Beispiel #1
0
/* Split a line at = sign into name and value pair
   Remove " ", TAB and Newline from around names and values
   Return NULL for name and value if there is no = sign in line
   Return newly allocated strings otherwise
   Used by: esimmon_internal_text_to_name_value_pairs
 */
static void splitnamevalue (const char * line, int linelen,  char **name, char **value)
{
    char *equal; // position of first = sign in line

    equal = strchr (line, '=');
    if (equal && equal != line) {
        /* 1. name */
        // from first char to before =
        *name = remove_whitespace ((char*)line, equal-1);
        //printf ("      --name=[%s]\n", *name);
        /* 2. value */
        // from after = to the last character of line
        *value = remove_whitespace (equal+1, (char*)line+linelen-1);
        //printf ("      --value=[%s]\n", *value);

    } else if (equal != line) {
        /* check if it as name without = value statement */
        *name = remove_whitespace ((char*)line, (char*)line+linelen-1);
        //printf ("      --name only=[%s]\n", *name);
        *value = NULL;
    } else { 
        // funny text starting with =. E.g. "=value" 
        *name = NULL;
        *value = NULL;
    }
}
Beispiel #2
0
long  my_strtol(const char *str, char **endptr, int base)
{
    int           sign;
    unsigned long result_long;
    const long    max_long = (long)(((unsigned long)(-1)) / 2);
    const long    min_long = -max_long - 1;

    remove_whitespace(&str);
    sign = 1;

    if (*str == '-')
    {
        sign = -1;
        str++;
    }

    result_long = my_strtoul(str, endptr, base);

    if (sign == 1 && result_long > max_long)
        return max_long;
    else if (sign == -1 && result_long > (max_long - 1))
        return min_long;
    else
        return (sign * (long)result_long);
}
Beispiel #3
0
int main(int argc, char **argv) {
    char *s = strdup("  the \tinternet\t\nis a series of tubes  ");
    char *newstr = remove_whitespace(s);
    printf("%s\n", newstr);
	free(newstr); free(s);
    return 0;
}
Beispiel #4
0
Fasta_entry Fasta_reader::getNext() {
    
    string sequence;
    string header;

    #pragma omp critical (FileReader)
    {
        header = this->_lastline;
        
        this->_lastline = "";
        while ((! this->_filereader.eof()) && this->_lastline[0] != '>') {
            getline(this->_filereader, this->_lastline);
            if (this->_lastline[0] != '>') {
                sequence += this->_lastline;
            }
        }
    }
    
    sequence = remove_whitespace(sequence);
    
    transform(sequence.begin(), sequence.end(), sequence.begin(), ::toupper);
    
    Fasta_entry fe(header, sequence);
    
    return(fe);
}
Beispiel #5
0
/* current line has first token removed (instruction) and comments
 * removed. Now go through the rest and assume they're instructions
 * separated with ','
 */
struct instruction *get_operands(struct instruction *cur)
{
    int cur_op_num;
    char *buf;

    /* check for operands */
    cur_op_num = 0;
    while ((buf = (char *) strtok(NULL, comma)))
    {
        remove_whitespace(buf); //remove any tabs etc.
        if (strlen(buf) > 0) {
            if (!cur->operands)
                cur->operands = (char **) malloc(sizeof( char *));
            else
                cur->operands = (char **) realloc(cur->operands, (sizeof(char *)*(cur_op_num+1)));

            capitalize(buf);
            cur->operands[cur_op_num] = (char *) malloc(strlen(buf) );
            strcpy(cur->operands[cur_op_num], buf);

            cur->op_num = ++cur_op_num;
        }
    }
    cur->op_num = cur_op_num;
    return cur;
}
static string make_public_string(string str, int len){
    len = remove_whitespace(str, len);

    string masked = string_replace_all_in_sized(str, len, "\n", "\n§");
    string result;
    asprintf(&result, "§%s", masked);
    free(masked);
    return result;
}
Beispiel #7
0
void ra_dec_from_string(char *radec, int *h_or_d, int *m, double *s)
/* Return a values for hours or degrees, minutes and seconds        */
/* given a properly formatted RA or DEC string.                     */
/*   radec is a string with J2000 RA  in the format 'hh:mm:ss.ssss' */
/*   or a string with J2000 DEC in the format 'dd:mm:ss.ssss'       */
{
   radec = remove_whitespace(radec);
   sscanf(radec, "%d:%d:%lf\n", h_or_d, m, s);
   if (radec[0]=='-' && *h_or_d==0) {
      *m = -*m;
      *s = -*s;
   }
}
static int http_get_parse(char *req, int len, get_ret_t *ret)
{
	char *s = req, *e, *end;
	char *path;
	int path_len, minor_version;

	end = req + len;

	if (memcmp_fail_loc(s, "GET ", len, 4, &e)) goto malformed_request;

	path = remove_whitespace(e, len);
	e = find_whitespace(path, len - (path-s));
	path_len = e-path;
	e = remove_whitespace(e, len - (e-s));

	if (get_http_version(e, len - (e-s), &e, &minor_version)) goto malformed_request;
	if (minor_version != 0 && minor_version != 1) {
		/* This should be seen as an error: */
		e = s;
		goto malformed_request;
	}

	ret->head_flags = 0;
	if (http_find_header_end(e, len - (e-s), &e, ret->head_flags)) goto malformed_request;

	ret->end = e;
	ret->path = path;
	ret->path_len = path_len;
	return 0;

malformed_request:
	ret->path = NULL;
	ret->path_len = -1;
	ret->end = e;
	return -1;
}
Beispiel #9
0
/*
 * Advances the lexer one token forward, returning true if one exists
 */
bool lexer::next(void) {

	// remove whitespace from stream
	remove_whitespace();
	text.clear();

	// Parse next character in stream to determine the tokens likely type
	if(!buff.has_next())
		type = token::END;
	else if(isdigit(buff.get_current()))
		number();
	else if(isalpha(buff.get_current()))
		phrase();
	else
		symbol();
	return true;
}
inline static int get_http_version(char *s, int len, char **ret, int *minor_version)
{
	char *c;
	char http_str[] = "HTTP/1.";
	int http_sz = sizeof(http_str)-1; // -1 for \n

	c = remove_whitespace(s, len);
	if (memcmp_fail_loc(c, http_str, len, http_sz, ret) ||
	    0 == (len - (*ret-s))) {
		*minor_version = -1;
		return 1;
	}
	c += http_sz;
	*minor_version = ((int)*c) - (int)'0';
	c++;
	if (http_end_line(c, len - (c-s))) c += 2;
	*ret = c;
	return 0;
}
Beispiel #11
0
void ra_dec_from_string(char *radec, int *h_or_d, int *m, double *s)
/* Return a values for hours or degrees, minutes and seconds        */
/* given a properly formatted RA or DEC string.                     */
/*   radec is a string with J2000 RA  in the format 'hh:mm:ss.ssss' */
/*   or a string with J2000 DEC in the format 'dd:mm:ss.ssss'       */
{
    int retval;

    radec = remove_whitespace(radec);
    retval = sscanf(radec, "%d:%d:%lf\n", h_or_d, m, s);
    if (retval != 3) {
        char tmp[100];
        sprintf(tmp, "Error:  can not convert '%s' to RA or DEC in ra_dec_from_string()\n", radec);
        perror(tmp);
        exit(1);
    }
    if (radec[0]=='-' && *h_or_d==0) {
        *m = -*m;
        *s = -*s;
    }
}
Beispiel #12
0
int main(int argc, char *argv[])
{
   float minval = SMALLNUM, maxval = LARGENUM, inx = 0, iny = 0;
   int centern, offsetn;
   int zoomlevel, maxzoom = 0, minzoom, xid, psid;
   char *rootfilenm, inchar;
   datapart *lodp;
   dataview *dv;
   basicstats *statvals;

   if (argc == 1) {
      printf("\nusage:  exploredat datafilename\n\n");
      exit(0);
   }

   printf("\n\n");
   printf("      Interactive Data Explorer\n");
   printf("         by Scott M. Ransom\n");
   printf("            November, 2001\n");
   print_help();

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(argv[1], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "dat") != 0) {
            printf
                ("\nInput file ('%s') must be a single PRESTO data file ('.dat')!\n\n",
                 argv[1]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a PRESTO data file ('.dat')!\n\n",
                argv[1]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (idata.object) {
      printf("Examining %s data from '%s'.\n\n",
             remove_whitespace(idata.object), argv[1]);
   } else {
      printf("Examining data from '%s'.\n\n", argv[1]);
   }
#ifdef USEMMAP
   mmap_file = open(argv[1], O_RDONLY);
   {
      int rt;
      struct stat buf;

      rt = fstat(mmap_file, &buf);
      if (rt == -1) {
         perror("\nError in fstat() in exploredat.c");
         printf("\n");
         exit(-1);
      }
      Ndat = buf.st_size / sizeof(float);
   }
   lodp = get_datapart(0, Ndat);
#else
   {
      int numsamp;

      datfile = chkfopen(argv[1], "rb");
      Ndat = chkfilelen(datfile, sizeof(float));
      numsamp = (Ndat > MAXPTS) ? (int) MAXPTS : (int) Ndat;
      lodp = get_datapart(0, numsamp);
   }
#endif

   /* Plot the initial data */

   centern = 0.5 * INITIALNUMPTS;
   if (centern > lodp->nn)
      centern = lodp->nn / 2;
   zoomlevel = LOGMAXDISPNUM - LOGINITIALNUMPTS;
   minzoom = LOGMAXDISPNUM - LOGMAXPTS;
   maxzoom = LOGMAXDISPNUM - LOGMINDISPNUM;
   dv = get_dataview(centern, zoomlevel, lodp);

   /* Prep the XWIN device for PGPLOT */

   xid = cpgopen("/XWIN");
   if (xid <= 0) {
      free_datapart(lodp);
#ifdef USEMMAP
      close(mmap_file);
#else
      fclose(datfile);
#endif
      free(dv);
      exit(EXIT_FAILURE);
   }
   cpgask(0);
   cpgpage();
   offsetn = plot_dataview(dv, minval, maxval, 1.0);

   do {
      cpgcurs(&inx, &iny, &inchar);
      if (DEBUGOUT)
         printf("You pressed '%c'\n", inchar);

      switch (inchar) {
      case ' ':                /* Toggle stats and sample plotting on/off */
         /* 0 = both, 1 = stats only, 2 = data only */
         plotstats++;
         plotstats = plotstats % 3;
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case 'M':                /* Toggle between median and average */
      case 'm':
         usemedian = (usemedian) ? 0 : 1;
         free(dv);
         dv = get_dataview(centern, zoomlevel, lodp);
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case 'A':                /* Zoom in */
      case 'a':
         centern = inx + offsetn;
      case 'I':
      case 'i':
         if (DEBUGOUT)
            printf("  Zooming in  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel < maxzoom) {
            zoomlevel++;
            free(dv);
            dv = get_dataview(centern, zoomlevel, lodp);
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
         } else
            printf("  Already at maximum zoom level (%d).\n", zoomlevel);
         break;
      case 'X':                /* Zoom out */
      case 'x':
      case 'O':
      case 'o':
         if (DEBUGOUT)
            printf("  Zooming out  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel > minzoom) {
            zoomlevel--;
            free(dv);
            dv = get_dataview(centern, zoomlevel, lodp);
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
         } else
            printf("  Already at minimum zoom level (%d).\n", zoomlevel);
         break;
      case '<':                /* Shift left 1 full screen */
         centern -= dv->numsamps + dv->numsamps / 8;
      case ',':                /* Shift left 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting left...\n");
         centern -= dv->numsamps / 8;
         {                      /* Should probably get the previous chunk from the datfile... */
            double lowestr;

            lowestr = 0.5 * dv->numsamps;
            if (centern < lowestr)
               centern = lowestr;
         }
         free(dv);
         dv = get_dataview(centern, zoomlevel, lodp);
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case '>':                /* Shift right 1 full screen */
         centern += dv->numsamps - dv->numsamps / 8;
      case '.':                /* Shift right 1/8 screen */
         centern += dv->numsamps / 8;
         if (DEBUGOUT)
            printf("  Shifting right...\n");
         {                      /* Should probably get the next chunk from the datfile... */
            double highestr;

            highestr = lodp->nlo + lodp->nn - 0.5 * dv->numsamps;
            if (centern > highestr)
               centern = highestr;
         }
         free(dv);
         dv = get_dataview(centern, zoomlevel, lodp);
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case '+':                /* Increase height of top edge */
         {
            float dy;

            if (maxval > 0.5 * LARGENUM) {
               printf("  Auto-scaling of top edge is off.\n");
               if (minval < 0.5 * SMALLNUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = dv->maxval - minval;
               maxval = dv->maxval + 0.1 * dy;
            } else {
               if (minval < 0.5 * SMALLNUM)
                  dy = maxval - dv->minval;
               else
                  dy = maxval - minval;
               maxval += 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case '_':                /* Decrease height of top edge */
         {
            float dy;

            if (maxval > 0.5 * LARGENUM) {
               printf("  Auto-scaling of top edge is off.\n");
               if (minval < 0.5 * SMALLNUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = dv->maxval - minval;
               maxval = dv->maxval - 0.1 * dy;
            } else {
               if (minval < 0.5 * SMALLNUM)
                  dy = maxval - dv->minval;
               else
                  dy = maxval - minval;
               maxval -= 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case '=':                /* Increase height of bottom edge */
         {
            float dy;

            if (minval < 0.5 * SMALLNUM) {
               printf("  Auto-scaling of bottom edge is off.\n");
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = maxval - dv->minval;
               minval = dv->minval + 0.1 * dy;
            } else {
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - minval;
               else
                  dy = maxval - minval;
               minval += 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case '-':                /* Decrease height of bottom edge */
         {
            float dy;

            if (minval < 0.5 * SMALLNUM) {
               printf("  Auto-scaling of bottom edge is off.\n");
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = maxval - dv->minval;
               minval = dv->minval - 0.1 * dy;
            } else {
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - minval;
               else
                  dy = maxval - minval;
               minval -= 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case 'S':                /* Auto-scale */
      case 's':
         printf("  Auto-scaling is on.\n");
         minval = SMALLNUM;
         maxval = LARGENUM;
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case 'G':                /* Goto a time */
      case 'g':
         {
            char timestr[50];
            double time = -1.0;

            while (time < 0.0) {
               printf
                   ("  Enter the time (s) from the beginning of the file to go to:\n");
               fgets(timestr, 50, stdin);
               timestr[strlen(timestr) - 1] = '\0';
               time = atof(timestr);
            }
            offsetn = 0.0;
            centern = (int) (time / idata.dt + 0.5);
            printf("  Moving to time %.15g (data point %d).\n", time, centern);
            free(dv);
            dv = get_dataview(centern, zoomlevel, lodp);
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
         }
         break;
      case '?':                /* Print help screen */
         print_help();
         break;
      case 'P':                /* Print the current plot */
      case 'p':
         {
            int len;
            char filename[200];

            printf("  Enter the filename to save the plot as:\n");
            fgets(filename, 195, stdin);
            len = strlen(filename) - 1;
            filename[len + 0] = '/';
            filename[len + 1] = 'C';
            filename[len + 2] = 'P';
            filename[len + 3] = 'S';
            filename[len + 4] = '\0';
            psid = cpgopen(filename);
            cpgslct(psid);
            cpgpap(10.25, 8.5 / 11.0);
            cpgiden();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            cpgclos();
            cpgslct(xid);
            filename[len] = '\0';
            printf("  Wrote the plot to the file '%s'.\n", filename);
         }
         break;
      case 'V':                /* Show the basic statistics for the current dataview */
      case 'v':
         statvals = calc_stats(dv, lodp);
         printf("\n  Statistics:\n"
                "    Low sample               %d\n"
                "    Number of samples        %d\n"
                "    Low time (s)             %.7g\n"
                "    Duration of samples (s)  %.7g\n"
                "    Maximum value            %.7g\n"
                "    Minimum value            %.7g\n"
                "    Average value            %.7g\n"
                "    Median value             %.7g\n"
                "    Standard Deviation       %.7g\n"
                "    Skewness                 %.7g\n"
                "    Kurtosis                 %.7g\n\n",
                dv->lon, dv->numsamps, dv->lon * idata.dt, dv->numsamps * idata.dt,
                statvals->max, statvals->min, statvals->average,
                statvals->median, statvals->stdev,
                statvals->skewness, statvals->kurtosis);
         free(statvals);
         break;
      case 'Q':                /* Quit */
      case 'q':
         printf("  Quitting...\n");
         free(dv);
         cpgclos();
         break;
      default:
         printf("  Unrecognized option '%c'.\n", inchar);
         break;
      }
   } while (inchar != 'Q' && inchar != 'q');

   free_datapart(lodp);
#ifdef USEMMAP
   close(mmap_file);
#else
   fclose(datfile);
#endif
   printf("Done\n\n");
   return 0;
}
Beispiel #13
0
void create_accelobs(accelobs * obs, infodata * idata, Cmdline * cmd, int usemmap)
{
   int ii, rootlen, input_shorts = 0;

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(cmd->argv[0], &(obs->rootfilenm), &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0 &&
             strcmp(suffix, "dat") != 0 && strcmp(suffix, "sdat") != 0) {
            printf("\nInput file ('%s') must be an '.fft' or '.[s]dat' file!\n\n",
                   cmd->argv[0]);
            free(suffix);
            exit(0);
         }
         /* If the input file is a time series */
         if (strcmp(suffix, "dat") == 0 || strcmp(suffix, "sdat") == 0) {
            obs->dat_input = 1;
            obs->mmap_file = 0;
            if (strcmp(suffix, "sdat") == 0)
               input_shorts = 1;
         } else {
            obs->dat_input = 0;
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be an '.fft' or '.[s]dat' file!\n\n",
                cmd->argv[0]);
         exit(0);
      }
   }

   if (cmd->noharmpolishP)
       obs->use_harmonic_polishing = 0;
   else
       obs->use_harmonic_polishing = 1;  // now default

   /* Read the info file */

   readinf(idata, obs->rootfilenm);
   if (idata->object) {
      printf("Analyzing %s data from '%s'.\n\n",
             remove_whitespace(idata->object), cmd->argv[0]);
   } else {
      printf("Analyzing data from '%s'.\n\n", cmd->argv[0]);
   }

   /* Prepare the input time series if required */

   if (obs->dat_input) {
      FILE *datfile;
      long long filelen;
      float *ftmp;

      printf("Reading and FFTing the time series...");
      fflush(NULL);
      datfile = chkfopen(cmd->argv[0], "rb");

      /* Check the length of the file to see if we can handle it */
      filelen = chkfilelen(datfile, sizeof(float));
      if (input_shorts)
         filelen *= 2;
      if (filelen > 67108864) { /* Small since we need memory for the templates */
         printf("\nThe input time series is too large.  Use 'realfft' first.\n\n");
         exit(0);
      }

      /* Read the time series into a temporary buffer */
      /* Note:  The padding allows us to search very short time series */
      /*        using correlations without having to worry about       */
      /*        accessing data before or after the valid FFT freqs.    */
      if (input_shorts) {
         short *stmp = gen_svect(filelen);
         ftmp = gen_fvect(filelen+2*ACCEL_PADDING);
         for (ii = 0; ii < ACCEL_PADDING; ii++) {
             ftmp[ii] = 0.0;
             ftmp[ii+filelen+ACCEL_PADDING] = 0.0;
         }
         chkfread(stmp, sizeof(short), filelen, datfile);
         for (ii = 0; ii < filelen; ii++)
            ftmp[ii+ACCEL_PADDING] = (float) stmp[ii];
         free(stmp);
      } else {
         ftmp = read_float_file(datfile, -ACCEL_PADDING, filelen+2*ACCEL_PADDING);
      }
      /* Now, offset the pointer so that we are pointing at the first */
      /* bits of valid data.                                          */
      ftmp += ACCEL_PADDING;
      fclose(datfile);

      /* FFT it */
      realfft(ftmp, filelen, -1);
      obs->fftfile = NULL;
      obs->fft = (fcomplex *) ftmp;
      obs->numbins = filelen / 2;
      printf("done.\n");

      /* De-redden it */
      printf("Removing red-noise...");
      deredden(obs->fft, obs->numbins);
      printf("done.\n\n");
   }

   /* Determine the output filenames */

   rootlen = strlen(obs->rootfilenm) + 25;
   obs->candnm = (char *) calloc(rootlen, 1);
   obs->accelnm = (char *) calloc(rootlen, 1);
   obs->workfilenm = (char *) calloc(rootlen, 1);
   sprintf(obs->candnm, "%s_ACCEL_%d.cand", obs->rootfilenm, cmd->zmax);
   sprintf(obs->accelnm, "%s_ACCEL_%d", obs->rootfilenm, cmd->zmax);
   sprintf(obs->workfilenm, "%s_ACCEL_%d.txtcand", obs->rootfilenm, cmd->zmax);

   /* Open the FFT file if it exists appropriately */
   if (!obs->dat_input) {
      obs->fftfile = chkfopen(cmd->argv[0], "rb");
      obs->numbins = chkfilelen(obs->fftfile, sizeof(fcomplex));
      if (usemmap) {
         fclose(obs->fftfile);
         obs->fftfile = NULL;
         printf("Memory mapping the input FFT.  This may take a while...\n");
         obs->mmap_file = open(cmd->argv[0], O_RDONLY);
         if (obs->mmap_file == -1) {
            perror("\nError in open() in accel_utils.c");
            printf("\n");
            exit(-1);
         }
         obs->fft = (fcomplex *) mmap(0, sizeof(fcomplex) * obs->numbins, PROT_READ,
                                      MAP_SHARED, obs->mmap_file, 0);
         if (obs->fft == MAP_FAILED) {
            perror("\nError in mmap() in accel_utils.c");
            printf("Falling back to a non-mmaped approach\n");
            obs->fftfile = chkfopen(cmd->argv[0], "rb");
            obs->mmap_file = 0;
         }
      } else {
         obs->mmap_file = 0;
      }
   }

   /* Determine the other parameters */

   if (cmd->zmax % ACCEL_DZ)
      cmd->zmax = (cmd->zmax / ACCEL_DZ + 1) * ACCEL_DZ;
   if (!obs->dat_input)
      obs->workfile = chkfopen(obs->workfilenm, "w");
   obs->N = (long long) idata->N;
   if (cmd->photonP) {
      if (obs->mmap_file || obs->dat_input) {
         obs->nph = obs->fft[0].r;
      } else {
         obs->nph = get_numphotons(obs->fftfile);
      }
      printf("Normalizing powers using %.0f photons.\n\n", obs->nph);
   } else {
      obs->nph = 0.0;
      /* For short FFTs insure that we don't pick up the DC */
      /* or Nyquist component as part of the interpolation  */
      /* for higher frequencies.                            */
      if (cmd->locpowP) {
          obs->norm_type = 1;
          printf("Normalizing powers using local-power determination.\n\n");
      } else if (cmd->medianP) {
          obs->norm_type = 0;
          printf("Normalizing powers using median-blocks.\n\n");
      } else {
          obs->norm_type = 0;
          printf("Normalizing powers using median-blocks (default).\n\n");
      }
      if (obs->dat_input) {
         obs->fft[0].r = 1.0;
         obs->fft[0].i = 1.0;
      }
   }
   obs->lobin = cmd->lobin;
   if (obs->lobin > 0) {
      obs->nph = 0.0;
      if (cmd->lobin > obs->numbins - 1) {
         printf("\n'lobin' is greater than the total number of\n");
         printf("   frequencies in the data set.  Exiting.\n\n");
         exit(1);
      }
   }
   if (cmd->numharm != 1 &&
       cmd->numharm != 2 &&
       cmd->numharm != 4 && cmd->numharm != 8 && cmd->numharm != 16) {
      printf("\n'numharm' = %d must be a power-of-two!  Exiting\n\n", cmd->numharm);
      exit(1);
   }
   obs->numharmstages = twon_to_index(cmd->numharm) + 1;
   obs->dz = ACCEL_DZ;
   obs->numz = cmd->zmax * 2 + 1;
   obs->numbetween = ACCEL_NUMBETWEEN;
   obs->dt = idata->dt;
   obs->T = idata->dt * idata->N;
   if (cmd->floP) {
      obs->rlo = floor(cmd->flo * obs->T);
      if (obs->rlo < obs->lobin)
         obs->rlo = obs->lobin;
      if (obs->rlo > obs->numbins - 1) {
         printf("\nLow frequency to search 'flo' is greater than\n");
         printf("   the highest available frequency.  Exiting.\n\n");
         exit(1);
      }
   } else {
      if (cmd->rloP)
         obs->rlo = cmd->rlo;
      else
         obs->rlo = 1.0;
      if (obs->rlo < obs->lobin)
         obs->rlo = obs->lobin;
      if (obs->rlo > obs->numbins - 1) {
         printf("\nLow frequency to search 'rlo' is greater than\n");
         printf("   the available number of points.  Exiting.\n\n");
         exit(1);
      }
   }
   obs->highestbin = obs->numbins - 1;
   if (cmd->fhiP) {
      obs->highestbin = ceil(cmd->fhi * obs->T);
      if (obs->highestbin > obs->numbins - 1)
         obs->highestbin = obs->numbins - 1;
      obs->rhi = obs->highestbin;
      if (obs->highestbin < obs->rlo) {
         printf("\nHigh frequency to search 'fhi' is less than\n");
         printf("   the lowest frequency to search 'flo'.  Exiting.\n\n");
         exit(1);
      }
   } else if (cmd->rhiP) {
      obs->highestbin = cmd->rhi;
      if (obs->highestbin > obs->numbins - 1)
         obs->highestbin = obs->numbins - 1;
      obs->rhi = obs->highestbin;
      if (obs->highestbin < obs->rlo) {
         printf("\nHigh frequency to search 'rhi' is less than\n");
         printf("   the lowest frequency to search 'rlo'.  Exiting.\n\n");
         exit(1);
      }
   }
   obs->dr = ACCEL_DR;
   obs->zhi = cmd->zmax;
   obs->zlo = -cmd->zmax;
   obs->sigma = cmd->sigma;
   obs->powcut = (float *) malloc(obs->numharmstages * sizeof(float));
   obs->numindep = (long long *) malloc(obs->numharmstages * sizeof(long long));
   for (ii = 0; ii < obs->numharmstages; ii++) {
      if (obs->numz == 1)
         obs->numindep[ii] = (obs->rhi - obs->rlo) / index_to_twon(ii);
      else
         /* The numz+1 takes care of the small amount of  */
         /* search we get above zmax and below zmin.      */
         obs->numindep[ii] = (obs->rhi - obs->rlo) * (obs->numz + 1) *
             (obs->dz / 6.95) / index_to_twon(ii);
      obs->powcut[ii] = power_for_sigma(obs->sigma,
                                        index_to_twon(ii), obs->numindep[ii]);
   }
   obs->numzap = 0;
   /*
      if (zapfile!=NULL)
      obs->numzap = get_birdies(cmd->zapfile, obs->T, obs->baryv, 
      &(obs->lobins), &(obs->hibins));
      else
      obs->numzap = 0;
    */
}
Beispiel #14
0
command_stream_t make_command_stream(int (*get_next_byte) (void *), void *get_next_byte_argument)
{
  /* FIXME: Replace this with your implementation.  You may need to
     add auxiliary functions and otherwise modify the source code.
     You can also use external functions defined in the GNU C Library.  */
     token_t t = checked_malloc(sizeof(struct token));
     token_t head = t;
     t->prev = NULL;
     t->str = checked_malloc(sizeof(char));
     t->str[0] = '\0';
     t->type = EMPTY;
     char* inputStream = makeInputStream(get_next_byte, get_next_byte_argument); 
     while(1) 
     { 
      token_t temp = get_next_token(inputStream, t); 
  //printf("%s %d\n", temp->prev->str, temp->prev->type); 
  //printf("%s %d\n", temp->str, temp->type); 
      if(temp->str[0] == EOF) 
      { 
        t = temp; break; 
      } 
      t = temp; 
    } 
    t->next = NULL; 
    t = remove_whitespace(head);

  // while (t != NULL)
  // {
  //   //printf("%s %d\n", t->str, t->type);
  //   //if (t -> next != NULL) {
  //     //printf("%s %d\n", t->next->str, t->next->type);
  //   //}
  //   t = t->next;
  // }
    convert_to_simple(head);
    remove_newline(head);
  // t = head;
  // while (t != NULL)
  // {
  //    printf("%s %d\n", t->str, t->type);
  //    //if (t -> next != NULL) {
  //      //printf("%s %d\n", t->next->str, t->next->type);
  //    //}
  //    t = t->next;
  // }
    //remove_newline(head);
   //  t = head;
   //  while (t != NULL)
   //  {
   //   //printf("%s %d\n", t->str, t->type);
   //   //if (t -> next != NULL) {
   //     //printf("%s %d\n", t->next->str, t->next->type);
   //   //}
   //   t = t->next;
   // }
    command_stream_t stream = make_command(head);
    command_stream_t c = checked_malloc(sizeof(struct command_stream));
    c->head = NULL;
    c->tail = NULL;
    while(stream->head != NULL)
    {
      struct command_node *n = stream->head->next;
      stream->head->next = c->head;
      c->head = stream->head;
      stream->head = n;
    }
  // while(c->head != NULL)
  // {
  //   printf("new command\n");
  //   print_command(c->head->command);
  //   c->head = c->head->next;
  // } 
  // t = head;
  // while(t != NULL)
  // {
  //   token_command_t c = get_next_command(t);
  //   //printf("%s\n", t->str);
  //   if(c != NULL)
  //   {
  //     if(c->type == SIMPLE)
  //     {
  //       int i = 0;
  //       while(c->command->u.word[i] != '\0')
  //       {
  //         //printf("%d:%s\n", i, c->command->u.word[i]);
  //         i=i+1;
  //       }
  //     }
  //     else 
  //     {
  //       //printf("%s %d\n", t->str, c->type);
  //     }
  //     //printf("\n");
  //   }
  //   t = t->next;
  // }
    return c;
  }
Beispiel #15
0
int main(int argc, char *argv[])
{
   FILE *infile, *outfile;
   int ii, jj, bufflen = 10000, numread;
   long long N = 0;
   float *inbuffer = NULL, *outbuffer = NULL;
   short useshorts = 0, *sinbuffer = NULL, *soutbuffer = NULL;
   char *rootfilenm, *outname;
   infodata idata;
   Cmdline *cmd;

   /* Call usage() if we have no command line arguments */

   if (argc == 1) {
      Program = argv[0];
      printf("\n");
      usage();
      exit(1);
   }

   /* Parse the command line using the excellent program Clig */

   cmd = parseCmdline(argc, argv);

#ifdef DEBUG
   showOptionValues();
#endif

   printf("\n\n");
   printf("     Time Series Downsampling Routine\n");
   printf("               Sept, 2002\n\n");

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(cmd->argv[0], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "sdat") == 0)
            useshorts = 1;
         if (strcmp(suffix, "dat") != 0 && strcmp(suffix, "sdat") != 0) {
            printf
                ("\nInput file ('%s') must be a time series ('.dat' or '.sdat')!\n\n",
                 cmd->argv[0]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a time series ('.dat' or '.sdat')!\n\n",
                cmd->argv[0]);
         exit(0);
      }
      if (cmd->outfileP) {
         outname = cmd->outfile;
      } else {
         outname = (char *) calloc(strlen(rootfilenm) + 11, sizeof(char));
         if (useshorts)
            sprintf(outname, "%s_D%d.sdat", rootfilenm, cmd->factor);
         else
            sprintf(outname, "%s_D%d.dat", rootfilenm, cmd->factor);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (idata.object) {
      printf("Downsampling %s data from '%s'.\n\n",
             remove_whitespace(idata.object), cmd->argv[0]);
   } else {
      printf("Downsampling data from '%s'.\n\n", cmd->argv[0]);
   }

   /* Open files and create arrays */

   infile = chkfopen(argv[1], "rb");
   outfile = chkfopen(outname, "wb");

   /* Read and downsample */

   if (useshorts) {
      sinbuffer = gen_svect(bufflen * cmd->factor);
      soutbuffer = gen_svect(bufflen);
      while ((numread =
              chkfread(sinbuffer, sizeof(short), bufflen * cmd->factor, infile))) {
         for (ii = 0; ii < numread / cmd->factor; ii++) {
            soutbuffer[ii] = 0;
            for (jj = 0; jj < cmd->factor; jj++)
               soutbuffer[ii] += sinbuffer[cmd->factor * ii + jj];
         }
         chkfwrite(soutbuffer, sizeof(short), numread / cmd->factor, outfile);
         N += numread / cmd->factor;
      }
      vect_free(sinbuffer);
      vect_free(soutbuffer);
   } else {
      inbuffer = gen_fvect(bufflen * cmd->factor);
      outbuffer = gen_fvect(bufflen);
      while ((numread =
              chkfread(inbuffer, sizeof(float), bufflen * cmd->factor, infile))) {
         for (ii = 0; ii < numread / cmd->factor; ii++) {
            outbuffer[ii] = 0;
            for (jj = 0; jj < cmd->factor; jj++)
               outbuffer[ii] += inbuffer[cmd->factor * ii + jj];
         }
         chkfwrite(outbuffer, sizeof(float), numread / cmd->factor, outfile);
         N += numread / cmd->factor;
      }
      vect_free(inbuffer);
      vect_free(outbuffer);
   }
   printf("Done.  Wrote %lld points.\n\n", N);

   /* Write the new info file */

   idata.dt = idata.dt * cmd->factor;
   idata.numonoff = 0;
   idata.N = (double) N;
   strncpy(idata.name, outname, strlen(outname) - 4);
   if (useshorts)
      idata.name[strlen(outname) - 5] = '\0';
   else
      idata.name[strlen(outname) - 4] = '\0';
   writeinf(&idata);

   fclose(infile);
   fclose(outfile);
   free(rootfilenm);
   if (!cmd->outfileP)
      free(outname);
   exit(0);
}
Beispiel #16
0
int main(int argc, char *argv[])
{
    Display *dpy;
    Bool ret;
    int screen, major, minor, len, i, j;
    char *str, *start, *str0, *str1;
    int *enabledDpyIds;


    /*
     * Open a display connection, and make sure the NV-CONTROL X
     * extension is present on the screen we want to use.
     */
    
    dpy = XOpenDisplay(NULL);
    if (!dpy) {
        fprintf(stderr, "Cannot open display '%s'.\n\n", XDisplayName(NULL));
        return 1;
    }
    
    screen = GetNvXScreen(dpy);

    ret = XNVCTRLQueryVersion(dpy, &major, &minor);
    if (ret != True) {
        fprintf(stderr, "The NV-CONTROL X extension does not exist "
                "on '%s'.\n\n", XDisplayName(NULL));
        return 1;
    }

    printf("\nUsing NV-CONTROL extension %d.%d on %s\n\n",
           major, minor, XDisplayName(NULL));


    /*
     * query the enabled display devices on this X screen and print basic
     * information about each X screen.
     */

    ret = XNVCTRLQueryTargetBinaryData(dpy,
                                       NV_CTRL_TARGET_TYPE_X_SCREEN,
                                       screen,
                                       0,
                                       NV_CTRL_BINARY_DATA_DISPLAYS_ENABLED_ON_XSCREEN,
                                       (unsigned char **) &enabledDpyIds,
                                       &len);
    if (!ret || (len < sizeof(enabledDpyIds[0]))) {
        fprintf(stderr, "Failed to query the enabled Display Devices.\n\n");
        return 1;
    }

    printf("Enabled Display Devices:\n");

    for (i = 0; i < enabledDpyIds[0]; i++) {
        int dpyId = enabledDpyIds[i+1];

        print_display_id_and_name(dpy, dpyId, "  ");
    }

    printf("\n");
    
    
    /*
     * perform the requested action, based on the specified
     * commandline option
     */
    
    if (argc <= 1) goto printHelp;


    /*
     * for each enabled display device on this X screen, query the list of
     * modelines in the mode pool using NV_CTRL_BINARY_DATA_MODELINES, then
     * print the results.
     */

    if (strcmp(argv[1], "--print-modelines") == 0) {

        for (i = 0; i < enabledDpyIds[0]; i++) {
            int dpyId = enabledDpyIds[i+1];

            ret = XNVCTRLQueryTargetBinaryData(dpy,
                                               NV_CTRL_TARGET_TYPE_DISPLAY,
                                               dpyId,
                                               0,
                                               NV_CTRL_BINARY_DATA_MODELINES,
                                               (void *) &str, &len);
            if (!ret) {
                fprintf(stderr, "Failed to query ModeLines.\n\n");
                return 1;
            }

            /*
             * the returned data is in the form:
             *
             *  "ModeLine 1\0ModeLine 2\0ModeLine 3\0Last ModeLine\0\0"
             *
             * so walk from one "\0" to the next to print each ModeLine.
             */

            printf("Modelines for DPY-%d:\n", dpyId);

            start = str;
            for (j = 0; j < len; j++) {
                if (str[j] == '\0') {
                    printf("  %s\n", start);
                    start = &str[j+1];
                }
            }

            XFree(str);
        }
    }


    /*
     * for each enabled display device on this X screen, query the current
     * modeline using NV_CTRL_STRING_CURRENT_MODELINE.
     */

    else if (strcmp(argv[1], "--print-current-modeline") == 0) {

       for (i = 0; i < enabledDpyIds[0]; i++) {
            int dpyId = enabledDpyIds[i+1];

            ret = XNVCTRLQueryTargetStringAttribute(dpy,
                                                    NV_CTRL_TARGET_TYPE_DISPLAY,
                                                    dpyId,
                                                    0,
                                                    NV_CTRL_STRING_CURRENT_MODELINE,
                                                    &str);
            if (!ret) {
                fprintf(stderr, "Failed to query current ModeLine.\n\n");
                return 1;
            }

            printf("Current Modeline for DPY-%d:\n", dpyId);
            printf("  %s\n\n", str);

            XFree(str);
        }
    }
    

    /*
     * add the specified modeline to the mode pool for the specified
     * display device, using NV_CTRL_STRING_ADD_MODELINE
     */
    
    else if ((strcmp(argv[1], "--add-modeline") == 0) &&
             argv[2] && argv[3]) {
        
        int dpyId = strtol(argv[2], NULL, 0);

        ret = XNVCTRLSetTargetStringAttribute(dpy,
                                              NV_CTRL_TARGET_TYPE_DISPLAY,
                                              dpyId,
                                              0,
                                              NV_CTRL_STRING_ADD_MODELINE,
                                              argv[3]);
        
        if (!ret) {
            fprintf(stderr, "Failed to add the modeline \"%s\" to DPY-%d's "
                    "mode pool.\n\n", argv[3], dpyId);
            return 1;
        }
        
        printf("Added modeline \"%s\" to DPY-%d's mode pool.\n\n",
               argv[3], dpyId);
    }

    
    /*
     * delete the specified modeline from the mode pool for the
     * specified display device, using NV_CTRL_STRING_DELETE_MODELINE
     */
    
    else if ((strcmp(argv[1], "--delete-modeline") == 0) &&
             argv[2] && argv[3]) {
        
        int dpyId = strtol(argv[2], NULL, 0);
    
        ret = XNVCTRLSetTargetStringAttribute(dpy,
                                              NV_CTRL_TARGET_TYPE_DISPLAY,
                                              dpyId,
                                              0,
                                              NV_CTRL_STRING_DELETE_MODELINE,
                                              argv[3]);
        
        if (!ret) {
            fprintf(stderr, "Failed to delete the mode \"%s\" from DPY-%d's "
                    "mode pool.\n\n", argv[3], dpyId);
            return 1;
        }
        
        printf("Deleted modeline \"%s\" from DPY-%d's mode pool.\n\n",
               argv[3], dpyId);
    }
    
    
    /*
     * generate a GTF modeline using NV_CTRL_STRING_OPERATION_GTF_MODELINE
     */
    
    else if ((strcmp(argv[1], "--generate-gtf-modeline") == 0) &&
             argv[2] && argv[3] && argv[4]) {
        
        char pGtfString[128];
        char *pOut;
        
        snprintf(pGtfString, 128, "width=%s, height=%s, refreshrate=%s",
                 argv[2], argv[3], argv[4]);

        ret = XNVCTRLStringOperation(dpy,
                                     NV_CTRL_TARGET_TYPE_X_SCREEN,
                                     screen,
                                     0,
                                     NV_CTRL_STRING_OPERATION_GTF_MODELINE,
                                     pGtfString,
                                     &pOut);

        if (!ret) {
            fprintf(stderr, "Failed to generate GTF ModeLine from "
                    "\"%s\".\n\n", pGtfString);
            return 1;
        }
        
        printf("GTF ModeLine from \"%s\": %s\n\n", pGtfString, pOut);
    }
    
    
    /*
     * generate a CVT modeline using NV_CTRL_STRING_OPERATION_CVT_MODELINE
     */

    else if ((strcmp(argv[1], "--generate-cvt-modeline") == 0) &&
             argv[2] && argv[3] && argv[4] && argv[5]) {

        char pCvtString[128];
        char *pOut;
        
        snprintf(pCvtString, 128, "width=%s, height=%s, refreshrate=%s, "
                 "reduced-blanking=%s",
                 argv[2], argv[3], argv[4], argv[5]);
        
        ret = XNVCTRLStringOperation(dpy,
                                     NV_CTRL_TARGET_TYPE_X_SCREEN,
                                     screen,
                                     0,
                                     NV_CTRL_STRING_OPERATION_CVT_MODELINE,
                                     pCvtString,
                                     &pOut);

        if (!ret) {
            fprintf(stderr, "Failed to generate CVT ModeLine from "
                    "\"%s\".\n\n", pCvtString);
            return 1;
        }

        printf("CVT ModeLine from \"%s\": %s\n\n", pCvtString, pOut);
    }

    
    /*
     * query the MetaModes for the X screen, using
     * NV_CTRL_BINARY_DATA_METAMODES.
     */
    
    else if (strcmp(argv[1], "--print-metamodes") == 0) {

        /* get list of metamodes */
        
        ret = XNVCTRLQueryBinaryData(dpy, screen, 0, // n/a
                                     NV_CTRL_BINARY_DATA_METAMODES,
                                     (void *) &str, &len);
        
        if (!ret) {
            fprintf(stderr, "Failed to query MetaModes.\n\n");
            return 1;
        }
        
        /*
         * the returned data is in the form:
         *
         *   "MetaMode 1\0MetaMode 2\0MetaMode 3\0Last MetaMode\0\0"
         *
         * so walk from one "\0" to the next to print each MetaMode.
         */
        
        printf("MetaModes:\n");
        
        start = str;
        for (j = 0; j < len; j++) {
            if (str[j] == '\0') {
                printf("  %s\n", start);
                start = &str[j+1];
            }
        }
        
        XFree(str);
    }


    /*
     * query the MetaModes for the X screen, using
     * NV_CTRL_BINARY_DATA_METAMODES_VERSION_2.
     */

    else if (strcmp(argv[1], "--print-metamodes-version2") == 0) {

        /* get list of metamodes */

        ret = XNVCTRLQueryBinaryData(dpy, screen, 0, // n/a
                                     NV_CTRL_BINARY_DATA_METAMODES_VERSION_2,
                                     (void *) &str, &len);

        if (!ret) {
            fprintf(stderr, "Failed to query MetaModes.\n\n");
            return 1;
        }

        /*
         * the returned data is in the form:
         *
         *   "MetaMode 1\0MetaMode 2\0MetaMode 3\0Last MetaMode\0\0"
         *
         * so walk from one "\0" to the next to print each MetaMode.
         */

        printf("MetaModes:\n");

        start = str;
        for (j = 0; j < len; j++) {
            if (str[j] == '\0') {
                printf("  %s\n", start);
                start = &str[j+1];
            }
        }

        XFree(str);
    }


    /*
     * query the currently in use MetaMode.  Note that an alternative
     * way to accomplish this is to use XRandR to query the current
     * mode's refresh rate, and then match the refresh rate to the id
     * reported in the returned NV_CTRL_BINARY_DATA_METAMODES data.
     */
    
    else if (strcmp(argv[1], "--print-current-metamode") == 0) {
        
        ret = XNVCTRLQueryStringAttribute(dpy, screen, 0,
                                          NV_CTRL_STRING_CURRENT_METAMODE,
                                          &str);
        
        if (!ret) {
            fprintf(stderr, "Failed to query the current MetaMode.\n\n");
            return 1;
        }
        
        printf("current metamode: \"%s\"\n\n", str);

        XFree(str);
    }


    /*
     * query the currently in use MetaMode.  Note that an alternative
     * way to accomplish this is to use XRandR to query the current
     * mode's refresh rate, and then match the refresh rate to the id
     * reported in the returned NV_CTRL_BINARY_DATA_METAMODES_VERSION_2 data.
     */

    else if (strcmp(argv[1], "--print-current-metamode-version2") == 0) {

        ret = XNVCTRLQueryStringAttribute(dpy, screen, 0,
                                          NV_CTRL_STRING_CURRENT_METAMODE_VERSION_2,
                                          &str);

        if (!ret) {
            fprintf(stderr, "Failed to query the current MetaMode.\n\n");
            return 1;
        }

        printf("current metamode: \"%s\"\n\n", str);

        XFree(str);
    }


    /*
     * add the given MetaMode to X screen's list of MetaModes, using
     * NV_CTRL_STRING_OPERATION_ADD_METAMODE; example MetaMode string:
     *
     * "nvidia-auto-select, nvidia-auto-select"
     *
     * The output string will contain "id=#" which indicates the
     * unique identifier for this MetaMode.  You can then use XRandR
     * to switch to this mode by matching the identifier with the
     * refresh rate reported via XRandR.
     *
     * For example:
     *
     * $ ./nv-control-dpy --add-metamode \
     *                         "nvidia-auto-select, nvidia-auto-select"
     *
     * Using NV-CONTROL extension 1.12 on :0
     * Enabled Display Devices:
     *   DPY-0 : EIZO F931
     *   DPY-1 : ViewSonic P815-4
     *
     * Added MetaMode "nvidia-auto-select, nvidia-auto-select"; 
     * pOut: "id=52"
     *
     * $ xrandr -q
     * SZ:    Pixels          Physical       Refresh
     *  0   3200 x 1200   ( 821mm x 302mm )   51   52  
     * *1   1600 x 600    ( 821mm x 302mm )  *50  
     * Current rotation - normal
     * Current reflection - none
     * Rotations possible - normal 
     * Reflections possible - none
     *
     * $ xrandr -s 0 -r 52
     */
    
    else if ((strcmp(argv[1], "--add-metamode") == 0) && (argv[2])) {
        
        char *pOut;
        
        ret = XNVCTRLStringOperation(dpy,
                                     NV_CTRL_TARGET_TYPE_X_SCREEN,
                                     screen,
                                     0,
                                     NV_CTRL_STRING_OPERATION_ADD_METAMODE,
                                     argv[2],
                                     &pOut);

        if (!ret) {
            fprintf(stderr, "Failed to add the MetaMode \"%s\".\n\n",
                    argv[2]);
            return 1;
        }

        printf("Added MetaMode \"%s\"; pOut: \"%s\"\n\n", argv[2], pOut);
        
        XFree(pOut);
    }
    
    
    /*
     * delete the given MetaMode from the X screen's list of
     * MetaModes, using NV_CTRL_STRING_DELETE_METAMODE
     */

    else if ((strcmp(argv[1], "--delete-metamode") == 0) && (argv[1])) {
        
        ret = XNVCTRLSetStringAttribute(dpy,
                                        screen,
                                        0,
                                        NV_CTRL_STRING_DELETE_METAMODE,
                                        argv[2]);

        if (!ret) {
            fprintf(stderr, "Failed to delete the MetaMode.\n\n");
            return 1;
        }
        
        printf("Deleted MetaMode \"%s\".\n\n", argv[2]);
    }
    
    
    /*
     * query the valid frequency ranges for each display device, using
     * NV_CTRL_STRING_VALID_HORIZ_SYNC_RANGES and
     * NV_CTRL_STRING_VALID_VERT_REFRESH_RANGES
     */
    
    else if (strcmp(argv[1], "--get-valid-freq-ranges") == 0) {

        for (i = 0; i < enabledDpyIds[0]; i++) {
            int dpyId = enabledDpyIds[i+1];

            ret = XNVCTRLQueryTargetStringAttribute
                (dpy, NV_CTRL_TARGET_TYPE_DISPLAY, dpyId, 0,
                 NV_CTRL_STRING_VALID_HORIZ_SYNC_RANGES,
                 &str0);

            if (!ret) {
                fprintf(stderr, "Failed to query HorizSync for DPY-%d.\n\n",
                        dpyId);
                return 1;
            }

            ret = XNVCTRLQueryTargetStringAttribute
                (dpy, NV_CTRL_TARGET_TYPE_DISPLAY, dpyId, 0,
                 NV_CTRL_STRING_VALID_VERT_REFRESH_RANGES,
                 &str1);

            if (!ret) {
                fprintf(stderr, "Failed to query VertRefresh for DPY-%d.\n\n",
                        dpyId);
                XFree(str0);
                return 1;
            }

            printf("frequency information for DPY-%d:\n", dpyId);
            printf("  HorizSync   : \"%s\"\n", str0);
            printf("  VertRefresh : \"%s\"\n\n", str1);

            XFree(str0);
            XFree(str1);
        }
    }
    
    
    /*
     * attempt to build the modepool for each display device; this
     * will fail for any display device that already has a modepool
     */
    
    else if (strcmp(argv[1], "--build-modepool") == 0) {

        for (i = 0; i < enabledDpyIds[0]; i++) {
            int dpyId = enabledDpyIds[i+1];

            ret = XNVCTRLStringOperation
                (dpy,
                 NV_CTRL_TARGET_TYPE_DISPLAY,
                 dpyId,
                 0,
                 NV_CTRL_STRING_OPERATION_BUILD_MODEPOOL,
                 argv[2],
                 &str0);

            if (!ret) {
                fprintf(stderr, "Failed to build modepool for DPY-%d (it most "
                        "likely already has a modepool).\n\n", dpyId);
            } else {
                printf("Built modepool for DPY-%d.\n\n", dpyId);
            }
        }
    }

    
    /*
     * query the assigned display devices on this X screen; these are the
     * display devices that are available to the X screen for use by MetaModes.
     */

    else if (strcmp(argv[1], "--get-assigned-dpys") == 0) {

        int *pData = NULL;
        int len;

        ret = XNVCTRLQueryTargetBinaryData(dpy,
                                           NV_CTRL_TARGET_TYPE_X_SCREEN,
                                           screen,
                                           0,
                                           NV_CTRL_BINARY_DATA_DISPLAYS_ASSIGNED_TO_XSCREEN,
                                           (unsigned char **) &pData,
                                           &len);
        if (!ret || (len < sizeof(pData[0]))) {
            fprintf(stderr, "failed to query the assigned display "
                    "devices.\n\n");
            return 1;
        }

        printf("Assigned display devices:\n");

        for (i = 0; i < pData[0]; i++) {
            int dpyId = pData[i+1];

            printf("  DPY-%d\n", dpyId);
        }

        printf("\n");
        XFree(pData);
    }

    /*
     * query information about the GPUs in the system
     */
    
    else if (strcmp(argv[1], "--query-gpus") == 0) {

        int num_gpus, num_screens, i;
        int *pData;

        printf("GPU Information:\n");

        /* Get the number of gpus in the system */
        
        ret = XNVCTRLQueryTargetCount(dpy, NV_CTRL_TARGET_TYPE_GPU,
                                      &num_gpus);
        if (!ret) {
            fprintf(stderr, "Failed to query number of gpus.\n\n");
            return 1;
        }

        printf("  number of GPUs: %d\n", num_gpus);

        /* List the X screen number of all X screens driven by each gpu */
        
        for (i = 0; i < num_gpus; i++) {
            
            ret = XNVCTRLQueryTargetBinaryData
                (dpy,
                 NV_CTRL_TARGET_TYPE_GPU,
                 i, // target_id
                 0,
                 NV_CTRL_BINARY_DATA_XSCREENS_USING_GPU,
                 (unsigned char **) &pData,
                 &len);
            
            if (!ret || (len < sizeof(pData[0]))) {
                fprintf(stderr, "Failed to query list of X Screens\n");
                return 1;
            }
            
            printf("  number of X screens using GPU %d: %d\n", i, pData[0]);
            
            /* List X Screen number of all X Screens driven by this GPU. */
            
            printf("    Indices of X screens using GPU %d: ", i);
            
            for (j = 1; j <= pData[0]; j++) {
                printf(" %d", pData[j]);
            }
            printf("\n");
            XFree(pData);
        }
        

        /* Get the number of X Screens in the system 
         *
         * NOTE: If Xinerama is enabled, ScreenCount(dpy) will return 1,
         *       where as querying the screen count information from
         *       NV-CONTROL will return the number of underlying X Screens.
         */
        
        ret = XNVCTRLQueryTargetCount(dpy, NV_CTRL_TARGET_TYPE_X_SCREEN,
                                      &num_screens);
        if (!ret) {
            fprintf(stderr, "Failed to query number of X Screens\n\n");
            return 1;
        }

        printf("\n");
        printf("  number of X screens (ScreenCount): %d\n",
               ScreenCount(dpy));
        printf("  number of X screens (NV-CONTROL): %d\n\n",
               num_screens);

        for (i = 0; i < num_screens; i++) {
            
            ret = XNVCTRLQueryTargetBinaryData
                (dpy,
                 NV_CTRL_TARGET_TYPE_X_SCREEN,
                 i, // target_id
                 0,
                 NV_CTRL_BINARY_DATA_GPUS_USED_BY_XSCREEN,
                 (unsigned char **) &pData,
                 &len);
            
            if (!ret || (len < sizeof(pData[0]))) {
                fprintf(stderr, "Failed to query list of gpus\n\n");
                return 1;
            }
            
            printf("  number of GPUs used by X screen %d: %d\n", i,
                   pData[0]);

            /* List gpu number of all gpus driven by this X screen */

            printf("    Indices of GPUs used by X screen %d: ", i);
            for (j = 1; j <= pData[0]; j++) {
                printf(" %d", pData[j]);
            }
            printf("\n");
            XFree(pData);
        }
        
        printf("\n");

    }
    
    
    /*
     * probe for any newly connected display devices
     */
    
    else if (strcmp(argv[1], "--probe-dpys") == 0) {

        int num_gpus, i;

        printf("Display Device Probed Information:\n\n");

        /* Get the number of gpus in the system */
        
        ret = XNVCTRLQueryTargetCount(dpy, NV_CTRL_TARGET_TYPE_GPU,
                                      &num_gpus);
        
        if (!ret) {
            fprintf(stderr, "Failed to query number of gpus\n\n");
            return 1;
        }
        
        printf("  number of GPUs: %d\n", num_gpus);

        /* Probe and list the Display devices */
        
        for (i = 0; i < num_gpus; i++) {
            int deprecated;
            int *pData;
            
            /* Get the gpu name */
            
            ret = XNVCTRLQueryTargetStringAttribute
                (dpy, NV_CTRL_TARGET_TYPE_GPU, i, 0,
                 NV_CTRL_STRING_PRODUCT_NAME, &str);
            
            if (!ret) {
                fprintf(stderr, "Failed to query gpu name\n\n");
                return 1;
            }

            /* Probe the GPU for new/old display devices */
            
            ret = XNVCTRLQueryTargetAttribute(dpy,
                                              NV_CTRL_TARGET_TYPE_GPU, i,
                                              0,
                                              NV_CTRL_PROBE_DISPLAYS,
                                              &deprecated);
            
            if (!ret) {
                fprintf(stderr, "Failed to probe the enabled Display "
                        "Devices on GPU-%d (%s).\n\n", i, str);
                return 1;
            }
            
            printf("  display devices on GPU-%d (%s):\n", i, str);
            XFree(str);
        
            /* Report results */

            ret = XNVCTRLQueryTargetBinaryData(dpy,
                                               NV_CTRL_TARGET_TYPE_GPU, i,
                                               0,
                                               NV_CTRL_BINARY_DATA_DISPLAYS_CONNECTED_TO_GPU,
                                               (unsigned char **) &pData,
                                               &len);
            if (!ret || (len < sizeof(pData[0]))) {
                fprintf(stderr, "Failed to query the connected Display Devices.\n\n");
                return 1;
            }

            for (j = 0; j < pData[0]; j++) {
                int dpyId = pData[j+1];

                print_display_id_and_name(dpy, dpyId, "    ");
            }

            printf("\n");
        }
        
        printf("\n");
    }
    
    
    /*
     * query the nvidiaXineramaInfoOrder
     */
    
    else if (strcmp(argv[1], "--query-nvidia-xinerama-info-order") == 0) {
        
        ret = XNVCTRLQueryTargetStringAttribute
            (dpy, NV_CTRL_TARGET_TYPE_X_SCREEN, screen, 0,
             NV_CTRL_STRING_NVIDIA_XINERAMA_INFO_ORDER, &str);
        
        if (!ret) {
            fprintf(stderr, "Failed to query nvidiaXineramaInfoOrder.\n\n");
            return 1;
        }
        
        printf("nvidiaXineramaInfoOrder: %s\n\n", str);
    }
    
    
    /*
     * assign the nvidiaXineramaInfoOrder
     */
    
    else if ((strcmp(argv[1], "--assign-nvidia-xinerama-info-order")== 0)
             && argv[2]) {
        
        ret = XNVCTRLSetStringAttribute
            (dpy,
             screen,
             0,
             NV_CTRL_STRING_NVIDIA_XINERAMA_INFO_ORDER,
             argv[2]);
        
        if (!ret) {
            fprintf(stderr, "Failed to assign "
                    "nvidiaXineramaInfoOrder = \"%s\".\n\n", argv[2]);
            return 1;
        }
        
        printf("assigned nvidiaXineramaInfoOrder: \"%s\"\n\n",
               argv[2]);
    }


    /*
     * use NV_CTRL_MAX_SCREEN_WIDTH and NV_CTRL_MAX_SCREEN_HEIGHT to
     * query the maximum screen dimensions on each GPU in the system
     */
    
    else if (strcmp(argv[1], "--max-screen-size") == 0) {

        int num_gpus, i, width, height;
        
        /* Get the number of gpus in the system */
        
        ret = XNVCTRLQueryTargetCount(dpy, NV_CTRL_TARGET_TYPE_GPU,
                                      &num_gpus);
        if (!ret) {
            fprintf(stderr, "Failed to query number of gpus.\n\n");
            return 1;
        }
        
        for (i = 0; i < num_gpus; i++) {
            
            ret = XNVCTRLQueryTargetAttribute(dpy,
                                              NV_CTRL_TARGET_TYPE_GPU,
                                              i,
                                              0,
                                              NV_CTRL_MAX_SCREEN_WIDTH,
                                              &width);

            if (!ret) {
                fprintf(stderr, "Failed to query the maximum screen "
                        "width on GPU-%d\n\n", i);
                return 1;
            }
            
            ret = XNVCTRLQueryTargetAttribute(dpy,
                                              NV_CTRL_TARGET_TYPE_GPU,
                                              i,
                                              0,
                                              NV_CTRL_MAX_SCREEN_HEIGHT,
                                              &height);

            if (!ret) {
                fprintf(stderr, "Failed to query the maximum screen "
                        "height on GPU-%d.\n\n", i);
                return 1;
            }
            
            printf("GPU-%d: maximum X screen size: %d x %d.\n\n",
                   i, width, height);
        }
    }


    /*
     * demonstrate how to use NV-CONTROL to query what modelines are
     * used by the MetaModes of the X screen: we first query all the
     * MetaModes, parse out the display device names and mode names,
     * and then lookup the modelines associated with those mode names
     * on those display devices
     *
     * this could be implemented much more efficiently, but
     * demonstrates the general idea
     */
    
    else if (strcmp(argv[1], "--print-used-modelines") == 0) {

        char *pMetaModes, *pModeLines[8], *tmp, *modeString;
        char *modeLine, *modeName, *noWhiteSpace;
        int MetaModeLen, ModeLineLen[8], ModeLineDpyId[8];
        int dpyId;

        /* first, we query the MetaModes on this X screen */
        
        XNVCTRLQueryBinaryData(dpy, screen, 0,
                               NV_CTRL_BINARY_DATA_METAMODES_VERSION_2,
                               (void *) &pMetaModes, &MetaModeLen);
        
        /*
         * then, we query the ModeLines for each display device on
         * this X screen; we'll need these later
         */

        for (i = 0; i < enabledDpyIds[0]; i++) {
            dpyId = enabledDpyIds[i+1];

            XNVCTRLQueryTargetBinaryData(dpy, NV_CTRL_TARGET_TYPE_DISPLAY,
                                         dpyId,
                                         0,
                                         NV_CTRL_BINARY_DATA_MODELINES,
                                         (void *) &str, &len);

            pModeLines[i] = str;
            ModeLineLen[i] = len;
            ModeLineDpyId[i] = dpyId;
        }
        
        /* now, parse each MetaMode */
        
        str = start = pMetaModes;
        
        for (j = 0; j < MetaModeLen - 1; j++) {

            /*
             * if we found the end of a line, treat the string from
             * start to str[j] as a MetaMode
             */

            if ((str[j] == '\0') && (str[j+1] != '\0')) {

                printf("MetaMode: %s\n", start);
                
                /*
                 * remove any white space from the string to make
                 * parsing easier
                 */
                
                noWhiteSpace = remove_whitespace(start);

                /*
                 * the MetaMode may be preceded with "token=value"
                 * pairs, separated by the main MetaMode with "::"; if
                 * "::" exists in the string, skip past it
                 */
                
                tmp = strstr(noWhiteSpace, "::");
                if (tmp) {
                    tmp += 2;
                } else {
                    tmp = noWhiteSpace;
                }

                /* Parse each mode from the metamode */

                for (modeString = mode_strtok(tmp);
                     modeString;
                     modeString = mode_strtok(NULL)) {

                    /*
                     * retrieve the modeName and display device id
                     * for this segment of the Metamode
                     */

                    if (!parse_mode_string(modeString, &modeName, &dpyId)) {
                        fprintf(stderr, "  Failed to parse mode string '%s'."
                                "\n\n",
                                modeString);
                        continue;
                    }

                    /* lookup the modeline that matches */

                    for (i = 0; i < enabledDpyIds[0]; i++) {
                        if (ModeLineDpyId[i] == dpyId) {
                            break;
                        }
                    }
                    if ( i >= enabledDpyIds[0] ) {
                        fprintf(stderr, "  Failed to find modelines for "
                                "DPY-%d.\n\n",
                                dpyId);
                        continue;
                    }

                    modeLine = find_modeline(modeName,
                                             pModeLines[i],
                                             ModeLineLen[i]);

                    printf("  DPY-%d: %s\n", dpyId, modeLine);
                }

                printf("\n");

                free(noWhiteSpace);
                
                /* move to the next MetaMode */
                
                start = &str[j+1];
            }
        }
    }


    /* Display all names each display device goes by
     */
    else if (strcmp(argv[1], "--print-display-names") == 0) {
        int *pData;
        int len, i;

        printf("Display Device Information:\n");

        ret = XNVCTRLQueryTargetBinaryData(dpy,
                                           NV_CTRL_TARGET_TYPE_GPU,
                                           0,
                                           0,
                                           NV_CTRL_BINARY_DATA_DISPLAY_TARGETS,
                                           (unsigned char **) &pData,
                                           &len);
        if (!ret || (len < sizeof(pData[0]))) {
            fprintf(stderr, "Failed to query number of display devices.\n\n");
            return 1;
        }

        printf("  number of display devices: %d\n", pData[0]);

        for (i = 1; i <= pData[0]; i++) {

            printf("\n  Display Device: %d\n", pData[i]);

            print_display_name(dpy, pData[i],
                               NV_CTRL_STRING_DISPLAY_NAME_TYPE_BASENAME,
                               "Type Basename");
            print_display_name(dpy, pData[i],
                               NV_CTRL_STRING_DISPLAY_NAME_TYPE_ID,
                               "Type ID");
            print_display_name(dpy, pData[i],
                               NV_CTRL_STRING_DISPLAY_NAME_DP_GUID,
                               "DP GUID");
            print_display_name(dpy, pData[i],
                               NV_CTRL_STRING_DISPLAY_NAME_EDID_HASH,
                               "EDID HASH");
            print_display_name(dpy, pData[i],
                               NV_CTRL_STRING_DISPLAY_NAME_TARGET_INDEX,
                               "Target Index");
            print_display_name(dpy, pData[i],
                               NV_CTRL_STRING_DISPLAY_NAME_RANDR,
                               "RANDR");
        }
    }

    /*
     * print help information
     */

    else {
        
    printHelp:
        
        printf("\nnv-control-dpy [options]:\n\n");
        
        
        printf(" ModeLine options:\n\n");

        printf("  --print-modelines: print the modelines in the mode pool "
               "for each Display Device.\n\n");
        
        printf("  --print-current-modeline: print the current modeline "
               "for each Display Device.\n\n");

        printf("  --add-modeline [dpy id] [modeline]: "
               "add new modeline.\n\n");
        
        printf("  --delete-modeline [dpy id] [modename]: "
               "delete modeline with modename.\n\n");
        
        printf("  --generate-gtf-modeline [width] [height] [refreshrate]:"
               " use the GTF formula"
               " to generate a modeline for the specified parameters.\n\n");
        
        printf("  --generate-cvt-modeline [width] [height] [refreshrate]"
               " [reduced-blanking]: use the CVT formula"
               " to generate a modeline for the specified parameters.\n\n");
                

        printf(" MetaMode options:\n\n");

        printf("  --print-metamodes: print the current MetaModes for the "
               "X screen\n\n");

        printf("  --print-metamodes-version2: print the current MetaModes for "
               "the X screen with extended information\n\n");

        printf("  --add-metamode [metamode]: add the specified "
               "MetaMode to the X screen's list of MetaModes.\n\n");
        
        printf("  --delete-metamode [metamode]: delete the specified MetaMode "
               "from the X screen's list of MetaModes.\n\n");

        printf("  --print-current-metamode: print the current MetaMode.\n\n");

        printf("  --print-current-metamode-version2: print the current "
               "MetaMode with extended information.\n\n");


        printf(" Misc options:\n\n");
        
        printf("  --get-valid-freq-ranges: query the valid frequency "
               "information for each display device.\n\n");
        
        printf("  --build-modepool: build a modepool for any display device "
               "that does not already have one.\n\n");
                
        printf("  --get-assigned-dpys: query the assigned display device for "
               "this X screen\n\n");
        
        printf("  --query-gpus: print GPU information and relationship to "
               "X screens.\n\n");
        
        printf("  --probe-dpys: probe GPUs for new display devices\n\n");
        
        printf("  --query-nvidia-xinerama-info-order: query the "
               "nvidiaXineramaInfoOrder.\n\n");
        
        printf("  --assign-nvidia-xinerama-info-order [order]: assign the "
               "nvidiaXineramaInfoOrder.\n\n");

        printf("  --max-screen-size: query the maximum screen size "
               "on all GPUs in the system\n\n");

        printf("  --print-used-modelines: print the modeline for each display "
               "device for each MetaMode on the X screen.\n\n");

        printf("  --print-display-names: print all the names associated with "
               "each display device on the server\n\n");
    }

    return 0;

}
Beispiel #17
0
int main(int argc, char *argv[])
{
   FILE *fftfile, *candfile;
   float powargr, powargi, *powers = NULL, *minifft;
   float norm, numchunks, *powers_pos;
   int nbins, newncand, nfftsizes, fftlen, halffftlen, binsleft;
   int numtoread, filepos = 0, loopct = 0, powers_offset, ncand2;
   int ii, ct, newper = 0, oldper = 0, numsumpow = 1;
   double T, totnumsearched = 0.0, minsig = 0.0, min_orb_p, max_orb_p;
   char *rootfilenm, *notes;
   fcomplex *data = NULL;
   rawbincand tmplist[MININCANDS], *list;
   infodata idata;
   struct tms runtimes;
   double ttim, utim, stim, tott;
   Cmdline *cmd;
   fftwf_plan fftplan;

   /* Prep the timer */

   tott = times(&runtimes) / (double) CLK_TCK;

   /* Call usage() if we have no command line arguments */

   if (argc == 1) {
      Program = argv[0];
      printf("\n");
      usage();
      exit(1);
   }

   /* Parse the command line using the excellent program Clig */

   cmd = parseCmdline(argc, argv);

#ifdef DEBUG
   showOptionValues();
#endif

   printf("\n\n");
   printf("     Phase Modulation Pulsar Search Routine\n");
   printf("              by Scott M. Ransom\n\n");

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(cmd->argv[0], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0) {
            printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n",
                   cmd->argv[0]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n",
                cmd->argv[0]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   T = idata.N * idata.dt;
   if (strlen(remove_whitespace(idata.object)) > 0) {
      printf("Analyzing '%s' data from '%s'.\n\n",
             remove_whitespace(idata.object), cmd->argv[0]);
   } else {
      printf("Analyzing data from '%s'.\n\n", cmd->argv[0]);
   }
   min_orb_p = MINORBP;
   if (cmd->noaliasP)
      max_orb_p = T / 2.0;
   else
      max_orb_p = T / 1.2;

   /* open the FFT file and get its length */

   fftfile = chkfopen(cmd->argv[0], "rb");
   nbins = chkfilelen(fftfile, sizeof(fcomplex));

   /* Check that cmd->maxfft is an acceptable power of 2 */

   ct = 4;
   ii = 1;
   while (ct < MAXREALFFT || ii) {
      if (ct == cmd->maxfft)
         ii = 0;
      ct <<= 1;
   }
   if (ii) {
      printf("\n'maxfft' is out of range or not a power-of-2.\n\n");
      exit(1);
   }

   /* Check that cmd->minfft is an acceptable power of 2 */

   ct = 4;
   ii = 1;
   while (ct < MAXREALFFT || ii) {
      if (ct == cmd->minfft)
         ii = 0;
      ct <<= 1;
   }
   if (ii) {
      printf("\n'minfft' is out of range or not a power-of-2.\n\n");
      exit(1);
   }

   /* Low and high Fourier freqs to check */

   if (cmd->floP) {
      cmd->rlo = floor(cmd->flo * T);
      if (cmd->rlo < cmd->lobin)
         cmd->rlo = cmd->lobin;
      if (cmd->rlo > cmd->lobin + nbins - 1) {
         printf("\nLow frequency to search 'flo' is greater than\n");
         printf("   the highest available frequency.  Exiting.\n\n");
         exit(1);
      }
   } else {
      cmd->rlo = 1.0;
      if (cmd->rlo < cmd->lobin)
         cmd->rlo = cmd->lobin;
      if (cmd->rlo > cmd->lobin + nbins - 1) {
         printf("\nLow frequency to search 'rlo' is greater than\n");
         printf("   the available number of points.  Exiting.\n\n");
         exit(1);
      }
   }
   if (cmd->fhiP) {
      cmd->rhi = ceil(cmd->fhi * T);
      if (cmd->rhi > cmd->lobin + nbins - 1)
         cmd->rhi = cmd->lobin + nbins - 1;
      if (cmd->rhi < cmd->rlo) {
         printf("\nHigh frequency to search 'fhi' is less than\n");
         printf("   the lowest frequency to search 'flo'.  Exiting.\n\n");
         exit(1);
      }
   } else if (cmd->rhiP) {
      if (cmd->rhi > cmd->lobin + nbins - 1)
         cmd->rhi = cmd->lobin + nbins - 1;
      if (cmd->rhi < cmd->rlo) {
         printf("\nHigh frequency to search 'rhi' is less than\n");
         printf("   the lowest frequency to search 'rlo'.  Exiting.\n\n");
         exit(1);
      }
   }

   /* Determine how many different mini-fft sizes we will use */

   nfftsizes = 1;
   ii = cmd->maxfft;
   while (ii > cmd->minfft) {
      ii >>= 1;
      nfftsizes++;
   }

   /* Allocate some memory and prep some variables.             */
   /* For numtoread, the 6 just lets us read extra data at once */

   numtoread = 6 * cmd->maxfft;
   if (cmd->stack == 0)
      powers = gen_fvect(numtoread);
   minifft = (float *) fftwf_malloc(sizeof(float) *
                                    (cmd->maxfft * cmd->numbetween + 2));
   ncand2 = 2 * cmd->ncand;
   list = (rawbincand *) malloc(sizeof(rawbincand) * ncand2);
   for (ii = 0; ii < ncand2; ii++)
      list[ii].mini_sigma = 0.0;
   for (ii = 0; ii < MININCANDS; ii++)
      tmplist[ii].mini_sigma = 0.0;
   filepos = cmd->rlo - cmd->lobin;
   numchunks = (float) (cmd->rhi - cmd->rlo) / numtoread;
   printf("Searching...\n");
   printf("   Amount complete = %3d%%", 0);
   fflush(stdout);

   /* Prep FFTW */
   read_wisdom();

   /* Loop through fftfile */

   while ((filepos + cmd->lobin) < cmd->rhi) {

      /* Calculate percentage complete */

      newper = (int) (loopct / numchunks * 100.0);

      if (newper > oldper) {
         newper = (newper > 99) ? 100 : newper;
         printf("\r   Amount complete = %3d%%", newper);
         oldper = newper;
         fflush(stdout);
      }

      /* Adjust our search parameters if close to end of zone to search */

      binsleft = cmd->rhi - (filepos + cmd->lobin);
      if (binsleft < cmd->minfft)
         break;
      if (binsleft < numtoread) {       /* Change numtoread */
         numtoread = cmd->maxfft;
         while (binsleft < numtoread) {
            cmd->maxfft /= 2;
            numtoread = cmd->maxfft;
         }
      }
      fftlen = cmd->maxfft;

      /* Read from fftfile */

      if (cmd->stack == 0) {
         data = read_fcomplex_file(fftfile, filepos, numtoread);
         for (ii = 0; ii < numtoread; ii++)
            powers[ii] = POWER(data[ii].r, data[ii].i);
         numsumpow = 1;
      } else {
         powers = read_float_file(fftfile, filepos, numtoread);
         numsumpow = cmd->stack;
      }
      if (filepos == 0)
         powers[0] = 1.0;

      /* Chop the powers that are way above the median level */

      prune_powers(powers, numtoread, numsumpow);

      /* Loop through the different small FFT sizes */

      while (fftlen >= cmd->minfft) {

         halffftlen = fftlen / 2;
         powers_pos = powers;
         powers_offset = 0;

         /* Create the appropriate FFT plan */

         fftplan = fftwf_plan_dft_r2c_1d(cmd->interbinP ? fftlen : 2 * fftlen,
                                         minifft, (fftwf_complex *) minifft,
                                         FFTW_PATIENT);

         /* Perform miniffts at each section of the powers array */

         while ((numtoread - powers_offset) >
                (int) ((1.0 - cmd->overlap) * cmd->maxfft + DBLCORRECT)) {

            /* Copy the proper amount and portion of powers into minifft */

            memcpy(minifft, powers_pos, fftlen * sizeof(float));
            /* For Fourier interpolation use a zeropadded FFT */
            if (cmd->numbetween > 1 && !cmd->interbinP) {
               for (ii = fftlen; ii < cmd->numbetween * fftlen; ii++)
                  minifft[ii] = 0.0;
            }

            /* Perform the minifft */

            fftwf_execute(fftplan);

            /* Normalize and search the miniFFT */

            norm = sqrt(fftlen * numsumpow) / minifft[0];
            for (ii = 0; ii < (cmd->interbinP ? fftlen + 1 : 2 * fftlen + 1); ii++)
               minifft[ii] *= norm;
            search_minifft((fcomplex *) minifft, halffftlen, min_orb_p,
                           max_orb_p, tmplist, MININCANDS, cmd->harmsum,
                           cmd->numbetween, idata.N, T,
                           (double) (powers_offset + filepos + cmd->lobin),
                           cmd->interbinP ? INTERBIN : INTERPOLATE,
                           cmd->noaliasP ? NO_CHECK_ALIASED : CHECK_ALIASED);

            /* Check if the new cands should go into the master cand list */

            for (ii = 0; ii < MININCANDS; ii++) {
               if (tmplist[ii].mini_sigma > minsig) {

                  /* Check to see if another candidate with these properties */
                  /* is already in the list.                                 */

                  if (not_already_there_rawbin(tmplist[ii], list, ncand2)) {
                     list[ncand2 - 1] = tmplist[ii];
                     minsig = percolate_rawbincands(list, ncand2);
                  }
               } else {
                  break;
               }
               /* Mini-fft search for loop */
            }

            totnumsearched += fftlen;
            powers_pos += (int) (cmd->overlap * fftlen);
            powers_offset = powers_pos - powers;

            /* Position of mini-fft in data set while loop */
         }

         fftwf_destroy_plan(fftplan);
         fftlen >>= 1;

         /* Size of mini-fft while loop */
      }

      if (cmd->stack == 0)
         vect_free(data);
      else
         vect_free(powers);
      filepos += (numtoread - (int) ((1.0 - cmd->overlap) * cmd->maxfft));
      loopct++;

      /* File position while loop */
   }

   /* Print the final percentage update */

   printf("\r   Amount complete = %3d%%\n\n", 100);

   /* Print the number of frequencies searched */

   printf("Searched %.0f pts (including interbins).\n\n", totnumsearched);

   printf("Timing summary:\n");
   tott = times(&runtimes) / (double) CLK_TCK - tott;
   utim = runtimes.tms_utime / (double) CLK_TCK;
   stim = runtimes.tms_stime / (double) CLK_TCK;
   ttim = utim + stim;
   printf("    CPU time: %.3f sec (User: %.3f sec, System: %.3f sec)\n",
          ttim, utim, stim);
   printf("  Total time: %.3f sec\n\n", tott);

   printf("Writing result files and cleaning up.\n");

   /* Count how many candidates we actually have */

   ii = 0;
   while (ii < ncand2 && list[ii].mini_sigma != 0)
      ii++;
   newncand = (ii > cmd->ncand) ? cmd->ncand : ii;

   /* Set our candidate notes to all spaces */

   notes = malloc(sizeof(char) * newncand * 18 + 1);
   for (ii = 0; ii < newncand; ii++)
      strncpy(notes + ii * 18, "                     ", 18);

   /* Check the database for possible known PSR detections */

   if (idata.ra_h && idata.dec_d) {
      for (ii = 0; ii < newncand; ii++) {
         comp_rawbin_to_cand(&list[ii], &idata, notes + ii * 18, 0);
      }
   }

   /* Compare the candidates with each other */

   compare_rawbin_cands(list, newncand, notes);

   /* Send the candidates to the text file */

   file_rawbin_candidates(list, notes, newncand, cmd->harmsum, rootfilenm);

   /* Write the binary candidate file */
   {
      char *candnm;

      candnm = (char *) calloc(strlen(rootfilenm) + 15, sizeof(char));
      sprintf(candnm, "%s_bin%d.cand", rootfilenm, cmd->harmsum);
      candfile = chkfopen(candnm, "wb");
      chkfwrite(list, sizeof(rawbincand), (unsigned long) newncand, candfile);
      fclose(candfile);
      free(candnm);
   }

   /* Free our arrays and close our files */

   if (cmd->stack == 0)
      vect_free(powers);
   free(list);
   fftwf_free(minifft);
   free(notes);
   free(rootfilenm);
   fclose(fftfile);
   printf("Done.\n\n");
   return (0);
}
Beispiel #18
0
void read_PSRFITS_files(struct spectra_info *s)
// Read and convert PSRFITS information from a group of files 
// and place the resulting info into a spectra_info structure.
{
    int IMJD, SMJD, itmp, ii, status = 0;
    double OFFS, dtmp;
    long double MJDf;
    char ctmp[80], comment[120];
    
    s->datatype = PSRFITS;
    s->fitsfiles = (fitsfile **)malloc(sizeof(fitsfile *) * s->num_files);
    s->start_subint = gen_ivect(s->num_files);
    s->num_subint = gen_ivect(s->num_files);
    s->start_spec = (long long *)malloc(sizeof(long long) * s->num_files);
    s->num_spec = (long long *)malloc(sizeof(long long) * s->num_files);
    s->num_pad = (long long *)malloc(sizeof(long long) * s->num_files);
    s->start_MJD = (long double *)malloc(sizeof(long double) * s->num_files);
    s->N = 0;
    s->num_beams = 1;
    s->get_rawblock = &get_PSRFITS_rawblock;
    s->offset_to_spectra = &offset_to_PSRFITS_spectra;

    // By default, don't flip the band.  But don't change
    // the input value if it is aleady set to flip the band always
    if (s->apply_flipband==-1) s->apply_flipband = 0;

    // Step through the other files
    for (ii = 0 ; ii < s->num_files ; ii++) {

        // Is the file a PSRFITS file?
        if (!is_PSRFITS(s->filenames[ii])) {
            fprintf(stderr, 
                    "\nError!  File '%s' does not appear to be PSRFITS!\n", 
                    s->filenames[ii]);
            exit(1);
        }
        
        // Open the PSRFITS file
        fits_open_file(&(s->fitsfiles[ii]), s->filenames[ii], READONLY, &status);

        // Is the data in search mode?
        fits_read_key(s->fitsfiles[ii], TSTRING, "OBS_MODE", ctmp, comment, &status);
        // Quick fix for Parkes DFB data (SRCH?  why????)...
        if (strcmp("SRCH", ctmp)==0) {
            strncpy(ctmp, "SEARCH", 40);
        }
        if (strcmp(ctmp, "SEARCH")) {
            fprintf(stderr, 
                    "\nError!  File '%s' does not contain SEARCH-mode data!\n", 
                    s->filenames[ii]);
            exit(1);
        }

        // Now get the stuff we need from the primary HDU header
        fits_read_key(s->fitsfiles[ii], TSTRING, "TELESCOP", ctmp, comment, &status); \
        // Quick fix for MockSpec data...
        if (strcmp("ARECIBO 305m", ctmp)==0) {
            strncpy(ctmp, "Arecibo", 40);
        }
        // Quick fix for Parkes DFB data...
        {
            char newctmp[80];

            // Copy ctmp first since strlower() is in-place
            strcpy(newctmp, ctmp);
            if (strcmp("parkes", strlower(remove_whitespace(newctmp)))==0) {
                strncpy(ctmp, "Parkes", 40);
            }
        }
        if (status) {
            printf("Error %d reading key %s\n", status, "TELESCOP");
            if (ii==0) s->telescope[0]='\0';
            if (status==KEY_NO_EXIST) status=0;
        } else {
            if (ii==0) strncpy(s->telescope, ctmp, 40);
            else if (strcmp(s->telescope, ctmp)!=0)
                printf("Warning!:  %s values don't match for files 0 and %d!\n",
                       "TELESCOP", ii);
        }

        get_hdr_string("OBSERVER", s->observer);
        get_hdr_string("SRC_NAME", s->source);
        get_hdr_string("FRONTEND", s->frontend);
        get_hdr_string("BACKEND", s->backend);
        get_hdr_string("PROJID", s->project_id);
        get_hdr_string("DATE-OBS", s->date_obs);
        get_hdr_string("FD_POLN", s->poln_type);
        get_hdr_string("RA", s->ra_str);
        get_hdr_string("DEC", s->dec_str);
        get_hdr_double("OBSFREQ", s->fctr);
        get_hdr_int("OBSNCHAN", s->orig_num_chan);
        get_hdr_double("OBSBW", s->orig_df);
        //get_hdr_double("CHAN_DM", s->chan_dm);
        get_hdr_double("BMIN", s->beam_FWHM);

        /* This is likely not in earlier versions of PSRFITS so */
        /* treat it a bit differently                           */
        fits_read_key(s->fitsfiles[ii], TDOUBLE, "CHAN_DM", 
                      &(s->chan_dm), comment, &status);
        if (status==KEY_NO_EXIST) {
            status = 0;
            s->chan_dm = 0.0;
        }

        // Don't use the macros unless you are using the struct!
        fits_read_key(s->fitsfiles[ii], TINT, "STT_IMJD", &IMJD, comment, &status);
        s->start_MJD[ii] = (long double) IMJD;
        fits_read_key(s->fitsfiles[ii], TINT, "STT_SMJD", &SMJD, comment, &status);
        fits_read_key(s->fitsfiles[ii], TDOUBLE, "STT_OFFS", &OFFS, comment, &status);
        s->start_MJD[ii] += ((long double) SMJD + (long double) OFFS) / SECPERDAY;

        // Are we tracking?
        fits_read_key(s->fitsfiles[ii], TSTRING, "TRK_MODE", ctmp, comment, &status);
        itmp = (strcmp("TRACK", ctmp)==0) ? 1 : 0;
        if (ii==0) s->tracking = itmp;
        else if (s->tracking != itmp)
            printf("Warning!:  TRK_MODE values don't match for files 0 and %d!\n", ii);

        // Now switch to the SUBINT HDU header
        fits_movnam_hdu(s->fitsfiles[ii], BINARY_TBL, "SUBINT", 0, &status);
        get_hdr_double("TBIN", s->dt);
        get_hdr_int("NCHAN", s->num_channels);
        get_hdr_int("NPOL", s->num_polns);
        get_hdr_string("POL_TYPE", s->poln_order);
        fits_read_key(s->fitsfiles[ii], TINT, "NCHNOFFS", &itmp, comment, &status);
        if (itmp > 0)
            printf("Warning!:  First freq channel is not 0 in file %d!\n", ii);
        get_hdr_int("NSBLK", s->spectra_per_subint);
        get_hdr_int("NBITS", s->bits_per_sample);
        fits_read_key(s->fitsfiles[ii], TINT, "NAXIS2", 
                      &(s->num_subint[ii]), comment, &status);
        fits_read_key(s->fitsfiles[ii], TINT, "NSUBOFFS", 
                      &(s->start_subint[ii]), comment, &status);
        s->time_per_subint = s->dt * s->spectra_per_subint;

        /* This is likely not in earlier versions of PSRFITS so */
        /* treat it a bit differently                           */
        fits_read_key(s->fitsfiles[ii], TFLOAT, "ZERO_OFF", 
                      &(s->zero_offset), comment, &status);
        if (status==KEY_NO_EXIST) {
            status = 0;
            s->zero_offset = 0.0;
        }
        s->zero_offset = fabs(s->zero_offset);

        // Get the time offset column info and the offset for the 1st row
        {
            double offs_sub;
            int colnum, anynull, numrows;

            // Identify the OFFS_SUB column number
            fits_get_colnum(s->fitsfiles[ii], 0, "OFFS_SUB", &colnum, &status);
            if (status==COL_NOT_FOUND) {
                printf("Warning!:  Can't find the OFFS_SUB column!\n");
                status = 0; // Reset status
            } else {
                if (ii==0) {
                    s->offs_sub_col = colnum;
                } else if (colnum != s->offs_sub_col) {
                    printf("Warning!:  OFFS_SUB column changes between files!\n");
                }
            }

            // Read the OFFS_SUB column value for the 1st row
            fits_read_col(s->fitsfiles[ii], TDOUBLE,
                          s->offs_sub_col, 1L, 1L, 1L,
                          0, &offs_sub, &anynull, &status);

            numrows = (int)((offs_sub - 0.5 * s->time_per_subint) /
                            s->time_per_subint + 1e-7);
            // Check to see if any rows have been deleted or are missing
            if (numrows > s->start_subint[ii]) {
                printf("Warning: NSUBOFFS reports %d previous rows\n"
                       "         but OFFS_SUB implies %d.  Using OFFS_SUB.\n"
                       "         Will likely be able to correct for this.\n",
                       s->start_subint[ii], numrows);
            }
            s->start_subint[ii] = numrows;
        }

        // This is the MJD offset based on the starting subint number
        MJDf = (s->time_per_subint * s->start_subint[ii]) / SECPERDAY;
        // The start_MJD values should always be correct
        s->start_MJD[ii] += MJDf;

        // Compute the starting spectra from the times
        MJDf = s->start_MJD[ii] - s->start_MJD[0];
        if (MJDf < 0.0) {
            fprintf(stderr, "Error!: File %d seems to be from before file 0!\n", ii); 
            exit(1);
        }
        s->start_spec[ii] = (long long)(MJDf * SECPERDAY / s->dt + 0.5);

        // Now pull stuff from the other columns
        {
            float ftmp;
            long repeat, width;
            int colnum, anynull;
            
            // Identify the data column and the data type
            fits_get_colnum(s->fitsfiles[ii], 0, "DATA", &colnum, &status);
            if (status==COL_NOT_FOUND) {
                printf("Warning!:  Can't find the DATA column!\n");
                status = 0; // Reset status
            } else {
                if (ii==0) {
                    s->data_col = colnum;
                    fits_get_coltype(s->fitsfiles[ii], colnum, &(s->FITS_typecode), 
                                     &repeat, &width, &status);
                } else if (colnum != s->data_col) {
                    printf("Warning!:  DATA column changes between files!\n");
                }
            }
            
            // Telescope azimuth
            fits_get_colnum(s->fitsfiles[ii], 0, "TEL_AZ", &colnum, &status);
            if (status==COL_NOT_FOUND) {
                s->azimuth = 0.0;
                status = 0; // Reset status
            } else {
                fits_read_col(s->fitsfiles[ii], TFLOAT, colnum, 
                              1L, 1L, 1L, 0, &ftmp, &anynull, &status);
                if (ii==0) s->azimuth = (double) ftmp;
            }
            
            // Telescope zenith angle
            fits_get_colnum(s->fitsfiles[ii], 0, "TEL_ZEN", &colnum, &status);
            if (status==COL_NOT_FOUND) {
                s->zenith_ang = 0.0;
                status = 0; // Reset status
            } else {
                fits_read_col(s->fitsfiles[ii], TFLOAT, colnum, 
                              1L, 1L, 1L, 0, &ftmp, &anynull, &status);
                if (ii==0) s->zenith_ang = (double) ftmp;
            }
            
            // Observing frequencies
            fits_get_colnum(s->fitsfiles[ii], 0, "DAT_FREQ", &colnum, &status);
            if (status==COL_NOT_FOUND) {
                printf("Warning!:  Can't find the channel freq column!\n");
                status = 0; // Reset status
            } else {
                int jj;
                float *freqs = (float *)malloc(sizeof(float) * s->num_channels);
                fits_read_col(s->fitsfiles[ii], TFLOAT, colnum, 1L, 1L, 
                              s->num_channels, 0, freqs, &anynull, &status);
                
                if (ii==0) {
                    s->df = freqs[1]-freqs[0];
                    s->lo_freq = freqs[0];
                    s->hi_freq = freqs[s->num_channels-1];
                    // Now check that the channel spacing is the same throughout
                    for (jj = 0 ; jj < s->num_channels - 1 ; jj++) {
                        ftmp = freqs[jj+1] - freqs[jj];
                        if (fabs(ftmp - s->df) > 1e-7)
                            printf("Warning!:  Channel spacing changes in file %d!\n", ii);
                    }
                } else {
                    ftmp = fabs(s->df-(freqs[1]-freqs[0]));
                    if (ftmp > 1e-7)
                        printf("Warning!:  Channel spacing changes between files!\n");
                    ftmp = fabs(s->lo_freq-freqs[0]);
                    if (ftmp > 1e-7)
                        printf("Warning!:  Low channel changes between files!\n");
                    ftmp = fabs(s->hi_freq-freqs[s->num_channels-1]);
                    if (ftmp > 1e-7)
                        printf("Warning!:  High channel changes between files!\n");
                }
                free(freqs);
            }
            
            // Data weights
            fits_get_colnum(s->fitsfiles[ii], 0, "DAT_WTS", &colnum, &status);
            if (status==COL_NOT_FOUND) {
                printf("Warning!:  Can't find the channel weights!\n");
                status = 0; // Reset status
            } else {
                if (s->apply_weight < 0) { // Use the data to decide
                    int jj;
                    if (ii==0) {
                        s->dat_wts_col = colnum;
                    } else if (colnum != s->dat_wts_col) {
                        printf("Warning!:  DAT_WTS column changes between files!\n");
                    }
                    float *fvec = (float *)malloc(sizeof(float) * s->num_channels);
                    fits_read_col(s->fitsfiles[ii], TFLOAT, s->dat_wts_col, 1L, 1L, 
                                  s->num_channels, 0, fvec, &anynull, &status);
                    for (jj = 0 ; jj < s->num_channels ; jj++) {
                        // If the weights are not 1, apply them
                        if (fvec[jj] != 1.0) {
                            s->apply_weight = 1;
                            break;
                        }
                    }
                    free(fvec);
                }
                if (s->apply_weight < 0) s->apply_weight = 0;  // not needed
            }
            
            // Data offsets
            fits_get_colnum(s->fitsfiles[ii], 0, "DAT_OFFS", &colnum, &status);
            if (status==COL_NOT_FOUND) {
                printf("Warning!:  Can't find the channel offsets!\n");
                status = 0; // Reset status
            } else {
                if (s->apply_offset < 0) { // Use the data to decide
                    int jj;
                    if (ii==0) {
                        s->dat_offs_col = colnum;
                    } else if (colnum != s->dat_offs_col) {
                        printf("Warning!:  DAT_OFFS column changes between files!\n");
                    }
                    float *fvec = (float *)malloc(sizeof(float) * 
                                                  s->num_channels * s->num_polns);
                    fits_read_col(s->fitsfiles[ii], TFLOAT, s->dat_offs_col, 1L, 1L, 
                                  s->num_channels * s->num_polns, 
                                  0, fvec, &anynull, &status);
                    for (jj = 0 ; jj < s->num_channels * s->num_polns ; jj++) {
                        // If the offsets are not 0, apply them
                        if (fvec[jj] != 0.0) {
                            s->apply_offset = 1;
                            break;
                        }
                    }
                    free(fvec);
                }
                if (s->apply_offset < 0) s->apply_offset = 0; // not needed
            }
            
            // Data scalings
            fits_get_colnum(s->fitsfiles[ii], 0, "DAT_SCL", &colnum, &status);
            if (status==COL_NOT_FOUND) {
                printf("Warning!:  Can't find the channel scalings!\n");
                status = 0; // Reset status
            } else {
                if (s->apply_scale < 0) { // Use the data to decide
                    int jj;
                    if (ii==0) {
                        s->dat_scl_col = colnum;
                    } else if (colnum != s->dat_scl_col) {
                        printf("Warning!:  DAT_SCL column changes between files!\n");
                    }
                    float *fvec = (float *)malloc(sizeof(float) * 
                                                  s->num_channels * s->num_polns);
                    fits_read_col(s->fitsfiles[ii], TFLOAT, colnum, 1L, 1L, 
                                  s->num_channels * s->num_polns, 
                                  0, fvec, &anynull, &status);
                    for (jj = 0 ; jj < s->num_channels * s->num_polns ; jj++) {
                        // If the scales are not 1, apply them
                        if (fvec[jj] != 1.0) {
                            s->apply_scale = 1;
                            break;
                        }
                    }
                    free(fvec);
                }
                if (s->apply_scale < 0) s->apply_scale = 0; // not needed
            }
        }
        
        // Compute the samples per file and the amount of padding
        // that the _previous_ file has
        s->num_pad[ii] = 0;
        s->num_spec[ii] = s->spectra_per_subint * s->num_subint[ii];
        if (ii > 0) {
            if (s->start_spec[ii] > s->N) { // Need padding
                s->num_pad[ii-1] = s->start_spec[ii] - s->N;
                s->N += s->num_pad[ii-1];
            }
        }
        s->N += s->num_spec[ii];
    }

    // Convert the position strings into degrees
    {
        int d, h, m;
        double sec;
        ra_dec_from_string(s->ra_str, &h, &m, &sec);
        s->ra2000 = hms2rad(h, m, sec) * RADTODEG;
        ra_dec_from_string(s->dec_str, &d, &m, &sec);
        s->dec2000 = dms2rad(d, m, sec) * RADTODEG;
    }

    // Are the polarizations summed?
    if ((strncmp("AA+BB", s->poln_order, 5)==0) ||
        (strncmp("INTEN", s->poln_order, 5)==0))
        s->summed_polns = 1;
    else
        s->summed_polns = 0;

    // Calculate some others
    s->T = s->N * s->dt;
    s->orig_df /= (double) s->orig_num_chan;
    s->samples_per_spectra = s->num_polns * s->num_channels;
    // Note:  the following is the number of bytes that will be in
    //        the returned array from CFITSIO.
    //        CFITSIO turns bits into bytes when FITS_typecode=1
    //        and we turn 2-bits or 4-bits into bytes if bits_per_sample < 8
    if (s->bits_per_sample < 8)
        s->bytes_per_spectra = s->samples_per_spectra;
    else
        s->bytes_per_spectra = (s->bits_per_sample * s->samples_per_spectra) / 8;
    s->samples_per_subint = s->samples_per_spectra * s->spectra_per_subint;
    s->bytes_per_subint = s->bytes_per_spectra * s->spectra_per_subint;
    
    // Flip the band?
    if (s->hi_freq < s->lo_freq) {
        float ftmp = s->hi_freq;
        s->hi_freq = s->lo_freq;
        s->lo_freq = ftmp;
        s->df *= -1.0;
        s->apply_flipband = 1;
    }
    // Compute the bandwidth
    s->BW = s->num_channels * s->df;

    // Flip the bytes for Parkes FB_1BIT data
    if (s->bits_per_sample==1 &&
        strcmp(s->telescope, "Parkes")==0 &&
        strcmp(s->backend, "FB_1BIT")==0) {
        printf("Flipping bit ordering since Parkes FB_1BIT data.\n");
        s->flip_bytes = 1;
    } else {
        s->flip_bytes = 0;
    }

    // Allocate the buffers
    cdatabuffer = gen_bvect(s->bytes_per_subint);
    // Following is twice as big because we use it as a ringbuffer too
    fdatabuffer = gen_fvect(2 * s->spectra_per_subint * s->num_channels);
    s->padvals = gen_fvect(s->num_channels);
    for (ii = 0 ; ii < s->num_channels ; ii++)
        s->padvals[ii] = 0.0;
    offsets = gen_fvect(s->num_channels * s->num_polns);
    scales = gen_fvect(s->num_channels * s->num_polns);
    weights = gen_fvect(s->num_channels);
    // Initialize these if we won't be reading them from the file
    if (s->apply_offset==0) 
        for (ii = 0 ; ii < s->num_channels * s->num_polns ; ii++)
            offsets[ii] = 0.0;
    if (s->apply_scale==0)
        for (ii = 0 ; ii < s->num_channels * s->num_polns ; ii++)
            scales[ii] = 1.0;
    if (s->apply_weight==0)
        for (ii = 0 ; ii < s->num_channels ; ii++)
            weights[ii] = 1.0;
}
Beispiel #19
0
int main(int argc, char *argv[])
{
   int ii, jj, numbirds;
   double lofreq, hifreq;
   char *rootfilenm;
   birdie *newbird;
   GSList *zapped = NULL;
   infodata idata;
   Cmdline *cmd;

   /* Call usage() if we have no command line arguments */

   if (argc == 1) {
      Program = argv[0];
      printf("\n");
      usage();
      exit(1);
   }

   /* Parse the command line using the excellent program Clig */

   cmd = parseCmdline(argc, argv);

#ifdef DEBUG
   showOptionValues();
#endif

   printf("\n\n");
   printf("     Interactive/Automatic Birdie Zapping Program\n");
   printf("              by Scott M. Ransom\n");
   printf("                 January, 2001\n\n");

   if (!cmd->zapP && !cmd->inzapfileP && !cmd->outzapfileP) {
      printf("You must specify '-in' and '-out' if you are not\n");
      printf("automatically zapping a file (with '-zap').\n\n");
      exit(0);
   }

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(cmd->argv[0], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0) {
            printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n",
                   cmd->argv[0]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n",
                cmd->argv[0]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (idata.object) {
      printf("Examining %s data from '%s'.\n\n",
             remove_whitespace(idata.object), cmd->argv[0]);
   } else {
      printf("Examining data from '%s'.\n\n", cmd->argv[0]);
   }
   T = idata.dt * idata.N;
   dr = 1.0 / NUMBETWEEN;

   if (cmd->zapP) {             /* Automatic  */
      double *bird_lobins, *bird_hibins, hibin;

      if (!cmd->zapfileP) {
         printf("You must specify a 'zapfile' containing freqs\n");
         printf("and widths if you want to write to the FFT file.\n\n");
         free(rootfilenm);
         exit(0);
      }
      hibin = idata.N / 2;

      /* Read the Standard bird list */

      numbirds = get_birdies(cmd->zapfile, T, cmd->baryv,
                             &bird_lobins, &bird_hibins);

      /* Zap the birdies */

      fftfile = chkfopen(cmd->argv[0], "rb+");
      for (ii = 0; ii < numbirds; ii++) {
         if (bird_lobins[ii] >= hibin)
            break;
         if (bird_hibins[ii] >= hibin)
            bird_hibins[ii] = hibin - 1;
         zapbirds(bird_lobins[ii], bird_hibins[ii], fftfile, NULL);
      }

      vect_free(bird_lobins);
      vect_free(bird_hibins);

   } else {                     /* Interactive */

      int *bird_numharms;
      double *bird_basebins;

      /* Read the Standard bird list */

      numbirds = get_std_birds(cmd->inzapfile, T, cmd->baryv,
                               &bird_basebins, &bird_numharms);

      /* Create our correlation kernel */

      {
         int numkern;
         fcomplex *resp;

         khw = r_resp_halfwidth(LOWACC);
         numkern = 2 * NUMBETWEEN * khw;
         resp = gen_r_response(0.0, NUMBETWEEN, numkern);
         kernel = gen_cvect(FFTLEN);
         place_complex_kernel(resp, numkern, kernel, FFTLEN);
         COMPLEXFFT(kernel, FFTLEN, -1);
         vect_free(resp);
      }

      /* Loop over the birdies */

      fftfile = chkfopen(cmd->argv[0], "rb");
      cpgstart_x("landscape");
      cpgask(0);
      for (ii = 0; ii < numbirds; ii++) {
         for (jj = 0; jj < bird_numharms[ii]; jj++) {
            process_bird(bird_basebins[ii], jj + 1, &lofreq, &hifreq);
            if (lofreq && hifreq) {
               newbird = birdie_create(lofreq, hifreq, cmd->baryv);
               zapped = g_slist_insert_sorted(zapped, newbird, birdie_compare);
            }
         }
      }
      cpgclos();

      /* Output the birdies */

      {
         FILE *outfile;

         outfile = chkfopen(cmd->outzapfile, "w");
         fprintf(outfile, "#\n");
         fprintf(outfile,
                 "# Topocentric birdies found using 'zapbirds' for '%s'\n",
                 cmd->argv[0]);
         fprintf(outfile, "#\n");
         fprintf(outfile, "# Frequency (Hz)       Width (Hz)\n");
         fprintf(outfile, "#\n");
         g_slist_foreach(zapped, birdie_print, outfile);
         fclose(outfile);
      }

      printf("\nOutput birdie file is '%s'.\n\n", cmd->outzapfile);

      /* Free the memory */

      g_slist_foreach(zapped, birdie_free, NULL);
      g_slist_free(zapped);
      vect_free(kernel);
      vect_free(bird_numharms);
      vect_free(bird_basebins);
   }
   fclose(fftfile);
   free(rootfilenm);
   printf("Done\n\n");
   return 0;
}
Beispiel #20
0
int main(int argc, char *argv[])
{
   float maxpow = 0.0, inx = 0.0, iny = 0.0;
   double centerr, offsetf;
   int zoomlevel, maxzoom, minzoom, xid, psid;
   char *rootfilenm, inchar;
   fftpart *lofp;
   fftview *fv;

   if (argc == 1) {
      printf("\nusage:  explorefft fftfilename\n\n");
      exit(0);
   }

   printf("\n\n");
   printf("      Interactive FFT Explorer\n");
   printf("         by Scott M. Ransom\n");
   printf("            October, 2001\n");
   print_help();

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(argv[1], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0) {
            printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n", argv[1]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n", argv[1]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (strlen(remove_whitespace(idata.object)) > 0) {
      printf("Examining %s data from '%s'.\n\n",
             remove_whitespace(idata.object), argv[1]);
   } else {
      printf("Examining data from '%s'.\n\n", argv[1]);
   }
   N = idata.N;
   T = idata.dt * idata.N;
#ifdef USEMMAP
   printf("Memory mapping the input FFT.  This may take a while...\n");
   mmap_file = open(argv[1], O_RDONLY);
   {
      int rt;
      struct stat buf;

      rt = fstat(mmap_file, &buf);
      if (rt == -1) {
         perror("\nError in fstat() in explorefft.c");
         printf("\n");
         exit(-1);
      }
      Nfft = buf.st_size / sizeof(fcomplex);
   }
   lofp = get_fftpart(0, Nfft);
#else
   {
      int numamps;

      fftfile = chkfopen(argv[1], "rb");
      Nfft = chkfilelen(fftfile, sizeof(fcomplex));
      numamps = (Nfft > MAXBINS) ? (int) MAXBINS : (int) Nfft;
      lofp = get_fftpart(0, numamps);
   }
#endif

   /* Plot the initial data */

   {
      int initnumbins = INITIALNUMBINS;

      if (initnumbins > Nfft) {
         initnumbins = next2_to_n(Nfft) / 2;
         zoomlevel = LOGDISPLAYNUM - (int) (log(initnumbins) / log(2.0));
         minzoom = zoomlevel;
      } else {
         zoomlevel = LOGDISPLAYNUM - LOGINITIALNUMBINS;
         minzoom = LOGDISPLAYNUM - LOGMAXBINS;
      }
      maxzoom = LOGDISPLAYNUM - LOGMINBINS;
      centerr = initnumbins / 2;
   }
   fv = get_fftview(centerr, zoomlevel, lofp);

   /* Prep the XWIN device for PGPLOT */

   xid = cpgopen("/XWIN");
   if (xid <= 0) {
      free(fv);
#ifdef USEMMAP
      close(mmap_file);
#else
      fclose(fftfile);
#endif
      free_fftpart(lofp);
      exit(EXIT_FAILURE);
   }
   cpgscr(15, 0.4, 0.4, 0.4);
   cpgask(0);
   cpgpage();
   offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);

   do {
      cpgcurs(&inx, &iny, &inchar);
      if (DEBUGOUT)
         printf("You pressed '%c'\n", inchar);

      switch (inchar) {
      case 'A':                /* Zoom in */
      case 'a':
         centerr = (inx + offsetf) * T;
      case 'I':
      case 'i':
         if (DEBUGOUT)
            printf("  Zooming in  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel < maxzoom) {
            zoomlevel++;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         } else
            printf("  Already at maximum zoom level (%d).\n", zoomlevel);
         break;
      case 'X':                /* Zoom out */
      case 'x':
      case 'O':
      case 'o':
         if (DEBUGOUT)
            printf("  Zooming out  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel > minzoom) {
            zoomlevel--;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         } else
            printf("  Already at minimum zoom level (%d).\n", zoomlevel);
         break;
      case '<':                /* Shift left 1 full screen */
         centerr -= fv->numbins + fv->numbins / 8;
      case ',':                /* Shift left 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting left...\n");
         centerr -= fv->numbins / 8;
         {                      /* Should probably get the previous chunk from the fftfile... */
            double lowestr;

            lowestr = 0.5 * fv->numbins;
            if (centerr < lowestr)
               centerr = lowestr;
         }
         free(fv);
         fv = get_fftview(centerr, zoomlevel, lofp);
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '>':                /* Shift right 1 full screen */
         centerr += fv->numbins - fv->numbins / 8;
      case '.':                /* Shift right 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting right...\n");
         centerr += fv->numbins / 8;
         {                      /* Should probably get the next chunk from the fftfile... */
            double highestr;

            highestr = lofp->rlo + lofp->numamps - 0.5 * fv->numbins;
            if (centerr > highestr)
               centerr = highestr;
         }
         free(fv);
         fv = get_fftview(centerr, zoomlevel, lofp);
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '+':                /* Increase height of powers */
      case '=':
         if (maxpow == 0.0) {
            printf("  Auto-scaling is off.\n");
            maxpow = 1.1 * fv->maxpow;
         }
         maxpow = 3.0 / 4.0 * maxpow;
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '-':                /* Decrease height of powers */
      case '_':
         if (maxpow == 0.0) {
            printf("  Auto-scaling is off.\n");
            maxpow = 1.1 * fv->maxpow;
         }
         maxpow = 4.0 / 3.0 * maxpow;
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case 'S':                /* Auto-scale */
      case 's':
         if (maxpow == 0.0)
            break;
         else {
            printf("  Auto-scaling is on.\n");
            maxpow = 0.0;
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
            break;
         }
      case 'G':                /* Goto a frequency */
      case 'g':
         {
            char freqstr[50];
            double freq = -1.0;

            while (freq < 0.0) {
               printf("  Enter the frequency (Hz) to go to:\n");
               fgets(freqstr, 50, stdin);
               freqstr[strlen(freqstr) - 1] = '\0';
               freq = atof(freqstr);
            }
            offsetf = 0.0;
            centerr = freq * T;
            printf("  Moving to frequency %.15g.\n", freq);
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
         }
         break;
      case 'H':                /* Show harmonics */
      case 'h':
         {
            double retval;

            retval = harmonic_loop(xid, centerr, zoomlevel, lofp);
            if (retval > 0.0) {
               offsetf = 0.0;
               centerr = retval;
               free(fv);
               fv = get_fftview(centerr, zoomlevel, lofp);
               cpgpage();
               offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
            }
         }
         break;
      case '?':                /* Print help screen */
         print_help();
         break;
      case 'D':                /* Show details about a selected point  */
      case 'd':
         {
            double newr;

            printf("  Searching for peak near freq = %.7g Hz...\n", (inx + offsetf));
            newr = find_peak(inx + offsetf, fv, lofp);
            centerr = newr;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
         }
         break;
      case 'L':                /* Load a zaplist */
      case 'l':
         {
            int ii, len;
            char filename[200];
            double *lobins, *hibins;

            printf("  Enter the filename containing the zaplist to load:\n");
            fgets(filename, 199, stdin);
            len = strlen(filename) - 1;
            filename[len] = '\0';
            numzaplist = get_birdies(filename, T, 0.0, &lobins, &hibins);
            lenzaplist = numzaplist + 20;       /* Allow some room to add more */
            if (lenzaplist)
               free(zaplist);
            zaplist = (bird *) malloc(sizeof(bird) * lenzaplist);
            for (ii = 0; ii < numzaplist; ii++) {
               zaplist[ii].lobin = lobins[ii];
               zaplist[ii].hibin = hibins[ii];
            }
            vect_free(lobins);
            vect_free(hibins);
            printf("\n");
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'Z':                /* Add a birdie to a zaplist */
      case 'z':
         {
            int badchoice = 2;
            float lox, hix, loy, hiy;
            double rs[2];
            char choice;

            if (numzaplist + 1 > lenzaplist) {
               lenzaplist += 10;
               zaplist = (bird *) realloc(zaplist, sizeof(bird) * lenzaplist);
            }
            cpgqwin(&lox, &hix, &loy, &hiy);
            printf("  Click the left mouse button on the first frequency limit.\n");
            while (badchoice) {
               cpgcurs(&inx, &iny, &choice);
               if (choice == 'A' || choice == 'a') {
                  rs[2 - badchoice] = ((double) inx + offsetf) * T;
                  cpgsave();
                  cpgsci(7);
                  cpgmove(inx, 0.0);
                  cpgdraw(inx, hiy);
                  cpgunsa();
                  badchoice--;
                  if (badchoice == 1)
                     printf
                         ("  Click the left mouse button on the second frequency limit.\n");
               } else {
                  printf("  Option not recognized.\n");
               }
            };
            if (rs[1] > rs[0]) {
               zaplist[numzaplist].lobin = rs[0];
               zaplist[numzaplist].hibin = rs[1];
            } else {
               zaplist[numzaplist].lobin = rs[1];
               zaplist[numzaplist].hibin = rs[0];
            }
            printf("    The new birdie has:  f_avg = %.15g  f_width = %.15g\n\n",
                   0.5 * (zaplist[numzaplist].hibin + zaplist[numzaplist].lobin) / T,
                   (zaplist[numzaplist].hibin - zaplist[numzaplist].lobin) / T);
            numzaplist++;
            qsort(zaplist, numzaplist, sizeof(bird), compare_birds);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'P':                /* Print the current plot */
      case 'p':
         {
            int len;
            char filename[200];

            printf("  Enter the filename to save the plot as:\n");
            fgets(filename, 196, stdin);
            len = strlen(filename) - 1;
            filename[len + 0] = '/';
            filename[len + 1] = 'P';
            filename[len + 2] = 'S';
            filename[len + 3] = '\0';
            psid = cpgopen(filename);
            cpgslct(psid);
            cpgpap(10.25, 8.5 / 11.0);
            cpgiden();
            cpgscr(15, 0.8, 0.8, 0.8);
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
            cpgclos();
            cpgslct(xid);
            cpgscr(15, 0.4, 0.4, 0.4);
            filename[len] = '\0';
            printf("  Wrote the plot to the file '%s'.\n", filename);
         }
         break;
      case 'N':                /* Changing power normalization */
      case 'n':
         {
            float inx2 = 0.0, iny2 = 0.0;
            char choice;
            unsigned char badchoice = 1;

            printf("  Specify the type of power normalization:\n"
                   "       m,M  :  Median values determined locally\n"
                   "       d,D  :  DC frequency amplitude\n"
                   "       r,R  :  Raw powers (i.e. no normalization)\n"
                   "       u,U  :  User specified interval (the average powers)\n");
            while (badchoice) {
               cpgcurs(&inx2, &iny2, &choice);
               switch (choice) {
               case 'M':
               case 'm':
                  norm_const = 0.0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using local median normalization.  Autoscaling is on.\n");
                  break;
               case 'D':
               case 'd':
                  norm_const = 1.0 / r0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using DC frequency (%f) normalization.  Autoscaling is on.\n",
                       r0);
                  break;
               case 'R':
               case 'r':
                  norm_const = 1.0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using raw powers (i.e. no normalization).  Autoscaling is on.\n");
                  break;
               case 'U':
               case 'u':
                  {
                     char choice2;
                     float xx = inx, yy = iny;
                     int lor, hir, numr;
                     double avg, var;

                     printf
                         ("  Use the left mouse button to select a left and right boundary\n"
                          "  of a region to calculate the average power.\n");
                     do {
                        cpgcurs(&xx, &yy, &choice2);
                     } while (choice2 != 'A' && choice2 != 'a');
                     lor = (int) ((xx + offsetf) * T);
                     cpgsci(7);
                     cpgmove(xx, 0.0);
                     cpgdraw(xx, 10.0 * fv->maxpow);
                     do {
                        cpgcurs(&xx, &yy, &choice2);
                     } while (choice2 != 'A' && choice2 != 'a');
                     hir = (int) ((xx + offsetf) * T);
                     cpgmove(xx, 0.0);
                     cpgdraw(xx, 10.0 * fv->maxpow);
                     cpgsci(1);
                     if (lor > hir) {
                        int tempr;
                        tempr = hir;
                        hir = lor;
                        lor = tempr;
                     }
                     numr = hir - lor + 1;
                     avg_var(lofp->rawpowers + lor - lofp->rlo, numr, &avg, &var);
                     printf("  Selection has:  average = %.5g\n"
                            "                  std dev = %.5g\n", avg, sqrt(var));
                     norm_const = 1.0 / avg;
                     maxpow = 0.0;
                     badchoice = 0;
                     printf
                         ("  Using %.5g as the normalization constant.  Autoscaling is on.\n",
                          avg);
                     break;
                  }
               default:
                  printf("  Unrecognized choice '%c'.\n", choice);
                  break;
               }
            }
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'Q':                /* Quit */
      case 'q':
         printf("  Quitting...\n");
         free(fv);
         cpgclos();
         break;
      default:
         printf("  Unrecognized option '%c'.\n", inchar);
         break;
      }
   } while (inchar != 'Q' && inchar != 'q');

   free_fftpart(lofp);
#ifdef USEMMAP
   close(mmap_file);
#else
   fclose(fftfile);
#endif
   if (lenzaplist)
      free(zaplist);
   printf("Done\n\n");
   return 0;
}
Beispiel #21
0
static int parse_section(FILE *fp,
                         char *path,
                         const char **error_string,
                         int depth,
                         parser_cb_f parser_cb,
                         icmap_map_t config_map,
                         void *user_data)
{
    char line[512];
    int i;
    char *loc;
    int ignore_line;
    char new_keyname[ICMAP_KEYNAME_MAXLEN];

    if (strcmp(path, "") == 0) {
        parser_cb("", NULL, NULL, PARSER_CB_START, error_string, config_map, user_data);
    }

    while (fgets (line, sizeof (line), fp)) {
        if (strlen(line) > 0) {
            if (line[strlen(line) - 1] == '\n')
                line[strlen(line) - 1] = '\0';
            if (strlen (line) > 0 && line[strlen(line) - 1] == '\r')
                line[strlen(line) - 1] = '\0';
        }
        /*
         * Clear out white space and tabs
         */
        for (i = strlen (line) - 1; i > -1; i--) {
            if (line[i] == '\t' || line[i] == ' ') {
                line[i] = '\0';
            } else {
                break;
            }
        }

        ignore_line = 1;
        for (i = 0; i < strlen (line); i++) {
            if (line[i] != '\t' && line[i] != ' ') {
                if (line[i] != '#')
                    ignore_line = 0;

                break;
            }
        }
        /*
         * Clear out comments and empty lines
         */
        if (ignore_line) {
            continue;
        }

        /* New section ? */
        if ((loc = strchr_rs (line, '{'))) {
            char *section = remove_whitespace(line, 1);

            loc--;
            *loc = '\0';

            if (strlen(path) + strlen(section) + 1 >= ICMAP_KEYNAME_MAXLEN) {
                *error_string = "parser error: Start of section makes total cmap path too long";
                return -1;
            }
            strcpy(new_keyname, path);
            if (strcmp(path, "") != 0) {
                strcat(new_keyname, ".");
            }
            strcat(new_keyname, section);

            if (!parser_cb(new_keyname, NULL, NULL, PARSER_CB_SECTION_START, error_string, config_map, user_data)) {
                return -1;
            }

            if (parse_section(fp, new_keyname, error_string, depth + 1, parser_cb, config_map, user_data))
                return -1;

            continue ;
        }

        /* New key/value */
        if ((loc = strchr_rs (line, ':'))) {
            char *key;
            char *value;

            *(loc-1) = '\0';
            key = remove_whitespace(line, 1);
            value = remove_whitespace(loc, 0);

            if (strlen(path) + strlen(key) + 1 >= ICMAP_KEYNAME_MAXLEN) {
                *error_string = "parser error: New key makes total cmap path too long";
                return -1;
            }
            strcpy(new_keyname, path);
            if (strcmp(path, "") != 0) {
                strcat(new_keyname, ".");
            }
            strcat(new_keyname, key);

            if (!parser_cb(new_keyname, key, value, PARSER_CB_ITEM, error_string, config_map, user_data)) {
                return -1;
            }

            continue ;
        }

        if (strchr_rs (line, '}')) {
            if (depth == 0) {
                *error_string = "parser error: Unexpected closing brace";

                return -1;
            }

            if (!parser_cb(path, NULL, NULL, PARSER_CB_SECTION_END, error_string, config_map, user_data)) {
                return -1;
            }

            return 0;
        }
    }

    if (strcmp(path, "") != 0) {
        *error_string = "parser error: Missing closing brace";
        return -1;
    }

    if (strcmp(path, "") == 0) {
        parser_cb("", NULL, NULL, PARSER_CB_END, error_string, config_map, user_data);
    }

    return 0;
}
Beispiel #22
0
int main(int argc, char const *argv[])
{
    if (argc != 3) {
        fprintf(stderr, "%s\n", "usage: ./preprocessor <fdl file> <fdlp file>");
        exit(1);
    }
    char *fileName = (char *) argv[1];
    char *outputFileName = (char *) argv[2];

    // check input file extension
    if (strcmp("fdl", getFileExtension(fileName)) != 0)
    {
        die("file extension must be fdl");
    }

    // check output file extension
    if (strcmp("fdlp", getFileExtension(outputFileName)) != 0)
    {
        die("output file extension must be fdlp");
    }

    FILE *input;
    if ((input = fopen(fileName, "r")) == NULL) {
        die("fpen() failed");
    }

    // char *outputFileName = "output.fdlp";
    FILE *output;
    if ((output = fopen(outputFileName, "w")) == NULL) {
        die("fpen() failed");
    }

    char buffer[MAX_BUFFER];

    while (fgets(buffer, sizeof(buffer), input) != NULL) {

        size_t len = strlen(buffer) - 1;
        if (buffer[len] == '\n') {
            buffer[len] = '\0';
        }
        if (strstr(buffer, "*/") != NULL) {
            fprintf(output, "%s\n", buffer);
        }
        else if (strstr(buffer, "/*") != NULL) {
            fprintf(output, "%s\n", buffer);
        }
        else if (strstr(buffer, "def ") != NULL) {
            fprintf(output, "%s {\n", buffer);
        }
        else if (strstr(buffer, "int ") != NULL) {
            fprintf(output, "%s;\n", buffer);
        }
        else if (strstr(buffer, "path ") != NULL) {
            fprintf(output, "%s;\n", buffer);
        }
        else if (strstr(buffer, "dict ") != NULL) {
            fprintf(output, "%s;\n", buffer);
        }
        else if (strstr(buffer, "list ") != NULL) {
            fprintf(output, "%s;\n", buffer);
        }
        else if (strstr(buffer, "string ") != NULL) {
            fprintf(output, "%s;\n", buffer);
        }
        else if (strstr(buffer, "bool ") != NULL) {
            fprintf(output, "%s;\n", buffer);
        }
        else if (strstr(buffer, "for ") != NULL) {
            fprintf(output, "%s {\n", buffer);
        }
        else if ((strstr(buffer, "if (") != NULL || strstr(buffer, "if(") != NULL) && (strstr(buffer, "then") != NULL)) {
            fprintf(output, "%s {\n", buffer);
        }
        else if ((strstr(buffer, "if (") != NULL || strstr(buffer, "if(") != NULL) && (strstr(buffer, "then") == NULL)) {
            fprintf(output, "%s\n", buffer);
        }
        else if (strstr(buffer, "then") != NULL) {
            fprintf(output, "%s {\n", buffer);
        }
        else if (strstr(buffer, "else") != NULL) {
            int i;
            int counter = 0;
            for (i = 0; i < strlen(buffer); ++i)
            {
                if (buffer[i] == ' ') {
                    fprintf(output, "%c", buffer[i]);
                    counter++;
                }
            }
            fprintf(output, "} %s {\n", buffer + counter);
        }
        else if (strstr(buffer, "while (") != NULL || strstr(buffer, "while(") != NULL) {
            fprintf(output, "%s {\n", buffer);
        }
        else if (strstr(buffer, "end") != NULL) {
            int i;
            for (i = 0; i < strlen(buffer); i++){
                if (buffer[i] == 'e') {
                    buffer[i] = '}';
                } else if (buffer[i] == 'n') {
                    buffer[i] = '\n';
                } else if (buffer[i] == 'd') {
                    buffer[i] = '\0';
                } else {

                }
            }
            fprintf(output, "%s", buffer);
        }
        else {
            if (is_empty(buffer)) {
                remove_whitespace(buffer);
                fprintf(output, "\n");
            } else {
                fprintf(output, "%s;\n", buffer);
            }
        }
    }
    fclose(input);
    fclose(output);
    return 0;
}