Beispiel #1
0
static int readTransactionID( INOUT STREAM *stream, 
							  INOUT CMP_PROTOCOL_INFO *protocolInfo,
							  const BOOLEAN isServerInitialMessage )
	{
	BYTE buffer[ CRYPT_MAX_HASHSIZE + 8 ];
	int length, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( protocolInfo, sizeof( CMP_PROTOCOL_INFO ) ) );

	/* If this is the first message and we're the server, record the 
	   transaction ID for later */
	if( isServerInitialMessage )
		{
		status = readOctetString( stream, protocolInfo->transID,
								  &protocolInfo->transIDsize,
								  4, CRYPT_MAX_HASHSIZE );
		if( cryptStatusError( status ) )
			return( status );
		DEBUG_PRINT(( "%s: Read initial transID.\n",
					  protocolInfo->isServer ? "SVR" : "CLI" ));
		DEBUG_DUMP_HEX( protocolInfo->isServer ? "SVR" : "CLI", 
						protocolInfo->transID, protocolInfo->transIDsize );
		return( CRYPT_OK );
		}

	/* Make sure that the transaction ID for this message matches the 
	   recorded value (the bad signature error code is the best that we can 
	   provide here) */
	status = readOctetString( stream, buffer, &length, 4, 
							  CRYPT_MAX_HASHSIZE );
	if( cryptStatusError( status ) )
		return( status );
	ANALYSER_HINT( length >= 4 && length <= CRYPT_MAX_HASHSIZE );
	DEBUG_PRINT(( "%s: Read transID.\n",
				  protocolInfo->isServer ? "SVR" : "CLI" ));
	DEBUG_DUMP_HEX( protocolInfo->isServer ? "SVR" : "CLI", 
					protocolInfo->transID, protocolInfo->transIDsize );
	if( protocolInfo->transIDsize != length || \
		memcmp( protocolInfo->transID, buffer, length ) )
		return( CRYPT_ERROR_SIGNATURE );

	return( CRYPT_OK );
	}
Beispiel #2
0
static int readUserID( INOUT STREAM *stream, 
					   INOUT CMP_PROTOCOL_INFO *protocolInfo )
	{
	BYTE userID[ CRYPT_MAX_HASHSIZE + 8 ];
	int userIDsize, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( protocolInfo, sizeof( CMP_PROTOCOL_INFO ) ) );

	/* Read the PKI user ID that we'll need to handle the integrity 
	   protection on the message */
	readConstructed( stream, NULL, CTAG_PH_SENDERKID );
	status = readOctetString( stream, userID, &userIDsize, 8, 
							  CRYPT_MAX_HASHSIZE );
	if( cryptStatusError( status ) )
		return( status );
	ANALYSER_HINT( userIDsize >= 8 && userIDsize <= CRYPT_MAX_HASHSIZE );

	/* If there's already been a previous transaction (which means that we 
	   have PKI user information present) and the current transaction 
	   matches what was used in the previous one, we don't have to update 
	   the user information */
	if( protocolInfo->userIDsize == userIDsize && \
		!memcmp( protocolInfo->userID, userID, userIDsize ) )
		{
		DEBUG_PRINT(( "%s: Skipped repeated userID.\n",
					  protocolInfo->isServer ? "SVR" : "CLI" ));
		DEBUG_DUMP_HEX( protocolInfo->isServer ? "SVR" : "CLI", 
						protocolInfo->userID, protocolInfo->userIDsize );
		return( CRYPT_OK );
		}

	/* Record the new or changed the PKI user information and delete the 
	   MAC context associated with the previous user if necessary */
	memcpy( protocolInfo->userID, userID, userIDsize );
	protocolInfo->userIDsize = userIDsize;
	protocolInfo->userIDchanged = TRUE;
	if( protocolInfo->iMacContext != CRYPT_ERROR )
		{
		krnlSendNotifier( protocolInfo->iMacContext,
						  IMESSAGE_DECREFCOUNT );
		protocolInfo->iMacContext = CRYPT_ERROR;
		}
	DEBUG_PRINT(( "%s: Read new userID.\n",
				  protocolInfo->isServer ? "SVR" : "CLI" ));
	DEBUG_DUMP_HEX( protocolInfo->isServer ? "SVR" : "CLI", 
					protocolInfo->userID, protocolInfo->userIDsize );

	return( CRYPT_OK );
	}
Beispiel #3
0
static int readKeyDerivationInfo( INOUT STREAM *stream, 
								  OUT QUERY_INFO *queryInfo )
	{
	long endPos, value;
	int length, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( queryInfo, sizeof( QUERY_INFO ) ) );

	/* Clear return value */
	memset( queryInfo, 0, sizeof( QUERY_INFO ) );

	/* Read the outer wrapper and key derivation algorithm OID */
	readConstructed( stream, NULL, CTAG_KK_DA );
	status = readFixedOID( stream, OID_PBKDF2, sizeofOID( OID_PBKDF2 ) );
	if( cryptStatusError( status ) )
		return( status );

	/* Read the PBKDF2 parameters, limiting the salt and iteration count to
	   sane values */
	status = readSequence( stream, &length );
	if( cryptStatusError( status ) )
		return( status );
	endPos = stell( stream ) + length;
	readOctetString( stream, queryInfo->salt, &queryInfo->saltLength, 
					 2, CRYPT_MAX_HASHSIZE );
	status = readShortInteger( stream, &value );
	if( cryptStatusError( status ) )
		return( status );
	if( value < 1 || value > MAX_KEYSETUP_ITERATIONS )
		return( CRYPT_ERROR_BADDATA );
	queryInfo->keySetupIterations = ( int ) value;
	queryInfo->keySetupAlgo = CRYPT_ALGO_HMAC_SHA1;
	if( stell( stream ) < endPos && \
		sPeek( stream ) == BER_INTEGER )
		{
		/* There's an optional key length that may override the default 
		   key size present, read it.  Note that we compare the upper
		   bound to MAX_WORKING_KEYSIZE rather than CRYPT_MAX_KEYSIZE,
		   since this is a key used directly with an encryption algorithm
		   rather than a generic keying value that may be hashed down to 
		   size */
		status = readShortInteger( stream, &value );
		if( cryptStatusError( status ) )
			return( status );
		if( value < MIN_KEYSIZE || value > MAX_WORKING_KEYSIZE )
			return( CRYPT_ERROR_BADDATA );
		queryInfo->keySize = ( int ) value;
		}
	if( stell( stream ) < endPos )
		{
		CRYPT_ALGO_TYPE prfAlgo;
	
		/* There's a non-default hash algorithm ID present, read it */
		status = readAlgoID( stream, &prfAlgo, ALGOID_CLASS_HASH );
		if( cryptStatusError( status ) )
			return( status );
		queryInfo->keySetupAlgo = prfAlgo;
		}

	return( CRYPT_OK );
	}
Beispiel #4
0
	int status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( salt, saltMaxLen ) );
	assert( isWritePtr( saltLen, sizeof( int ) ) );
	assert( isWritePtr( iterations, sizeof( int ) ) );

	REQUIRES( saltMaxLen >= 16 && saltMaxLen < MAX_INTLENGTH_SHORT );

	/* Clear return values */
	memset( salt, 0, min( 16, saltMaxLen ) );
	*saltLen = *iterations = 0;

	/* Read the wrapper and salt value */
	readSequence( stream, NULL );
	status = readOctetString( stream, salt, saltLen, 1, saltMaxLen );
	if( cryptStatusError( status ) )
		return( status );

	/* Read the iteration count and make sure that it's within a sensible
	   range */
	status = readShortInteger( stream, &intValue );
	if( cryptStatusError( status ) )
		return( status );
	if( intValue < 1 || intValue > MAX_KEYSETUP_ITERATIONS )
		return( CRYPT_ERROR_BADDATA );
	*iterations = ( int ) intValue;

	return( CRYPT_OK );
	}
static int readKeyIdentifiers( INOUT STREAM *stream, 
							   INOUT PKCS15_INFO *pkcs15infoPtr,
							   IN_LENGTH const int endPos )
	{
	int iterationCount, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( pkcs15infoPtr, sizeof( PKCS15_INFO ) ) );
	
	REQUIRES( endPos > 0 && endPos > stell( stream ) && \
			  endPos < MAX_INTLENGTH );

	for( status = CRYPT_OK, iterationCount = 0;
		 cryptStatusOK( status ) && stell( stream ) < endPos && \
			iterationCount < FAILSAFE_ITERATIONS_MED; iterationCount++ )
		{
		long value;
		int payloadLength;

		/* Read each identifier type and copy the useful ones into the PKCS
		   #15 information */
		readSequence( stream, &payloadLength );
		status = readShortInteger( stream, &value );
		if( cryptStatusError( status ) )
			return( status );
		switch( value )
			{
			case PKCS15_KEYID_ISSUERANDSERIALNUMBER:
				{
				HASHFUNCTION_ATOMIC hashFunctionAtomic;
				void *iAndSPtr = DUMMY_INIT_PTR;
				int iAndSLength, hashSize;

				/* If we've already got the iAndSID, use that version 
				   instead */
				if( pkcs15infoPtr->iAndSIDlength > 0 )
					{
					status = readUniversal( stream );
					continue;
					}

				/* Hash the full issuerAndSerialNumber to get an iAndSID */
				getHashAtomicParameters( CRYPT_ALGO_SHA1, 0,
										 &hashFunctionAtomic, &hashSize );
				status = getStreamObjectLength( stream, &iAndSLength );
				if( cryptStatusOK( status ) )
					status = sMemGetDataBlock( stream, &iAndSPtr, 
											   iAndSLength );
				if( cryptStatusOK( status ) )
					status = sSkip( stream, iAndSLength );
				if( cryptStatusError( status ) )
					return( status );
				hashFunctionAtomic( pkcs15infoPtr->iAndSID, KEYID_SIZE, 
									iAndSPtr, iAndSLength );
				pkcs15infoPtr->iAndSIDlength = hashSize;
				break;
				}

			case PKCS15_KEYID_SUBJECTKEYIDENTIFIER:
				status = readOctetString( stream, pkcs15infoPtr->keyID,
										  &pkcs15infoPtr->keyIDlength, 
										  8, CRYPT_MAX_HASHSIZE );
				break;

			case PKCS15_KEYID_ISSUERANDSERIALNUMBERHASH:
				/* If we've already got the iAndSID by hashing the
				   issuerAndSerialNumber, use that version instead */
				if( pkcs15infoPtr->iAndSIDlength > 0 )
					{
					status = readUniversal( stream );
					continue;
					}
				status = readOctetString( stream, pkcs15infoPtr->iAndSID,
										  &pkcs15infoPtr->iAndSIDlength, 
										  KEYID_SIZE, KEYID_SIZE );
				break;

			case PKCS15_KEYID_ISSUERNAMEHASH:
				status = readOctetString( stream, pkcs15infoPtr->issuerNameID,
										  &pkcs15infoPtr->issuerNameIDlength, 
										  KEYID_SIZE, KEYID_SIZE );
				break;

			case PKCS15_KEYID_SUBJECTNAMEHASH:
				status = readOctetString( stream, pkcs15infoPtr->subjectNameID,
										  &pkcs15infoPtr->subjectNameIDlength, 
										  KEYID_SIZE, KEYID_SIZE );
				break;

			case PKCS15_KEYID_PGP2:
				status = readOctetString( stream, pkcs15infoPtr->pgp2KeyID,
										  &pkcs15infoPtr->pgp2KeyIDlength, 
										  PGP_KEYID_SIZE, PGP_KEYID_SIZE );
				break;

			case PKCS15_KEYID_OPENPGP:
				status = readOctetString( stream, pkcs15infoPtr->openPGPKeyID,
										  &pkcs15infoPtr->openPGPKeyIDlength, 
										  PGP_KEYID_SIZE, PGP_KEYID_SIZE );
				break;

			default:
				status = readUniversal( stream );
			}
		}
	if( iterationCount >= FAILSAFE_ITERATIONS_MED )
		{
		/* This could be either an internal error or some seriously 
		   malformed data, since we can't tell without human intervention
		   we throw a debug exception but otherwise treat it as bad data */
		DEBUG_DIAG(( "Encountered more than %d key IDs", 
					 FAILSAFE_ITERATIONS_MED ));
		assert( DEBUG_WARN );
		return( CRYPT_ERROR_BADDATA );
		}

	return( status );
	}
Beispiel #6
0
static int readPkiHeader( INOUT STREAM *stream, 
						  INOUT CMP_PROTOCOL_INFO *protocolInfo,
						  INOUT ERROR_INFO *errorInfo,
						  const BOOLEAN isServerInitialMessage )
	{
	int length, endPos, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( protocolInfo, sizeof( CMP_PROTOCOL_INFO ) ) );
	assert( isWritePtr( errorInfo, sizeof( ERROR_INFO ) ) );

	/* Clear per-message state information */
	protocolInfo->userIDchanged = protocolInfo->certIDchanged = \
		protocolInfo->useMACreceive = FALSE;
	protocolInfo->macInfoPos = CRYPT_ERROR;
	protocolInfo->senderDNPtr = NULL;
	protocolInfo->senderDNlength = 0;
	protocolInfo->headerRead = FALSE;

	/* Read the wrapper and skip the static information, which matches what 
	   we sent and is protected by the MAC so there's little point in 
	   looking at it */
	status = readSequence( stream, &length );
	if( cryptStatusError( status ) )
		return( status );
	endPos = stell( stream ) + length;
	readShortInteger( stream, NULL );		/* Version */
	if( !protocolInfo->isCryptlib )
		{
		/* The ID of the key used for integrity protection (or in general
		   the identity of the sender) can be specified either as the sender
		   DN or the senderKID or both, or in some cases even indirectly via
		   the transaction ID.  With no real guidance as to which one to 
		   use, implementors are using any of these options to identify the 
		   key.  Since we need to check that the integrity-protection key 
		   that we're using is correct so that we can report a more 
		   appropriate error than bad signature or bad data, we need to 
		   remember the sender DN for later in case this is the only form of 
		   key identification provided.  Unfortunately since the sender DN 
		   can't uniquely identify a certificate, if this is the only 
		   identifier that we're given then the caller can still get a bad 
		   signature error, yet another one of CMPs many wonderful features */
		status = readConstructed( stream, &protocolInfo->senderDNlength, 4 );
		if( cryptStatusOK( status ) && protocolInfo->senderDNlength > 0 )
			{
			status = sMemGetDataBlock( stream, &protocolInfo->senderDNPtr, 
									   protocolInfo->senderDNlength );
			if( cryptStatusOK( status ) )
				status = readUniversal( stream );
			}
		}
	else
		{
		/* cryptlib includes a proper certID so the whole signer
		   identification mess is avoided and we can ignore the sender DN */
		status = readUniversal( stream );	/* Sender DN */
		}
	if( cryptStatusOK( status ) )
		status = readUniversal( stream );	/* Recipient DN */
	if( peekTag( stream ) == MAKE_CTAG( CTAG_PH_MESSAGETIME ) )
		status = readUniversal( stream );	/* Message time */
	if( cryptStatusError( status ) )
		{
		retExt( CRYPT_ERROR_BADDATA, 
				( CRYPT_ERROR_BADDATA, errorInfo, 
				  "Invalid DN information in PKI header" ) );
		}
	if( peekTag( stream ) != MAKE_CTAG( CTAG_PH_PROTECTIONALGO ) )
		{
		/* The message was sent without integrity protection, report it as
		   a signature error rather than the generic bad data error that
		   we'd get from the following read */
		retExt( CRYPT_ERROR_SIGNATURE,
				( CRYPT_ERROR_SIGNATURE, errorInfo, 
				  "Message was sent without integrity protection" ) );
		}
	status = readProtectionAlgo( stream, protocolInfo );
	if( cryptStatusError( status ) )
		{
		retExt( status,
				( status, errorInfo, 
				  "Invalid integrity protection information in PKI "
				  "header" ) );
		}
	if( peekTag( stream ) == MAKE_CTAG( CTAG_PH_SENDERKID ) )
		{								/* Sender protection keyID */
		status = readUserID( stream, protocolInfo );
		if( cryptStatusError( status ) )
			{
			retExt( status,
					( status, errorInfo, 
					  "Invalid PKI user ID in PKI header" ) );
			}
		}
	else
		{
		/* If we're the server, the client must provide a PKI user ID in the
		   first message unless we got one in an earlier transaction */
		if( isServerInitialMessage && protocolInfo->userIDsize <= 0 )
			{
			retExt( CRYPT_ERROR_BADDATA, 
					( CRYPT_ERROR_BADDATA, errorInfo, 
					  "Missing PKI user ID in PKI header" ) );
			}
		}
	if( peekTag( stream ) == MAKE_CTAG( CTAG_PH_RECIPKID ) )
		readUniversal( stream );			/* Recipient protection keyID */

	/* Record the transaction ID (which is effectively the nonce) or make 
	   sure that it matches the one that we sent.  There's no real need to 
	   do an explicit duplicate check since a replay attempt will be 
	   rejected as a duplicate by the certificate store and the locking 
	   performed at that level makes it a much better place to catch 
	   duplicates, but we do it anyway because it doesn't cost anything and
	   we can catch at least some problems a bit earlier */
	status = readConstructed( stream, NULL, CTAG_PH_TRANSACTIONID );
	if( cryptStatusError( status ) )
		{
		retExt( status, 
				( status, errorInfo, 
				  "Missing transaction ID in PKI header" ) );
		}
	status = readTransactionID( stream, protocolInfo, 
								isServerInitialMessage );
	if( cryptStatusError( status ) )
		{
		protocolInfo->pkiFailInfo = CMPFAILINFO_BADRECIPIENTNONCE;
		retExt( status, 
				( status, errorInfo, 
				  ( status == CRYPT_ERROR_SIGNATURE ) ? \
				  "Returned message transaction ID doesn't match our "
						"transaction ID" : \
				  "Invalid transaction ID in PKI header" ) );
		}

	/* Read the sender nonce, which becomes the new recipient nonce, and skip
	   the recipient nonce if there's one present.  These values may be
	   absent, either because the other side doesn't implement them or
	   because they're not available, for example because it's sending a
	   response to an error that occurred before it could read the nonce from
	   a request.  In any case we don't bother checking the nonce values
	   since the transaction ID serves the same purpose */
	if( stell( stream ) < endPos && \
		peekTag( stream ) == MAKE_CTAG( CTAG_PH_SENDERNONCE ) )
		{
		readConstructed( stream, NULL, CTAG_PH_SENDERNONCE );
		status = readOctetString( stream, protocolInfo->recipNonce,
								  &protocolInfo->recipNonceSize,
								  4, CRYPT_MAX_HASHSIZE );
		if( cryptStatusError( status ) )
			{
			protocolInfo->pkiFailInfo = CMPFAILINFO_BADSENDERNONCE;
			retExt( status,
					( status, errorInfo, 
					  "Invalid sender nonce in PKI header" ) );
			}
		}
	if( stell( stream ) < endPos && \
		peekTag( stream ) == MAKE_CTAG( CTAG_PH_RECIPNONCE ) )
		{
		readConstructed( stream, NULL, CTAG_PH_RECIPNONCE );
		status = readUniversal( stream );
		if( cryptStatusError( status ) )
			{
			protocolInfo->pkiFailInfo = CMPFAILINFO_BADRECIPIENTNONCE;
			retExt( status,
					( status, errorInfo, 
					  "Invalid recipient nonce in PKI header" ) );
			}
		}

	/* Remember that we've successfully read enough of the header 
	   information to generate a response */
	protocolInfo->headerRead = TRUE;

	/* Skip any further junk and process the general information if there is 
	   any */
	if( stell( stream ) < endPos && \
		peekTag( stream ) == MAKE_CTAG( CTAG_PH_FREETEXT ) )
		{
		status = readUniversal( stream );	/* Junk */
		if( cryptStatusError( status ) )
			return( status );
		}
	if( stell( stream ) < endPos && \
		peekTag( stream ) == MAKE_CTAG( CTAG_PH_GENERALINFO ) )
		{
		status = readGeneralInfo( stream, protocolInfo );
		if( cryptStatusError( status ) )
			{
			retExt( status,
					( status, errorInfo, 
					  "Invalid generalInfo information in PKI header" ) );
			}
		}

	return( CRYPT_OK );
	}
Beispiel #7
0
static int readGeneralInfoAttribute( INOUT STREAM *stream, 
									 INOUT CMP_PROTOCOL_INFO *protocolInfo )
	{
	BYTE oid[ MAX_OID_SIZE + 8 ];
	int length, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( protocolInfo, sizeof( CMP_PROTOCOL_INFO ) ) );

	/* Read the attribute.  Since there are only two attribute types that we 
	   use, we hardcode the read in here rather than performing a general-
	   purpose attribute read */
	readSequence( stream, NULL );
	status = readEncodedOID( stream, oid, MAX_OID_SIZE, &length, 
							 BER_OBJECT_IDENTIFIER );
	if( cryptStatusError( status ) )
		return( status );

	/* Process the cryptlib presence-check value */
	if( length == sizeofOID( OID_CRYPTLIB_PRESENCECHECK ) && \
		!memcmp( oid, OID_CRYPTLIB_PRESENCECHECK, length ) )
		{
		/* The other side is running cryptlib, we can make some common-sense 
		   assumptions about its behaviour */
		protocolInfo->isCryptlib = TRUE;
		return( readUniversal( stream ) );			/* Attribute */
		}

	/* Check for the ESSCertID, which fixes CMP's broken certificate 
	   identification mechanism */
	if( length == sizeofOID( OID_ESS_CERTID ) && \
		!memcmp( oid, OID_ESS_CERTID, length ) )
		{
		BYTE certID[ CRYPT_MAX_HASHSIZE + 8 ];
		int certIDsize, endPos;

		/* Extract the certificate hash from the ESSCertID */
		readSet( stream, NULL );					/* Attribute */
		readSequence( stream, NULL );				/* SigningCerts */
		readSequence( stream, NULL );				/* Certs */
		status = readSequence( stream, &length );	/* ESSCertID */
		if( cryptStatusError( status ) )
			return( status );
		endPos = stell( stream ) + length;
		status = readOctetString( stream, certID, &certIDsize, 
								  KEYID_SIZE, KEYID_SIZE );
		if( cryptStatusError( status ) )
			return( status );
		if( protocolInfo->certIDsize != KEYID_SIZE || \
			memcmp( certID, protocolInfo->certID, KEYID_SIZE ) )
			{
			/* The certificate used for authentication purposes has changed,
			   remember the new certID */
			memcpy( protocolInfo->certID, certID, KEYID_SIZE );
			protocolInfo->certIDsize = KEYID_SIZE;
			protocolInfo->certIDchanged = TRUE;
			}
		if( stell( stream ) < endPos )
			{
			/* Skip the issuerSerial if there's one present.  We can't 
			   really do much with it in this form without rewriting it into 
			   the standard issuerAndSerialNumber, but in any case we don't 
			   need it because we've already got the certificate ID */
			status = readUniversal( stream );
			}
		return( status );
		}

	/* It's something that we don't recognise, skip it */
	return( readUniversal( stream ) );
	}