Beispiel #1
0
static VALUE
rb_hack_rshift (VALUE x, VALUE y)
{
  if ( rb_obj_is_carray(y) ) {
#if RUBY_VERSION_CODE >= 190
      return rb_num_coerce_bin(x, y, rb_intern(">>"));
#else
      return rb_num_coerce_bin(x, y);
#endif
  }
  else {
    return rb_funcall(x, id___rshift__, 1, y);
  }
}
Beispiel #2
0
/*
 *  call-seq:
 *    onum / integer   -> oranumber
 *    onum / numeric   -> numeric
 *
 *  Returns the result of dividing <i>onum</i> by <i>other</i>.
 */
static VALUE onum_div(VALUE lhs, VALUE rhs)
{
    OCIError *errhp = oci8_errhp;
    OCINumber n;
    OCINumber r;
    boolean is_zero;

    switch (rboci8_type(rhs)) {
    case T_FIXNUM:
        if (rhs == INT2FIX(0)) {
            rb_num_zerodiv();
        }
    case T_BIGNUM:
        if (set_oci_number_from_num(&n, rhs, 0, errhp)) {
            chkerr(OCINumberDiv(errhp, _NUMBER(lhs), &n, &r));
            return oci8_make_ocinumber(&r, errhp);
        }
        break;
    case RBOCI8_T_ORANUMBER:
        chkerr(OCINumberIsZero(errhp, _NUMBER(rhs), &is_zero));
        if (is_zero) {
            rb_num_zerodiv();
        }
        chkerr(OCINumberDiv(errhp, _NUMBER(lhs), _NUMBER(rhs), &r));
        return oci8_make_ocinumber(&r, errhp);
    case T_FLOAT:
        return rb_funcall(onum_to_f(lhs), oci8_id_div_op, 1, rhs);
    case RBOCI8_T_RATIONAL:
        return rb_funcall(onum_to_r(lhs), oci8_id_div_op, 1, rhs);
    case RBOCI8_T_BIGDECIMAL:
        return rb_funcall(onum_to_d(lhs), oci8_id_div_op, 1, rhs);
    }
    return rb_num_coerce_bin(lhs, rhs, oci8_id_div_op);
}
Beispiel #3
0
/*
 *  call-seq:
 *    onum * other   -> number
 *
 *  Returns the product of <i>onum</i> and <i>other</i>.
 */
static VALUE onum_mul(VALUE lhs, VALUE rhs)
{
    OCIError *errhp = oci8_errhp;
    OCINumber n;
    OCINumber r;

    switch (rboci8_type(rhs)) {
    case T_FIXNUM:
    case T_BIGNUM:
        if (set_oci_number_from_num(&n, rhs, 0, errhp)) {
            chkerr(OCINumberMul(errhp, _NUMBER(lhs), &n, &r));
            return oci8_make_ocinumber(&r, errhp);
        }
        break;
    case RBOCI8_T_ORANUMBER:
        chkerr(OCINumberMul(errhp, _NUMBER(lhs), _NUMBER(rhs), &r));
        return oci8_make_ocinumber(&r, errhp);
    case T_FLOAT:
        return rb_funcall(onum_to_f(lhs), oci8_id_mul_op, 1, rhs);
    case RBOCI8_T_RATIONAL:
        return rb_funcall(onum_to_r(lhs), oci8_id_mul_op, 1, rhs);
    case RBOCI8_T_BIGDECIMAL:
        return rb_funcall(onum_to_d(lhs), oci8_id_mul_op, 1, rhs);
    }
    return rb_num_coerce_bin(lhs, rhs, oci8_id_mul_op);
}
Beispiel #4
0
static VALUE
nucomp_div(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	get_dat2(self, other);

	if (TYPE(adat->real)  == T_FLOAT ||
	    TYPE(adat->imag) == T_FLOAT ||
	    TYPE(bdat->real)  == T_FLOAT ||
	    TYPE(bdat->imag) == T_FLOAT) {
	    VALUE magn = m_hypot(bdat->real, bdat->imag);
	    VALUE tmp = f_complex_new_bang2(CLASS_OF(self),
					    f_div(bdat->real, magn),
					    f_div(bdat->imag, magn));
	    return f_div(f_mul(self, f_conj(tmp)), magn);
	}
	return f_div(f_mul(self, f_conj(other)), f_abs2(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      f_div(dat->real, other),
			      f_div(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '/');
}
Beispiel #5
0
/*
 * call-seq:
 *    rat * numeric  ->  numeric_result
 *
 * Performs multiplication.
 *
 * For example:
 *
 *    Rational(2, 3)  * Rational(2, 3)   #=> (4/9)
 *    Rational(900)   * Rational(1)      #=> (900/1)
 *    Rational(-2, 9) * Rational(-9, 2)  #=> (1/1)
 *    Rational(9, 8)  * 4                #=> (9/2)
 *    Rational(20, 9) * 9.8              #=> 21.77777777777778
 */
static VALUE
nurat_mul(VALUE self, SEL sel, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '*');
	}
      case T_FLOAT:
	return f_mul(f_to_f(self), other);
      case T_RATIONAL:
	{
	    get_dat2(self, other);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '*');
	}
      default:
	return rb_num_coerce_bin(self, other, '*');
    }
}
Beispiel #6
0
/*
 * call-seq:
 *    cmp * numeric  ->  complex
 *
 * Performs multiplication.
 *
 *    Complex(2, 3)  * Complex(2, 3)   #=> (-5+12i)
 *    Complex(900)   * Complex(1)      #=> (900+0i)
 *    Complex(-2, 9) * Complex(-9, 2)  #=> (0-85i)
 *    Complex(9, 8)  * 4               #=> (36+32i)
 *    Complex(20, 9) * 9.8             #=> (196.0+88.2i)
 */
VALUE
rb_nucomp_mul(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	VALUE real, imag;
	VALUE areal, aimag, breal, bimag;
	int arzero, aizero, brzero, bizero;

	get_dat2(self, other);

	arzero = !!f_zero_p(areal = adat->real);
	aizero = !!f_zero_p(aimag = adat->imag);
	brzero = !!f_zero_p(breal = bdat->real);
	bizero = !!f_zero_p(bimag = bdat->imag);
	real = f_sub(safe_mul(areal, breal, arzero, brzero),
		     safe_mul(aimag, bimag, aizero, bizero));
	imag = f_add(safe_mul(areal, bimag, arzero, bizero),
		     safe_mul(aimag, breal, aizero, brzero));

	return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      f_mul(dat->real, other),
			      f_mul(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '*');
}
Beispiel #7
0
/*
 * call-seq:
 *    rat / numeric     ->  numeric_result
 *    rat.quo(numeric)  ->  numeric_result
 *
 * Performs division.
 *
 * For example:
 *
 *    Rational(2, 3)  / Rational(2, 3)   #=> (1/1)
 *    Rational(900)   / Rational(1)      #=> (900/1)
 *    Rational(-2, 9) / Rational(-9, 2)  #=> (4/81)
 *    Rational(9, 8)  / 4                #=> (9/32)
 *    Rational(20, 9) / 9.8              #=> 0.22675736961451246
 */
static VALUE
nurat_div(VALUE self, SEL sel, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	if (f_zero_p(other))
	    rb_raise_zerodiv();
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '/');
	}
      case T_FLOAT:
	return rb_funcall(f_to_f(self), '/', 1, other);
      case T_RATIONAL:
	if (f_zero_p(other))
	    rb_raise_zerodiv();
	{
	    get_dat2(self, other);

	    if (f_one_p(self))
		return f_rational_new_no_reduce2(CLASS_OF(self),
						 bdat->den, bdat->num);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '/');
	}
      default:
	return rb_num_coerce_bin(self, other, '/');
    }
}
Beispiel #8
0
/*
 * Using the Euclidean Algorithm (division-based):
 * http://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations
 *
 * In ruby:
 *     a = self
 *     while b != 0
 *       a, b = b, a % b
 *     end
 *     return a
 */
VALUE
rb_big_gcd_euclidean_division(VALUE a, VALUE b)
{
  VALUE temp;

  /* borrowed from bignum.c, rb_big_modulo() */
  switch (TYPE(b)) {
    case T_FIXNUM:
      b = rb_int2big(FIX2LONG(b));
      break;

    case T_BIGNUM:
      break;

    default:
      return rb_num_coerce_bin(a, b, '%');
  }

  while ((TYPE(b) == T_BIGNUM && !rb_bigzero_p(b)) ||
         (TYPE(b) == T_FIXNUM && FIX2LONG(b) != 0)) {
      if (TYPE(b) == T_BIGNUM) {
        temp = rb_big_clone(b);
      }
      else {
        temp = b;
      }
      //b = rb_big_modulo(a, b);
      b = rb_funcall(a, mod_id, 1, b);
      a = temp;
  }

  return a;
}
Beispiel #9
0
static VALUE
nurat_div(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	if (f_zero_p(other))
	    rb_raise(rb_eZeroDivError, "devided by zero");
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '/');
	}
      case T_FLOAT:
	return rb_funcall(f_to_f(self), '/', 1, other);
      case T_RATIONAL:
	if (f_zero_p(other))
	    rb_raise(rb_eZeroDivError, "devided by zero");
	{
	    get_dat2(self, other);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '/');
	}
      default:
	return rb_num_coerce_bin(self, other, '/');
    }
}
Beispiel #10
0
static VALUE
rb_hack_xor (VALUE x, VALUE y)
{
  if ( rb_obj_is_carray(y) ) {
    if ( rb_ca_is_boolean_type(y) ) {
      return rb_funcall(y, rb_intern("bit_xor"), 1, x);
    }
    else {
#if RUBY_VERSION_CODE >= 190
      return rb_num_coerce_bin(x, y, '^');
#else
      return rb_num_coerce_bin(x, y);
#endif
    }
  }
  else {
    return rb_funcall(x, id___xor__, 1, y);
  }
}
Beispiel #11
0
inline static VALUE
f_divide(VALUE self, VALUE other,
	 VALUE (*func)(VALUE, VALUE), ID id)
{
    if (k_complex_p(other)) {
	int flo;
	get_dat2(self, other);

	flo = (k_float_p(adat->real) || k_float_p(adat->imag) ||
	       k_float_p(bdat->real) || k_float_p(bdat->imag));

	if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
	    VALUE r, n;

	    r = (*func)(bdat->imag, bdat->real);
	    n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
	    if (flo)
		return f_complex_new2(CLASS_OF(self),
				      (*func)(self, n),
				      (*func)(f_negate(f_mul(self, r)), n));
	    return f_complex_new2(CLASS_OF(self),
				  (*func)(f_add(adat->real,
						f_mul(adat->imag, r)), n),
				  (*func)(f_sub(adat->imag,
						f_mul(adat->real, r)), n));
	}
	else {
	    VALUE r, n;

	    r = (*func)(bdat->real, bdat->imag);
	    n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
	    if (flo)
		return f_complex_new2(CLASS_OF(self),
				      (*func)(f_mul(self, r), n),
				      (*func)(f_negate(self), n));
	    return f_complex_new2(CLASS_OF(self),
				  (*func)(f_add(f_mul(adat->real, r),
						adat->imag), n),
				  (*func)(f_sub(f_mul(adat->imag, r),
						adat->real), n));
	}
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      (*func)(dat->real, other),
			      (*func)(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, id);
}
Beispiel #12
0
/*
 *  call-seq:
 *    onum ** other   -> oranumber
 *
 *  Raises <i>onum</i> the <i>other</i> power.
 */
static VALUE onum_power(VALUE lhs, VALUE rhs)
{
    OCIError *errhp = oci8_errhp;
    OCINumber n;
    OCINumber r;

    if (FIXNUM_P(rhs)) {
        chkerr(OCINumberIntPower(errhp, _NUMBER(lhs), FIX2INT(rhs), &r));
    } else {
        /* change to OCINumber */
        if (!set_oci_number_from_num(&n, rhs, 0, errhp))
            return rb_num_coerce_bin(lhs, rhs, id_power);
        chkerr(OCINumberPower(errhp, _NUMBER(lhs), &n, &r));
    }
    return oci8_make_ocinumber(&r, errhp);
}
Beispiel #13
0
/*
 * call-seq:
 *    rat ** numeric  ->  numeric_result
 *
 * Performs exponentiation.
 *
 * For example:
 *
 *    Rational(2)    ** Rational(3)    #=> (8/1)
 *    Rational(10)   ** -2             #=> (1/100)
 *    Rational(10)   ** -2.0           #=> 0.01
 *    Rational(-4)   ** Rational(1,2)  #=> (1.2246063538223773e-16+2.0i)
 *    Rational(1, 2) ** 0              #=> (1/1)
 *    Rational(1, 2) ** 0.0            #=> 1.0
 */
static VALUE
nurat_expt(VALUE self, SEL sel, VALUE other)
{
    if (k_exact_zero_p(other))
	return f_rational_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other)) {
	get_dat1(other);

	if (f_one_p(dat->den))
	    other = dat->num; /* c14n */
    }

    switch (TYPE(other)) {
      case T_FIXNUM:
	{
	    VALUE num, den;

	    get_dat1(self);

	    switch (FIX2INT(f_cmp(other, ZERO))) {
	      case 1:
		num = f_expt(dat->num, other);
		den = f_expt(dat->den, other);
		break;
	      case -1:
		num = f_expt(dat->den, f_negate(other));
		den = f_expt(dat->num, f_negate(other));
		break;
	      default:
		num = ONE;
		den = ONE;
		break;
	    }
	    return f_rational_new2(CLASS_OF(self), num, den);
	}
      case T_BIGNUM:
	rb_warn("in a**b, b may be too big");
	/* fall through */
      case T_FLOAT:
      case T_RATIONAL:
	return f_expt(f_to_f(self), other);
      default:
	return rb_num_coerce_bin(self, other, id_expt);
    }
}
Beispiel #14
0
/*
 *  call-seq:
 *    onum % other   -> oranumber
 *
 *  Returns the modulo after division of <i>onum</i> by <i>other</i>.
 */
static VALUE onum_mod(VALUE lhs, VALUE rhs)
{
    OCIError *errhp = oci8_errhp;
    OCINumber n;
    OCINumber r;
    boolean is_zero;

    /* change to OCINumber */
    if (!set_oci_number_from_num(&n, rhs, 0, errhp))
        return rb_num_coerce_bin(lhs, rhs, '%');
    /* check whether argument is not zero. */
    chkerr(OCINumberIsZero(errhp, &n, &is_zero));
    if (is_zero)
        rb_num_zerodiv();
    /* modulo */
    chkerr(OCINumberMod(errhp, _NUMBER(lhs), &n, &r));
    return oci8_make_ocinumber(&r, errhp);
}
Beispiel #15
0
static VALUE
nucomp_sub(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	VALUE real, imag;

	get_dat2(self, other);

	real = f_sub(adat->real, bdat->real);
	imag = f_sub(adat->imag, bdat->imag);

	return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      f_sub(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '-');
}
Beispiel #16
0
inline static VALUE
f_addsub(VALUE self, VALUE other,
	 VALUE (*func)(VALUE, VALUE), ID id)
{
    if (k_complex_p(other)) {
	VALUE real, imag;

	get_dat2(self, other);

	real = (*func)(adat->real, bdat->real);
	imag = (*func)(adat->imag, bdat->imag);

	return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      (*func)(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, id);
}
Beispiel #17
0
static VALUE
nurat_cmp(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	{
	    get_dat1(self);

	    if (FIXNUM_P(dat->den) && FIX2LONG(dat->den) == 1)
		return f_cmp(dat->num, other);
	    else
		return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other));
	}
      case T_FLOAT:
	return f_cmp(f_to_f(self), other);
      case T_RATIONAL:
	{
	    VALUE num1, num2;

	    get_dat2(self, other);

	    if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
		FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
		num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
		num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
	    }
	    else {
		num1 = f_mul(adat->num, bdat->den);
		num2 = f_mul(bdat->num, adat->den);
	    }
	    return f_cmp(f_sub(num1, num2), ZERO);
	}
      default:
	return rb_num_coerce_bin(self, other, id_cmp);
    }
}
Beispiel #18
0
/*
 * call-seq:
 *    cmp ** numeric  ->  complex
 *
 * Performs exponentiation.
 *
 *    Complex('i') ** 2              #=> (-1+0i)
 *    Complex(-8) ** Rational(1, 3)  #=> (1.0000000000000002+1.7320508075688772i)
 */
static VALUE
nucomp_expt(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && k_exact_zero_p(other))
	return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other) && f_one_p(f_denominator(other)))
	other = f_numerator(other); /* c14n */

    if (k_complex_p(other)) {
	get_dat1(other);

	if (k_exact_zero_p(dat->imag))
	    other = dat->real; /* c14n */
    }

    if (k_complex_p(other)) {
	VALUE r, theta, nr, ntheta;

	get_dat1(other);

	r = f_abs(self);
	theta = f_arg(self);

	nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
			      f_mul(dat->imag, theta)));
	ntheta = f_add(f_mul(theta, dat->real),
		       f_mul(dat->imag, m_log_bang(r)));
	return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (k_fixnum_p(other)) {
	if (f_gt_p(other, ZERO)) {
	    VALUE x, z;
	    long n;

	    x = self;
	    z = x;
	    n = FIX2LONG(other) - 1;

	    while (n) {
		long q, r;

		while (1) {
		    get_dat1(x);

		    q = n / 2;
		    r = n % 2;

		    if (r)
			break;

		    x = nucomp_s_new_internal(CLASS_OF(self),
				       f_sub(f_mul(dat->real, dat->real),
					     f_mul(dat->imag, dat->imag)),
				       f_mul(f_mul(TWO, dat->real), dat->imag));
		    n = q;
		}
		z = f_mul(z, x);
		n--;
	    }
	    return z;
	}
	return f_expt(f_reciprocal(self), f_negate(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	VALUE r, theta;

	if (k_bignum_p(other))
	    rb_warn("in a**b, b may be too big");

	r = f_abs(self);
	theta = f_arg(self);

	return f_complex_polar(CLASS_OF(self), f_expt(r, other),
			       f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}
Beispiel #19
0
static VALUE
nucomp_expt(VALUE self, VALUE other)
{
    if (k_exact_p(other) && f_zero_p(other))
	return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other) && f_one_p(f_denominator(other)))
	other = f_numerator(other); /* good? */

    if (k_complex_p(other)) {
	VALUE a, r, theta, ore, oim, nr, ntheta;

	get_dat1(other);

	a = f_polar(self);
	r = RARRAY_PTR(a)[0];
	theta = RARRAY_PTR(a)[1];

	ore = dat->real;
	oim = dat->imag;
	nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)),
			      f_mul(oim, theta)));
	ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r)));
	return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (k_integer_p(other)) {
	if (f_gt_p(other, ZERO)) {
	    VALUE x, z, n;

	    x = self;
	    z = x;
	    n = f_sub(other, ONE);

	    while (f_nonzero_p(n)) {
		VALUE a;

		while (a = f_divmod(n, TWO),
		       f_zero_p(RARRAY_PTR(a)[1])) {
		    get_dat1(x);

		    x = f_complex_new2(CLASS_OF(self),
				       f_sub(f_mul(dat->real, dat->real),
					     f_mul(dat->imag, dat->imag)),
				       f_mul(f_mul(TWO, dat->real), dat->imag));
		    n = RARRAY_PTR(a)[0];
		}
		z = f_mul(z, x);
		n = f_sub(n, ONE);
	    }
	    return z;
	}
	return f_expt(f_div(f_to_r(ONE), self), f_negate(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	VALUE a, r, theta;

	a = f_polar(self);
	r = RARRAY_PTR(a)[0];
	theta = RARRAY_PTR(a)[1];
	return f_complex_polar(CLASS_OF(self), f_expt(r, other),
			      f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}
Beispiel #20
0
static VALUE numeric_spec_rb_num_coerce_bin(VALUE self, VALUE x, VALUE y, VALUE op) {
  return rb_num_coerce_bin(x, y, SYM2ID(op));
}