (hess_mode_) {
      case HESS_EXACT:
        cout << "Using exact Hessian" << endl;
        break;
      case HESS_BFGS:
        cout << "Using limited memory BFGS Hessian approximation" << endl;
        break;
    }
    cout << endl;
    cout << "Number of variables:                       " << setw(9) << n_ << endl;
    cout << "Number of constraints:                     " << setw(9) << m_ << endl;
    cout << "Number of nonzeros in constraint Jacobian: " << setw(9) << A_sparsity.size() << endl;
    cout << "Number of nonzeros in Lagrangian Hessian:  " << setw(9) << H_sparsity.size() << endl;
    cout << endl;
  }
}
void LiftedSQPInternal::init(){
  // Call the init method of the base class
  NlpSolverInternal::init();

  // Number of lifted variables
  nv = getOption("num_lifted");
  if(verbose_){
    cout << "Initializing SQP method with " << nx_ << " variables and " << ng_ << " constraints." << endl;
    cout << "Lifting " << nv << " variables." << endl;
    if(gauss_newton_){
      cout << "Gauss-Newton objective with " << F_.input().numel() << " terms." << endl;
    }
  }
  
  // Read options
  max_iter_ = getOption("max_iter");
  max_iter_ls_ = getOption("max_iter_ls");
  toldx_ = getOption("toldx");
  tolgl_ = getOption("tolgl");
  sigma_ = getOption("sigma");
  rho_ = getOption("rho");
  mu_safety_ = getOption("mu_safety");
  eta_ = getOption("eta");
  tau_ = getOption("tau");
    
  // Assume SXFunction for now
  SXFunction ffcn = shared_cast<SXFunction>(F_);
  casadi_assert(!ffcn.isNull());
  SXFunction gfcn = shared_cast<SXFunction>(G_);
  casadi_assert(!gfcn.isNull());
  
  // Extract the free variables and split into independent and dependent variables
  SX x = ffcn.inputExpr(0);
  int nx = x.size();
  nu = nx-nv;
  SX u = x[Slice(0,nu)];
  SX v = x[Slice(nu,nu+nv)];

  // Extract the constraint equations and split into constraints and definitions of dependent variables
  SX f1 = ffcn.outputExpr(0);
  int nf1 = f1.numel();
  SX g = gfcn.outputExpr(0);
  int nf2 = g.numel()-nv;
  SX v_eq = g(Slice(0,nv));
  SX f2 = g(Slice(nv,nv+nf2));
  
  // Definition of v
  SX v_def = v_eq + v;

  // Objective function
  SX f;
  
  // Multipliers
  SX lam_x, lam_g, lam_f2;
  if(gauss_newton_){
    
    // Least square objective
    f = inner_prod(f1,f1)/2;
    
  } else {
    
    // Scalar objective function
    f = f1;
    
    // Lagrange multipliers for the simple bounds on u
    SX lam_u = ssym("lam_u",nu);
    
    // Lagrange multipliers for the simple bounds on v
    SX lam_v = ssym("lam_v",nv);
    
    // Lagrange multipliers for the simple bounds on x
    lam_x = vertcat(lam_u,lam_v);

    // Lagrange multipliers corresponding to the definition of the dependent variables
    SX lam_v_eq = ssym("lam_v_eq",nv);

    // Lagrange multipliers for the nonlinear constraints that aren't eliminated
    lam_f2 = ssym("lam_f2",nf2);

    if(verbose_){
      cout << "Allocated intermediate variables." << endl;
    }
    
    // Lagrange multipliers for constraints
    lam_g = vertcat(lam_v_eq,lam_f2);
    
    // Lagrangian function
    SX lag = f + inner_prod(lam_x,x);
    if(!f2.empty()) lag += inner_prod(lam_f2,f2);
    if(!v.empty()) lag += inner_prod(lam_v_eq,v_def);
    
    // Gradient of the Lagrangian
    SX lgrad = casadi::gradient(lag,x);
    if(!v.empty()) lgrad -= vertcat(SX::zeros(nu),lam_v_eq); // Put here to ensure that lgrad is of the form "h_extended -v_extended"
    makeDense(lgrad);
    if(verbose_){
      cout << "Generated the gradient of the Lagrangian." << endl;
    }

    // Condensed gradient of the Lagrangian
    f1 = lgrad[Slice(0,nu)];
    nf1 = nu;
    
    // Gradient of h
    SX v_eq_grad = lgrad[Slice(nu,nu+nv)];
    
    // Reverse lam_v_eq and v_eq_grad
    SX v_eq_grad_reversed = v_eq_grad;
    copy(v_eq_grad.rbegin(),v_eq_grad.rend(),v_eq_grad_reversed.begin());
    SX lam_v_eq_reversed = lam_v_eq;
    copy(lam_v_eq.rbegin(),lam_v_eq.rend(),lam_v_eq_reversed.begin());
    
    // Augment h and lam_v_eq
    v_eq.append(v_eq_grad_reversed);
    v.append(lam_v_eq_reversed);
  }

  // Residual function G
  SXVector G_in(G_NUM_IN);
  G_in[G_X] = x;
  G_in[G_LAM_X] = lam_x;
  G_in[G_LAM_G] = lam_g;

  SXVector G_out(G_NUM_OUT);
  G_out[G_D] = v_eq;
  G_out[G_G] = g;
  G_out[G_F] = f;

  rfcn_ = SXFunction(G_in,G_out);
  rfcn_.setOption("number_of_fwd_dir",0);
  rfcn_.setOption("number_of_adj_dir",0);
  rfcn_.setOption("live_variables",true);
  rfcn_.init();
  if(verbose_){
    cout << "Generated residual function ( " << shared_cast<SXFunction>(rfcn_).getAlgorithmSize() << " nodes)." << endl;
  }
  
  // Difference vector d
  SX d = ssym("d",nv);
  if(!gauss_newton_){
    vector<SX> dg = ssym("dg",nv).data();
    reverse(dg.begin(),dg.end());
    d.append(dg);
  }

  // Substitute out the v from the h
  SX d_def = (v_eq + v)-d;
  SXVector ex(3);
  ex[0] = f1;
  ex[1] = f2;
  ex[2] = f;
  substituteInPlace(v, d_def, ex, false);
  SX f1_z = ex[0];
  SX f2_z = ex[1];
  SX f_z = ex[2];
  
  // Modified function Z
  enum ZIn{Z_U,Z_D,Z_LAM_X,Z_LAM_F2,Z_NUM_IN};
  SXVector zfcn_in(Z_NUM_IN);
  zfcn_in[Z_U] = u;
  zfcn_in[Z_D] = d;
  zfcn_in[Z_LAM_X] = lam_x;
  zfcn_in[Z_LAM_F2] = lam_f2;
  
  enum ZOut{Z_D_DEF,Z_F12,Z_NUM_OUT};
  SXVector zfcn_out(Z_NUM_OUT);
  zfcn_out[Z_D_DEF] = d_def;
  zfcn_out[Z_F12] = vertcat(f1_z,f2_z);
  
  SXFunction zfcn(zfcn_in,zfcn_out);
  zfcn.init();
  if(verbose_){
    cout << "Generated reconstruction function ( " << zfcn.getAlgorithmSize() << " nodes)." << endl;
  }

  // Matrix A and B in lifted Newton
  SX B = zfcn.jac(Z_U,Z_F12);
  SX B1 = B(Slice(0,nf1),Slice(0,B.size2()));
  SX B2 = B(Slice(nf1,B.size1()),Slice(0,B.size2()));
  if(verbose_){
    cout << "Formed B1 (dimension " << B1.size1() << "-by-" << B1.size2() << ", "<< B1.size() << " nonzeros) " <<
    "and B2 (dimension " << B2.size1() << "-by-" << B2.size2() << ", "<< B2.size() << " nonzeros)." << endl;
  }
  
  // Step in u
  SX du = ssym("du",nu);
  SX dlam_f2 = ssym("dlam_f2",lam_f2.sparsity());
  
  SX b1 = f1_z;
  SX b2 = f2_z;
  SX e;
  if(nv > 0){
    
    // Directional derivative of Z
    vector<vector<SX> > Z_fwdSeed(2,zfcn_in);
    vector<vector<SX> > Z_fwdSens(2,zfcn_out);
    vector<vector<SX> > Z_adjSeed;
    vector<vector<SX> > Z_adjSens;
    
    Z_fwdSeed[0][Z_U].setZero();
    Z_fwdSeed[0][Z_D] = -d;
    Z_fwdSeed[0][Z_LAM_X].setZero();
    Z_fwdSeed[0][Z_LAM_F2].setZero();
    
    Z_fwdSeed[1][Z_U] = du;
    Z_fwdSeed[1][Z_D] = -d;
    Z_fwdSeed[1][Z_LAM_X].setZero();
    Z_fwdSeed[1][Z_LAM_F2] = dlam_f2;
    
    zfcn.eval(zfcn_in,zfcn_out,Z_fwdSeed,Z_fwdSens,Z_adjSeed,Z_adjSens);
    
    b1 += Z_fwdSens[0][Z_F12](Slice(0,nf1));
    b2 += Z_fwdSens[0][Z_F12](Slice(nf1,B.size1()));
    e = Z_fwdSens[1][Z_D_DEF];
  }
  if(verbose_){
    cout << "Formed b1 (dimension " << b1.size1() << "-by-" << b1.size2() << ", "<< b1.size() << " nonzeros) " <<
    "and b2 (dimension " << b2.size1() << "-by-" << b2.size2() << ", "<< b2.size() << " nonzeros)." << endl;
  }
  
  // Generate Gauss-Newton Hessian
  if(gauss_newton_){
    b1 = mul(trans(B1),b1);
    B1 = mul(trans(B1),B1);
    if(verbose_){
      cout << "Gauss Newton Hessian (dimension " << B1.size1() << "-by-" << B1.size2() << ", "<< B1.size() << " nonzeros)." << endl;
    }
  }
  
  // Make sure b1 and b2 are dense vectors
  makeDense(b1);
  makeDense(b2);
  
  // Quadratic approximation
  SXVector lfcn_in(LIN_NUM_IN);
  lfcn_in[LIN_X] = x;
  lfcn_in[LIN_D] = d;
  lfcn_in[LIN_LAM_X] = lam_x;
  lfcn_in[LIN_LAM_G] = lam_g;
  
  SXVector lfcn_out(LIN_NUM_OUT);
  lfcn_out[LIN_F1] = b1;
  lfcn_out[LIN_J1] = B1;
  lfcn_out[LIN_F2] = b2;
  lfcn_out[LIN_J2] = B2;
  lfcn_ = SXFunction(lfcn_in,lfcn_out);
//   lfcn_.setOption("verbose",true);
  lfcn_.setOption("number_of_fwd_dir",0);
  lfcn_.setOption("number_of_adj_dir",0);
  lfcn_.setOption("live_variables",true);
  lfcn_.init();
  if(verbose_){
    cout << "Generated linearization function ( " << shared_cast<SXFunction>(lfcn_).getAlgorithmSize() << " nodes)." << endl;
  }
    
  // Step expansion
  SXVector efcn_in(EXP_NUM_IN);
  copy(lfcn_in.begin(),lfcn_in.end(),efcn_in.begin());
  efcn_in[EXP_DU] = du;
  efcn_in[EXP_DLAM_F2] = dlam_f2;
  efcn_ = SXFunction(efcn_in,e);
  efcn_.setOption("number_of_fwd_dir",0);
  efcn_.setOption("number_of_adj_dir",0);
  efcn_.setOption("live_variables",true);
  efcn_.init();
  if(verbose_){
    cout << "Generated step expansion function ( " << shared_cast<SXFunction>(efcn_).getAlgorithmSize() << " nodes)." << endl;
  }
  
  // Current guess for the primal solution
  DMatrix &x_k = output(NLP_SOLVER_X);
  
  // Current guess for the dual solution
  DMatrix &lam_x_k = output(NLP_SOLVER_LAM_X);
  DMatrix &lam_g_k = output(NLP_SOLVER_LAM_G);

  // Allocate a QP solver
  QpSolverCreator qp_solver_creator = getOption("qp_solver");
  qp_solver_ = qp_solver_creator(B1.sparsity(),B2.sparsity());
  
  // Set options if provided
  if(hasSetOption("qp_solver_options")){
    Dictionary qp_solver_options = getOption("qp_solver_options");
    qp_solver_.setOption(qp_solver_options);
  }
  
  // Initialize the QP solver
  qp_solver_.init();
  if(verbose_){
    cout << "Allocated QP solver." << endl;
  }

  // Residual
  d_k_ = DMatrix(d.sparsity(),0);
  
  // Primal step
  dx_k_ = DMatrix(x_k.sparsity());

  // Dual step
  dlam_x_k_ = DMatrix(lam_x_k.sparsity());
  dlam_g_k_ = DMatrix(lam_g_k.sparsity());
  
}