Beispiel #1
0
void oci8_do_parse_connect_string(VALUE conn_str, VALUE *user, VALUE *pass, VALUE *dbname, VALUE *mode)
{
    static VALUE re = Qnil;
    if (NIL_P(re)) {
        re = rb_eval_string(CONN_STR_REGEX);
        rb_global_variable(&re);
    }
    OCI8SafeStringValue(conn_str);
    if (RTEST(rb_reg_match(re, conn_str))) {
        *user = rb_reg_nth_match(1, rb_backref_get());
        *pass = rb_reg_nth_match(2, rb_backref_get());
        *dbname = rb_reg_nth_match(3, rb_backref_get());
        *mode = rb_reg_nth_match(4, rb_backref_get());
        if (RSTRING_LEN(*user) == 0 && RSTRING_LEN(*pass) == 0) {
            /* external credential */
            *user = Qnil;
            *pass = Qnil;
        }
        if (!NIL_P(*mode)) {
            char *ptr;
            SafeStringValue(*mode);
            ptr = RSTRING_PTR(*mode);
            if (strcasecmp(ptr, "SYSDBA") == 0) {
                *mode = sym_SYSDBA;
            } else if (strcasecmp(ptr, "SYSOPER") == 0) {
                *mode = sym_SYSOPER;
            }
        }
    } else {
        rb_raise(rb_eArgError, "invalid connect string \"%s\" (expect \"username/password[@(tns_name|//host[:port]/service_name)][ as (sysdba|sysoper)]\"", RSTRING_PTR(conn_str));
    }
}
Beispiel #2
0
PRIMITIVE VALUE
vm_get_special(char code)
{
    VALUE backref = rb_backref_get();
    if (backref == Qnil) {
	return Qnil;
    }

    VALUE val;
    switch (code) {
	case '&':
	    val = rb_reg_last_match(backref);
	    break;
	case '`':
	    val = rb_reg_match_pre(backref);
	    break;
	case '\'':
	    val = rb_reg_match_post(backref);
	    break;
	case '+':
	    val = rb_reg_match_last(backref);
	    break;
	default:
	    // Boundaries check is done in rb_reg_nth_match().
	    val = rb_reg_nth_match((int)code, backref);
	    break;
    }
    return val;
}
Beispiel #3
0
/*
 * call-seq:
 *    str.to_c  ->  complex
 *
 * Returns a complex which denotes the string form.  The parser
 * ignores leading whitespaces and trailing garbage.  Any digit
 * sequences can be separated by an underscore.  Returns zero for null
 * or garbage string.
 *
 * For example:
 *
 *    '9'.to_c           #=> (9+0i)
 *    '2.5'.to_c         #=> (2.5+0i)
 *    '2.5/1'.to_c       #=> ((5/2)+0i)
 *    '-3/2'.to_c        #=> ((-3/2)+0i)
 *    '-i'.to_c          #=> (0-1i)
 *    '45i'.to_c         #=> (0+45i)
 *    '3-4i'.to_c        #=> (3-4i)
 *    '-4e2-4e-2i'.to_c  #=> (-400.0-0.04i)
 *    '-0.0-0.0i'.to_c   #=> (-0.0-0.0i)
 *    '1/2+3/4i'.to_c    #=> ((1/2)+(3/4)*i)
 *    'ruby'.to_c        #=> (0+0i)
 */
static VALUE
string_to_c(VALUE self)
{
    VALUE s, a, backref;

    backref = rb_backref_get();
    rb_match_busy(backref);

    s = f_gsub(self, underscores_pat, an_underscore);
    a = string_to_c_internal(s);

    rb_backref_set(backref);

    if (!NIL_P(RARRAY_PTR(a)[0]))
	return RARRAY_PTR(a)[0];
    return rb_complex_new1(INT2FIX(0));
}
Beispiel #4
0
static VALUE
nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
{
    VALUE a1, a2, backref;

    rb_scan_args(argc, argv, "11", &a1, &a2);

    if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
	rb_raise(rb_eTypeError, "can't convert nil into Complex");

    backref = rb_backref_get();
    rb_match_busy(backref);

    if (RB_TYPE_P(a1, T_STRING)) {
	a1 = string_to_c_strict(a1);
    }

    if (RB_TYPE_P(a2, T_STRING)) {
	a2 = string_to_c_strict(a2);
    }

    rb_backref_set(backref);

    if (RB_TYPE_P(a1, T_COMPLEX)) {
	{
	    get_dat1(a1);

	    if (k_exact_zero_p(dat->imag))
		a1 = dat->real;
	}
    }

    if (RB_TYPE_P(a2, T_COMPLEX)) {
	{
	    get_dat1(a2);

	    if (k_exact_zero_p(dat->imag))
		a2 = dat->real;
	}
    }

    if (RB_TYPE_P(a1, T_COMPLEX)) {
	if (argc == 1 || (k_exact_zero_p(a2)))
	    return a1;
    }

    if (argc == 1) {
	if (k_numeric_p(a1) && !f_real_p(a1))
	    return a1;
	/* should raise exception for consistency */
	if (!k_numeric_p(a1))
	    return rb_convert_type(a1, T_COMPLEX, "Complex", "to_c");
    }
    else {
	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
	    (!f_real_p(a1) || !f_real_p(a2)))
	    return f_add(a1,
			 f_mul(a2,
			       f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
    }

    {
	VALUE argv2[2];
	argv2[0] = a1;
	argv2[1] = a2;
	return nucomp_s_new(argc, argv2, klass);
    }
}
Beispiel #5
0
VALUE regexp_spec_backref_get(VALUE self) {
  return rb_backref_get();
}
Beispiel #6
0
/* @overload gsub(pattern, replacement)
 *
 *   Returns the receiver with all matches of PATTERN replaced by REPLACEMENT,
 *   inheriting any taint and untrust from the receiver and from REPLACEMENT.
 *
 *   The REPLACEMENT is used as a specification for what to replace matches
 *   with:
 *
 *   <table>
 *     <thead>
 *       <tr><th>Specification</th><th>Replacement</th></tr>
 *     </thead>
 *     <tbody>
 *       <tr>
 *         <td><code>\1</code>, <code>\2</code>, …, <code>\</code><em>n</em></td>
 *         <td>Numbered sub-match <em>n</em></td>
 *       </tr>
 *       <tr>
 *         <td><code>\k&lt;</code><em>name</em><code>></code></td>
 *         <td>Named sub-match <em>name</em></td>
 *       </tr>
 *     </tbody>
 *   </table>
 *
 *   The Regexp special variables `$&`, `$'`, <code>$\`</code>, `$1`, `$2`, …,
 *   `$`_n_ are updated accordingly.
 *
 *   @param [Regexp, #to_str] pattern
 *   @param [#to_str] replacement
 *   @return [U::String]
 *
 * @overload gsub(pattern, replacements)
 *
 *   Returns the receiver with all matches of PATTERN replaced by
 *   REPLACEMENTS#[_match_], where _match_ is the matched substring, inheriting
 *   any taint and untrust from the receiver and from the
 *   REPLACEMENTS#[_match_]es, as well as any taint on REPLACEMENTS.
 *
 *   The Regexp special variables `$&`, `$'`, <code>$\`</code>, `$1`, `$2`, …,
 *   `$`_n_ are updated accordingly.
 *
 *   @param [Regexp, #to_str] pattern
 *   @param [#to_hash] replacements
 *   @raise [RuntimeError] If any replacement is the result being constructed
 *   @raise [Exception] Any error raised by REPLACEMENTS#default, if it gets
 *     called
 *   @return [U::String]
 *
 * @overload gsub(pattern){ |match| … }
 *
 *   Returns the receiver with all matches of PATTERN replaced by the results
 *   of the given block, inheriting any taint and untrust from the receiver and
 *   from the results of the given block.
 *
 *   The Regexp special variables `$&`, `$'`, <code>$\`</code>, `$1`, `$2`, …,
 *   `$`_n_ are updated accordingly.
 *
 *   @param [Regexp, #to_str] pattern
 *   @yieldparam [U::String] match
 *   @yieldreturn [#to_str]
 *   @return [U::String]
 *
 * @overload gsub(pattern)
 *
 *   Returns an Enumerator over the matches of PATTERN in the receiver.
 *
 *   The Regexp special variables `$&`, `$'`, <code>$\`</code>, `$1`, `$2`, …,
 *   `$`_n_ will be updated accordingly.
 *
 *   @param [Regexp, #to_str] pattern
 *   @return [Enumerator] */
VALUE
rb_u_string_gsub(int argc, VALUE *argv, VALUE self)
{
        VALUE pattern, replacement;
        VALUE replacements = Qnil;
        bool use_block = false;
        bool tainted = false;

        if (argc == 1) {
                RETURN_ENUMERATOR(self, argc, argv);
                use_block = true;
        }

        if (rb_scan_args(argc, argv, "11", &pattern, &replacement) == 2) {
                replacements = rb_check_convert_type(replacement, T_HASH,
                                                     "Hash", "to_hash");
                if (NIL_P(replacements))
                        StringValue(replacement);
                if (OBJ_TAINTED(replacement))
                        tainted = true;
        }

        pattern = rb_u_pattern_argument(pattern, true);

        VALUE str = rb_str_to_str(self);
        long begin = rb_reg_search(pattern, str, 0, 0);
        if (begin < 0)
                return self;

        const char *base = RSTRING_PTR(str);
        const char *p = base;
        const char *end = RSTRING_END(str);
        VALUE substituted = rb_u_str_buf_new(RSTRING_LEN(str) + 30);
        do {
                VALUE match = rb_backref_get();
                struct re_registers *registers = RMATCH_REGS(match);
                VALUE result;

                if (use_block || !NIL_P(replacements)) {
                        if (use_block) {
                                VALUE ustr = rb_u_string_new_rb(rb_reg_nth_match(0, match));
                                result = rb_u_string_object_as_string(rb_yield(ustr));
                        } else {
                                VALUE ustr = rb_u_string_new_c(self,
                                                               base + registers->beg[0],
                                                               registers->end[0] - registers->beg[0]);
                                result = rb_u_string_object_as_string(rb_hash_aref(replacements, ustr));
                        }

                        if (result == substituted)
                                rb_u_raise(rb_eRuntimeError,
                                           "result of block is string being built; please try not to cheat");
                } else
                        result =
#ifdef HAVE_RB_REG_REGSUB4
                        rb_reg_regsub(replacement, str, registers, pattern);
#else
                        rb_reg_regsub(replacement, str, registers);
#endif

                if (OBJ_TAINTED(result))
                        tainted = true;

                const struct rb_u_string *value = RVAL2USTRING_ANY(result);

                rb_str_buf_cat(substituted, p, registers->beg[0] - (p - base));
                rb_str_buf_cat(substituted, USTRING_STR(value), USTRING_LENGTH(value));
                OBJ_INFECT(substituted, result);

                p = base + registers->end[0];
                if (registers->beg[0] == registers->end[0])
                        p = u_next(p);
                if (p >= end)
                        break;

                begin = rb_reg_search(pattern, str, registers->end[0], 0);
        } while (begin >= 0);

        if (p < end)
                rb_str_buf_cat(substituted, p, end - p);

        rb_reg_search(pattern, str, end - p, 0);

        RBASIC(substituted)->klass = rb_obj_class(str);
        OBJ_INFECT(substituted, str);
        if (tainted)
                OBJ_TAINT(substituted);

        return rb_u_string_new_rb(substituted);
}
Beispiel #7
0
static VALUE
nurat_s_convert(VALUE klass, SEL sel, int argc, VALUE *argv)
{
    VALUE a1, a2, backref;

    rb_scan_args(argc, argv, "11", &a1, &a2);

    if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
	rb_raise(rb_eTypeError, "can't convert nil into Rational");

    switch (TYPE(a1)) {
      case T_COMPLEX:
	if (k_exact_zero_p(RCOMPLEX(a1)->imag))
	    a1 = RCOMPLEX(a1)->real;
    }

    switch (TYPE(a2)) {
      case T_COMPLEX:
	if (k_exact_zero_p(RCOMPLEX(a2)->imag))
	    a2 = RCOMPLEX(a2)->real;
    }

    backref = rb_backref_get();
    rb_match_busy(backref);

    switch (TYPE(a1)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a1 = f_to_r(a1);
	break;
      case T_STRING:
	a1 = string_to_r_strict(a1);
	break;
    }

    switch (TYPE(a2)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a2 = f_to_r(a2);
	break;
      case T_STRING:
	a2 = string_to_r_strict(a2);
	break;
    }

    rb_backref_set(backref);

    switch (TYPE(a1)) {
      case T_RATIONAL:
	if (argc == 1 || (k_exact_one_p(a2)))
	    return a1;
    }

    if (argc == 1) {
	if (!(k_numeric_p(a1) && k_integer_p(a1)))
	    return rb_convert_type(a1, T_RATIONAL, "Rational", "to_r");
    }
    else {
	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
	    (!f_integer_p(a1) || !f_integer_p(a2)))
	    return f_div(a1, a2);
    }

    {
	VALUE argv2[2];
	argv2[0] = a1;
	argv2[1] = a2;
	return nurat_s_new(argc, argv2, klass);
    }
}
Beispiel #8
0
static VALUE
nurat_s_convert(int argc, VALUE *argv, VALUE klass)
{
    VALUE a1, a2, backref;

    rb_scan_args(argc, argv, "11", &a1, &a2);

    switch (TYPE(a1)) {
      case T_COMPLEX:
	if (k_exact_p(RCOMPLEX(a1)->imag) && f_zero_p(RCOMPLEX(a1)->imag))
	    a1 = RCOMPLEX(a1)->real;
    }

    switch (TYPE(a2)) {
      case T_COMPLEX:
	if (k_exact_p(RCOMPLEX(a2)->imag) && f_zero_p(RCOMPLEX(a2)->imag))
	    a2 = RCOMPLEX(a2)->real;
    }

    backref = rb_backref_get();
    rb_match_busy(backref);

    switch (TYPE(a1)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a1 = f_to_r(a1);
	break;
      case T_STRING:
	a1 = string_to_r_strict(a1);
	break;
    }

    switch (TYPE(a2)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a2 = f_to_r(a2);
	break;
      case T_STRING:
	a2 = string_to_r_strict(a2);
	break;
    }

    rb_backref_set(backref);

    switch (TYPE(a1)) {
      case T_RATIONAL:
	if (argc == 1 || (k_exact_p(a2) && f_one_p(a2)))
	    return a1;
    }

    if (argc == 1) {
	if (k_numeric_p(a1) && !f_integer_p(a1))
	    return a1;
    }
    else {
	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
	    (!f_integer_p(a1) || !f_integer_p(a2)))
	    return f_div(a1, a2);
    }

    {
	VALUE argv2[2];
	argv2[0] = a1;
	argv2[1] = a2;
	return nurat_s_new(argc, argv2, klass);
    }
}
Beispiel #9
0
static VALUE
nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
{
    VALUE a1, a2, backref;

    rb_scan_args(argc, argv, "11", &a1, &a2);

    backref = rb_backref_get();
    rb_match_busy(backref);

    switch (TYPE(a1)) {
      case T_FIXNUM:
      case T_BIGNUM:
      case T_FLOAT:
	break;
      case T_STRING:
	a1 = string_to_c_strict(a1);
	break;
    }

    switch (TYPE(a2)) {
      case T_FIXNUM:
      case T_BIGNUM:
      case T_FLOAT:
	break;
      case T_STRING:
	a2 = string_to_c_strict(a2);
	break;
    }

    rb_backref_set(backref);

    switch (TYPE(a1)) {
      case T_COMPLEX:
	{
	    get_dat1(a1);

	    if (k_exact_p(dat->imag) && f_zero_p(dat->imag))
		a1 = dat->real;
	}
    }

    switch (TYPE(a2)) {
      case T_COMPLEX:
	{
	    get_dat1(a2);

	    if (k_exact_p(dat->imag) && f_zero_p(dat->imag))
		a2 = dat->real;
	}
    }

    switch (TYPE(a1)) {
      case T_COMPLEX:
	if (argc == 1 || (k_exact_p(a2) && f_zero_p(a2)))
	    return a1;
    }

    if (argc == 1) {
	if (k_numeric_p(a1) && !f_real_p(a1))
	    return a1;
    }
    else {
	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
	    (!f_real_p(a1) || !f_real_p(a2)))
	    return f_add(a1,
			 f_mul(a2,
			       f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
    }

    {
	VALUE argv2[2];
	argv2[0] = a1;
	argv2[1] = a2;
	return nucomp_s_new(argc, argv2, klass);
    }
}