// --------------
// -----Main-----
// --------------
int 
main (int argc, char** argv)
{
  // --------------------------------------
  // -----Parse Command Line Arguments-----
  // --------------------------------------
  if (pcl::console::find_argument (argc, argv, "-h") >= 0)
  {
    printUsage (argv[0]);
    return 0;
  }
  if (pcl::console::find_argument (argc, argv, "-m") >= 0)
  {
    setUnseenToMaxRange = true;
    cout << "Setting unseen values in range image to maximum range readings.\n";
  }
  int tmp_coordinate_frame;
  if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
  {
    coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
    cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";
  }
  if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)
    cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";
  angular_resolution = pcl::deg2rad (angular_resolution);
  
  // ------------------------------------------------------------------
  // -----Read pcd file or create example point cloud if not given-----
  // ------------------------------------------------------------------
  pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);
  pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
  pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;
  Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
  std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
  if (!pcd_filename_indices.empty ())
  {
    std::string filename = argv[pcd_filename_indices[0]];
    if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
    {
      cout << "Was not able to open file \""<<filename<<"\".\n";
      printUsage (argv[0]);
      return 0;
    }
    scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
                                                               point_cloud.sensor_origin_[1],
                                                               point_cloud.sensor_origin_[2])) *
                        Eigen::Affine3f (point_cloud.sensor_orientation_);
  
    std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";
    if (pcl::io::loadPCDFile(far_ranges_filename.c_str(), far_ranges) == -1)
      std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";
  }
  else
  {
    cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n";
    for (float x=-0.5f; x<=0.5f; x+=0.01f)
    {
      for (float y=-0.5f; y<=0.5f; y+=0.01f)
      {
        PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;
        point_cloud.points.push_back (point);
      }
    }
    point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;
  }
  
  // -----------------------------------------------
  // -----Create RangeImage from the PointCloud-----
  // -----------------------------------------------
  float noise_level = 0.0;
  float min_range = 0.0f;
  int border_size = 1;
  boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
  pcl::RangeImage& range_image = *range_image_ptr;   
  range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                   scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
  range_image.integrateFarRanges (far_ranges);
  if (setUnseenToMaxRange)
    range_image.setUnseenToMaxRange ();

  // --------------------------------------------
  // -----Open 3D viewer and add point cloud-----
  // --------------------------------------------
  pcl::visualization::PCLVisualizer viewer ("3D Viewer");
  viewer.setBackgroundColor (1, 1, 1);
  viewer.addCoordinateSystem (1.0f);
  pcl::visualization::PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 0, 0, 0);
  viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");
  //PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 150, 150, 150);
  //viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
  //viewer.setPointCloudRenderingProperties (PCL_VISUALIZER_POINT_SIZE, 2, "range image");
  
  // -------------------------
  // -----Extract borders-----
  // -------------------------
  pcl::RangeImageBorderExtractor border_extractor (&range_image);
  pcl::PointCloud<pcl::BorderDescription> border_descriptions;
  border_extractor.compute (border_descriptions);
  
  // ----------------------------------
  // -----Show points in 3D viewer-----
  // ----------------------------------
  pcl::PointCloud<pcl::PointWithRange>::Ptr border_points_ptr(new pcl::PointCloud<pcl::PointWithRange>),
                                            veil_points_ptr(new pcl::PointCloud<pcl::PointWithRange>),
                                            shadow_points_ptr(new pcl::PointCloud<pcl::PointWithRange>);
  pcl::PointCloud<pcl::PointWithRange>& border_points = *border_points_ptr,
                                      & veil_points = * veil_points_ptr,
                                      & shadow_points = *shadow_points_ptr;
  for (int y=0; y< (int)range_image.height; ++y)
  {
    for (int x=0; x< (int)range_image.width; ++x)
    {
      if (border_descriptions.points[y*range_image.width + x].traits[pcl::BORDER_TRAIT__OBSTACLE_BORDER])
        border_points.points.push_back (range_image.points[y*range_image.width + x]);
      if (border_descriptions.points[y*range_image.width + x].traits[pcl::BORDER_TRAIT__VEIL_POINT])
        veil_points.points.push_back (range_image.points[y*range_image.width + x]);
      if (border_descriptions.points[y*range_image.width + x].traits[pcl::BORDER_TRAIT__SHADOW_BORDER])
        shadow_points.points.push_back (range_image.points[y*range_image.width + x]);
    }
  }
  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> border_points_color_handler (border_points_ptr, 0, 255, 0);
  viewer.addPointCloud<pcl::PointWithRange> (border_points_ptr, border_points_color_handler, "border points");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "border points");
  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> veil_points_color_handler (veil_points_ptr, 255, 0, 0);
  viewer.addPointCloud<pcl::PointWithRange> (veil_points_ptr, veil_points_color_handler, "veil points");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "veil points");
  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> shadow_points_color_handler (shadow_points_ptr, 0, 255, 255);
  viewer.addPointCloud<pcl::PointWithRange> (shadow_points_ptr, shadow_points_color_handler, "shadow points");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "shadow points");
  
  //-------------------------------------
  // -----Show points on range image-----
  // ------------------------------------
  pcl::visualization::RangeImageVisualizer* range_image_borders_widget = NULL;
  range_image_borders_widget =
    pcl::visualization::RangeImageVisualizer::getRangeImageBordersWidget (range_image, -std::numeric_limits<float>::infinity (), std::numeric_limits<float>::infinity (), false,
                                                                          border_descriptions, "Range image with borders");
  // -------------------------------------
  
  
  //--------------------
  // -----Main loop-----
  //--------------------
  while (!viewer.wasStopped ())
  {
    range_image_borders_widget->spinOnce ();
    viewer.spinOnce ();
    pcl_sleep(0.01);
  }
}
Beispiel #2
0
// ----------------------------------------------------------------------------
void loadFeatures3d(BoWFeatures &features)
{
    typedef pcl::PointXYZ PointType;
    float angular_resolution = pcl::deg2rad (0.15f);
    float support_size = 0.1f;

    features.clear();
    features.reserve(files_list_3d.size());
    
    float noise_level = 0.0f;
    float min_range = 0.0f;
    int border_size = 1;
    
    double acc_media = 0,media=0,scarti=0,varianza=0;
    //pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
    pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
    pcl::RangeImage::Ptr range_image_ptr (new pcl::RangeImage);
    pcl::RangeImage& range_image = *range_image_ptr;
    
    for (int i = 0; i < files_list_3d.size(); ++i) {
        clock_t begin = clock();
        pcl::PointCloud<PointType>::Ptr point_cloud_wf (new pcl::PointCloud<PointType>);
        pcl::PointCloud<PointType>::Ptr point_cloud (new pcl::PointCloud<PointType>);
        
        pcl::io::loadPCDFile (files_list_3d[i], *point_cloud_wf);

        //filtraggio valori NaN
        std::vector<int> indices;
        pcl::removeNaNFromPointCloud (*point_cloud_wf,*point_cloud_wf,indices);
        pcl::VoxelGrid<PointType> sor;
        sor.setInputCloud (point_cloud_wf);
        sor.setLeafSize (0.01f, 0.01f, 0.01f);
        sor.filter (*point_cloud);
        cout << "Estrazione NARF: " << files_list_3d[i] ;
        
        Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity());
        scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f ((*point_cloud).sensor_origin_[0],
                                             (*point_cloud).sensor_origin_[1],
                (*point_cloud).sensor_origin_[2])) *
                Eigen::Affine3f ((*point_cloud).sensor_orientation_);
       // pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
        range_image.max_no_of_threads = 2;
        range_image.createFromPointCloud ((*point_cloud),angular_resolution,pcl::deg2rad(360.0f),pcl::deg2rad(180.0f),scene_sensor_pose,coordinate_frame,noise_level,min_range,border_size);
        range_image.setUnseenToMaxRange();
        //saveRangeImagePlanarFilePNG(boost::lexical_cast<string>(i),range_image);
        
        //range_image_widget.showRangeImage (range_image);
        //range_image_widget.spin();
        pcl::RangeImageBorderExtractor range_image_border_extractor;
        pcl::NarfKeypoint narf_keypoint_detector;
        narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);
        narf_keypoint_detector.setRangeImage (&range_image);
        narf_keypoint_detector.getParameters().support_size = support_size;
        //euristiche, per avvicinarsi al real time
        narf_keypoint_detector.getParameters().max_no_of_threads = 2;
        narf_keypoint_detector.getParameters().calculate_sparse_interest_image=false; //false
        narf_keypoint_detector.getParameters().use_recursive_scale_reduction=true; //true
        //narf_keypoint_detector.getParameters().add_points_on_straight_edges=true;
        
        pcl::PointCloud<int> keypoint_indices;
        narf_keypoint_detector.compute (keypoint_indices);
        
        vector<int> keypoint_indices2;
        keypoint_indices2.resize (keypoint_indices.points.size ());
        for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector type
            keypoint_indices2[i]=keypoint_indices.points[i];
        pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);
        narf_descriptor.getParameters().support_size = support_size;
        narf_descriptor.getParameters().rotation_invariant = true;
        pcl::PointCloud<pcl::Narf36> narf_descriptors;
        
        narf_descriptor.compute (narf_descriptors);
        
        clock_t end = clock();
        double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC;
        media = media + elapsed_secs;
        acc_media = media / (i+1);
        cout << "media: " << acc_media<<endl;
        scarti += pow(elapsed_secs-acc_media,2);
        varianza = sqrt(scarti/(i+1));
        cout << "varianza: " << varianza<<endl; 
        cout << ". Estratti "<<narf_descriptors.size ()<<" descrittori. Punti: " <<keypoint_indices.points.size ()<< "."<<endl;
        
        features.push_back(vector<vector<float> >());
        for (int p = 0; p < narf_descriptors.size(); p++) {
            vector<float> flot;
            copy(narf_descriptors[p].descriptor, narf_descriptors[p].descriptor+FNarf::L, back_inserter(flot));
            features.back().push_back(flot);
            flot.clear();
        } 
        
        indices.clear();
        range_image_border_extractor.clearData();
        narf_keypoint_detector.clearData();
        (*range_image_ptr).clear();
        keypoint_indices.clear();
        keypoint_indices2.clear();
        (*point_cloud).clear();
        (*point_cloud_wf).clear();
        range_image.clear();
        narf_descriptors.clear();
        narf_descriptor = NULL;
    }
    cout << "Estrazione terminata." << endl;
}
Beispiel #3
0
// --------------
// -----Main-----
// --------------
int 
main (int argc, char** argv)
{
  // --------------------------------------
  // -----Parse Command Line Arguments-----
  // --------------------------------------
  if (pcl::console::find_argument (argc, argv, "-h") >= 0)
  {
    printUsage (argv[0]);
    return 0;
  }
  if (pcl::console::find_argument (argc, argv, "-l") >= 0)
  {
    live_update = true;
    std::cout << "Live update is on.\n";
  }
  if (pcl::console::parse (argc, argv, "-rx", angular_resolution_x) >= 0)
    std::cout << "Setting angular resolution in x-direction to "<<angular_resolution_x<<"deg.\n";
  if (pcl::console::parse (argc, argv, "-ry", angular_resolution_y) >= 0)
    std::cout << "Setting angular resolution in y-direction to "<<angular_resolution_y<<"deg.\n";
  int tmp_coordinate_frame;
  if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
  {
    coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
    std::cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";
  }
  angular_resolution_x = pcl::deg2rad (angular_resolution_x);
  angular_resolution_y = pcl::deg2rad (angular_resolution_y);
  
  // ------------------------------------------------------------------
  // -----Read pcd file or create example point cloud if not given-----
  // ------------------------------------------------------------------
  pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);
  pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
  Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
  std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
  if (!pcd_filename_indices.empty ())
  {
    std::string filename = argv[pcd_filename_indices[0]];
    if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
    {
      std::cout << "Was not able to open file \""<<filename<<"\".\n";
      printUsage (argv[0]);
      return 0;
    }
    scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
                                                             point_cloud.sensor_origin_[1],
                                                             point_cloud.sensor_origin_[2])) *
                        Eigen::Affine3f (point_cloud.sensor_orientation_);
  }
  else
  {
    std::cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n";
    for (float x=-0.5f; x<=0.5f; x+=0.01f)
    {
      for (float y=-0.5f; y<=0.5f; y+=0.01f)
      {
        PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;
        point_cloud.points.push_back (point);
      }
    }
    point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;
  }
  
  // -----------------------------------------------
  // -----Create RangeImage from the PointCloud-----
  // -----------------------------------------------
  float noise_level = 0.0;
  float min_range = 0.0f;
  int border_size = 1;
  boost::shared_ptr<pcl::RangeImage> range_image_ptr(new pcl::RangeImage);
  pcl::RangeImage& range_image = *range_image_ptr;   
  range_image.createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y,
                                    pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                    scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
  
  // --------------------------------------------
  // -----Open 3D viewer and add point cloud-----
  // --------------------------------------------
  pcl::visualization::PCLVisualizer viewer ("3D Viewer");
  viewer.setBackgroundColor (1, 1, 1);
  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);
  viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");
  //viewer.addCoordinateSystem (1.0f, "global");
  //PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);
  //viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");
  viewer.initCameraParameters ();
  setViewerPose(viewer, range_image.getTransformationToWorldSystem ());
  
  // --------------------------
  // -----Show range image-----
  // --------------------------
  pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
  range_image_widget.showRangeImage (range_image);
  
  //--------------------
  // -----Main loop-----
  //--------------------
  while (!viewer.wasStopped ())
  {
    range_image_widget.spinOnce ();
    viewer.spinOnce ();
    pcl_sleep (0.01);
    
    if (live_update)
    {
      scene_sensor_pose = viewer.getViewerPose();
      range_image.createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y,
                                        pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                        scene_sensor_pose, pcl::RangeImage::LASER_FRAME, noise_level, min_range, border_size);
      range_image_widget.showRangeImage (range_image);
    }
  }
}
// --------------
// -----Main-----
// --------------
int
main (int argc, char** argv)
{
    // --------------------------------------
    // -----Parse Command Line Arguments-----
    // --------------------------------------
    if (pcl::console::find_argument (argc, argv, "-h") >= 0)
    {
        printUsage (argv[0]);
        return 0;
    }
    if (pcl::console::find_argument (argc, argv, "-m") >= 0)
    {
        setUnseenToMaxRange = true;
        cout << "Setting unseen values in range image to maximum range readings.\n";
    }
    if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0)
        cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".\n";
    int tmp_coordinate_frame;
    if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
    {
        coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
        cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";
    }
    if (pcl::console::parse (argc, argv, "-s", support_size) >= 0)
        cout << "Setting support size to "<<support_size<<".\n";
    if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)
        cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";
    angular_resolution = pcl::deg2rad (angular_resolution);

    // ------------------------------------------------------------------
    // -----Read pcd file or create example point cloud if not given-----
    // ------------------------------------------------------------------
    pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);
    pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
    pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;
    Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
    std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
    if (!pcd_filename_indices.empty ())
    {
        std::string filename = argv[pcd_filename_indices[0]];
        if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
        {
            cerr << "Was not able to open file \""<<filename<<"\".\n";
            printUsage (argv[0]);
            return 0;
        }
        scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
                                             point_cloud.sensor_origin_[1],
                                             point_cloud.sensor_origin_[2])) *
                            Eigen::Affine3f (point_cloud.sensor_orientation_);
        std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";
        if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)
            std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";
    }
    else
    {
        setUnseenToMaxRange = true;
        cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n";
        for (float x=-0.5f; x<=0.5f; x+=0.01f)
        {
            for (float y=-0.5f; y<=0.5f; y+=0.01f)
            {
                PointType point;
                point.x = x;
                point.y = y;
                point.z = 2.0f - y;
                point_cloud.points.push_back (point);
            }
        }
        point_cloud.width = (int) point_cloud.points.size ();
        point_cloud.height = 1;
    }

    // -----------------------------------------------
    // -----Create RangeImage from the PointCloud-----
    // -----------------------------------------------
    float noise_level = 0.0;
    float min_range = 0.0f;
    int border_size = 1;
    boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
    pcl::RangeImage& range_image = *range_image_ptr;
    range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                      scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
    range_image.integrateFarRanges (far_ranges);
    if (setUnseenToMaxRange)
        range_image.setUnseenToMaxRange ();

    // --------------------------------------------
    // -----Open 3D viewer and add point cloud-----
    // --------------------------------------------
    pcl::visualization::PCLVisualizer viewer ("3D Viewer");
    viewer.setBackgroundColor (1, 1, 1);
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);
    viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
    viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");
    //viewer.addCoordinateSystem (1.0f);
    //PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);
    //viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");
    viewer.initCameraParameters ();
    setViewerPose (viewer, range_image.getTransformationToWorldSystem ());

    // --------------------------
    // -----Show range image-----
    // --------------------------
    pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
    range_image_widget.showRangeImage (range_image);

    // --------------------------------
    // -----Extract NARF keypoints-----
    // --------------------------------
    pcl::RangeImageBorderExtractor range_image_border_extractor;
    pcl::NarfKeypoint narf_keypoint_detector;
    narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);
    narf_keypoint_detector.setRangeImage (&range_image);
    narf_keypoint_detector.getParameters ().support_size = support_size;

    pcl::PointCloud<int> keypoint_indices;
    narf_keypoint_detector.compute (keypoint_indices);
    std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.\n";

    // ----------------------------------------------
    // -----Show keypoints in range image widget-----
    // ----------------------------------------------
    //for (size_t i=0; i<keypoint_indices.points.size (); ++i)
    //range_image_widget.markPoint (keypoint_indices.points[i]%range_image.width,
    //keypoint_indices.points[i]/range_image.width);

    // -------------------------------------
    // -----Show keypoints in 3D viewer-----
    // -------------------------------------
    pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints_ptr (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>& keypoints = *keypoints_ptr;
    keypoints.points.resize (keypoint_indices.points.size ());
    for (size_t i=0; i<keypoint_indices.points.size (); ++i)
        keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);
    viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, "keypoints");
    viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints");

    // ------------------------------------------------------
    // -----Extract NARF descriptors for interest points-----
    // ------------------------------------------------------
    std::vector<int> keypoint_indices2;
    keypoint_indices2.resize (keypoint_indices.points.size ());
    for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector type
        keypoint_indices2[i]=keypoint_indices.points[i];
    pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);
    narf_descriptor.getParameters ().support_size = support_size;
    narf_descriptor.getParameters ().rotation_invariant = rotation_invariant;
    pcl::PointCloud<pcl::Narf36> narf_descriptors;
    narf_descriptor.compute (narf_descriptors);
    cout << "Extracted "<<narf_descriptors.size ()<<" descriptors for "
         <<keypoint_indices.points.size ()<< " keypoints.\n";

    //--------------------
    // -----Main loop-----
    //--------------------
    while (!viewer.wasStopped ())
    {
        range_image_widget.spinOnce ();  // process GUI events
        viewer.spinOnce ();
        pcl_sleep(0.01);
    }
}
int 
main (int argc, char** argv)
{
  // --------------------------------------
  // -----Parse Command Line Arguments-----
  // --------------------------------------
  if (pcl::console::find_argument (argc, argv, "-h") >= 0)
  {
    printUsage (argv[0]);
    return 0;
  }
  if (pcl::console::find_argument (argc, argv, "-m") >= 0)
  {
    setUnseenToMaxRange = true;
    std::cout << "Setting unseen values in range image to maximum range readings.\n";
  }
  if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0)
    std::cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".\n";
  int tmp_coordinate_frame;
  if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
  {
    coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
    std::cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";
  }
  if (pcl::console::parse (argc, argv, "-s", support_size) >= 0)
    std::cout << "Setting support size to "<<support_size<<".\n";
  if (pcl::console::parse (argc, argv, "-d", descriptor_size) >= 0)
    std::cout << "Setting descriptor size to "<<descriptor_size<<".\n";
  if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)
    std::cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";
  angular_resolution = pcl::deg2rad (angular_resolution);
  

  // -----------------------
  // -----Read pcd file-----
  // -----------------------
  pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);
  pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
  pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;
  Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
  std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
  if (!pcd_filename_indices.empty ())
  {
    std::string filename = argv[pcd_filename_indices[0]];
    if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
    {
      std::cout << "Was not able to open file \""<<filename<<"\".\n";
      printUsage (argv[0]);
      return 0;
    }
    scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
                                                               point_cloud.sensor_origin_[1],
                                                               point_cloud.sensor_origin_[2])) *
                        Eigen::Affine3f (point_cloud.sensor_orientation_);
    std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";
    if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)
      std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";
  }
  else
  {
    std::cout << "\nNo *.pcd file for scene given.\n\n";
    printUsage (argv[0]);
    return 1;
  }
  
  // -----------------------------------------------
  // -----Create RangeImage from the PointCloud-----
  // -----------------------------------------------
  float noise_level = 0.0;
  float min_range = 0.0f;
  int border_size = 1;
  pcl::RangeImage::Ptr range_image_ptr (new pcl::RangeImage);
  pcl::RangeImage& range_image = *range_image_ptr;
  range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                   scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
  range_image.integrateFarRanges (far_ranges);
  if (setUnseenToMaxRange)
    range_image.setUnseenToMaxRange ();
  
  // Extract NARF features:
  std::cout << "Now extracting NARFs in every image point.\n";
  std::vector<std::vector<pcl::Narf*> > narfs;
  narfs.resize (range_image.points.size ());
  int last_percentage=-1;
  for (unsigned int y=0; y<range_image.height; ++y)
  {
    for (unsigned int x=0; x<range_image.width; ++x)
    {
      int index = y*range_image.width+x;
      int percentage = (int) ((100*index) / range_image.points.size ());
      if (percentage > last_percentage)
      {
        std::cout << percentage<<"% "<<std::flush;
        last_percentage = percentage;
      }
      pcl::Narf::extractFromRangeImageAndAddToList (range_image, x, y, descriptor_size,
                                                    support_size, rotation_invariant != 0, narfs[index]);
      //std::cout << "Extracted "<<narfs[index].size ()<<" features for pixel "<<x<<","<<y<<".\n";
    }
  }
  std::cout << "100%\n";
  std::cout << "Done.\n\n Now you can click on points in the image to visualize how the descriptor is "
       << "extracted and see the descriptor distances to every other point..\n";
  
  //---------------------
  // -----Show image-----
  // --------------------
  pcl::visualization::RangeImageVisualizer range_image_widget ("Scene range image"),
                                           surface_patch_widget("Descriptor's surface patch"),
                                           descriptor_widget("Descriptor"),
                                           descriptor_distances_widget("descriptor distances");
  range_image_widget.showRangeImage (range_image);
  //range_image_widget.visualize_selected_point = true;

  //--------------------
  // -----Main loop-----
  //--------------------
  while (true) 
  {
    range_image_widget.spinOnce ();  // process GUI events
    surface_patch_widget.spinOnce ();  // process GUI events
    descriptor_widget.spinOnce ();  // process GUI events
    pcl_sleep(0.01);
    
    //if (!range_image_widget.mouse_click_happened)
      continue;
    //range_image_widget.mouse_click_happened = false;
    //float clicked_pixel_x_f = range_image_widget.last_clicked_point_x,
          //clicked_pixel_y_f = range_image_widget.last_clicked_point_y;
    int clicked_pixel_x, clicked_pixel_y;
    //range_image.real2DToInt2D (clicked_pixel_x_f, clicked_pixel_y_f, clicked_pixel_x, clicked_pixel_y);
    if (!range_image.isValid (clicked_pixel_x, clicked_pixel_y))
      continue;
      //Vector3f clicked_3d_point;
      //range_image.getPoint (clicked_pixel_x, clicked_pixel_y, clicked_3d_point);
    
    //surface_patch_widget.show (false);
    //descriptor_widget.show (false);"
    
    int selected_index = clicked_pixel_y*range_image.width + clicked_pixel_x;
    pcl::Narf narf;
    if (!narf.extractFromRangeImage (range_image, clicked_pixel_x, clicked_pixel_y,
                                                                         descriptor_size, support_size))
    {
      continue;
    }
    
    int surface_patch_pixel_size = narf.getSurfacePatchPixelSize ();
    float surface_patch_world_size = narf.getSurfacePatchWorldSize ();
    surface_patch_widget.showFloatImage (narf.getSurfacePatch (), surface_patch_pixel_size, surface_patch_pixel_size,
                                         -0.5f*surface_patch_world_size, 0.5f*surface_patch_world_size, true);
    float surface_patch_rotation = narf.getSurfacePatchRotation ();
    float patch_middle = 0.5f* (float (surface_patch_pixel_size-1));
    float angle_step_size = pcl::deg2rad (360.0f)/narf.getDescriptorSize ();
    float cell_size = surface_patch_world_size/float (surface_patch_pixel_size),
          cell_factor = 1.0f/cell_size,
          max_dist = 0.5f*surface_patch_world_size,
          line_length = cell_factor* (max_dist-0.5f*cell_size);
    for (int descriptor_value_idx=0; descriptor_value_idx<narf.getDescriptorSize (); ++descriptor_value_idx)
    {
      float angle = descriptor_value_idx*angle_step_size + surface_patch_rotation;
      //surface_patch_widget.markLine (patch_middle, patch_middle, patch_middle+line_length*sinf (angle),
                                     //patch_middle+line_length*-cosf (angle), pcl::visualization::Vector3ub (0,255,0));
    }
    std::vector<float> rotations, strengths;
    narf.getRotations (rotations, strengths);
    float radius = 0.5f*surface_patch_pixel_size;
    for (unsigned int i=0; i<rotations.size (); ++i)
    {
      //surface_patch_widget.markLine (radius-0.5, radius-0.5, radius-0.5f + 2.0f*radius*sinf (rotations[i]),
                                                //radius-0.5f - 2.0f*radius*cosf (rotations[i]), pcl::visualization::Vector3ub (255,0,0));
    }
    
    descriptor_widget.showFloatImage (narf.getDescriptor (), narf.getDescriptorSize (), 1, -0.1f, 0.3f, true);

    //===================================
    //=====Compare with all features=====
    //===================================
    const std::vector<pcl::Narf*>& narfs_of_selected_point = narfs[selected_index];
    if (narfs_of_selected_point.empty ())
      continue;
    
    //descriptor_distances_widget.show (false);
    float* descriptor_distance_image = new float[range_image.points.size ()];
    for (unsigned int point_index=0; point_index<range_image.points.size (); ++point_index)
    {
      float& descriptor_distance = descriptor_distance_image[point_index];
      descriptor_distance = std::numeric_limits<float>::infinity ();
      std::vector<pcl::Narf*>& narfs_of_current_point = narfs[point_index];
      if (narfs_of_current_point.empty ())
        continue;
      for (unsigned int i=0; i<narfs_of_selected_point.size (); ++i)
      {
        for (unsigned int j=0; j<narfs_of_current_point.size (); ++j)
        {
          descriptor_distance = (std::min)(descriptor_distance,
                                           narfs_of_selected_point[i]->getDescriptorDistance (*narfs_of_current_point[j]));
        }
      }
    }
    descriptor_distances_widget.showFloatImage (descriptor_distance_image, range_image.width, range_image.height,
                                               -std::numeric_limits<float>::infinity (), std::numeric_limits<float>::infinity (), true);
    delete[] descriptor_distance_image;
  }
}