void AnimationEffect::getComputedTiming(ComputedTimingProperties& computedTiming)
{
    // ComputedTimingProperties members.
    computedTiming.setEndTime(endTimeInternal() * 1000);
    computedTiming.setActiveDuration(activeDurationInternal() * 1000);

    if (ensureCalculated().isInEffect) {
        computedTiming.setLocalTime(ensureCalculated().localTime * 1000);
        computedTiming.setProgress(ensureCalculated().progress);
        computedTiming.setCurrentIteration(ensureCalculated().currentIteration);
    } else {
        computedTiming.setLocalTimeToNull();
        computedTiming.setProgressToNull();
        computedTiming.setCurrentIterationToNull();
    }

    // KeyframeEffectOptions members.
    computedTiming.setDelay(specifiedTiming().startDelay * 1000);
    computedTiming.setEndDelay(specifiedTiming().endDelay * 1000);
    computedTiming.setFill(Timing::fillModeString(resolvedFillMode(specifiedTiming().fillMode, isKeyframeEffect())));
    computedTiming.setIterationStart(specifiedTiming().iterationStart);
    computedTiming.setIterations(specifiedTiming().iterationCount);

    UnrestrictedDoubleOrString duration;
    duration.setUnrestrictedDouble(iterationDuration() * 1000);
    computedTiming.setDuration(duration);

    computedTiming.setPlaybackRate(specifiedTiming().playbackRate);
    computedTiming.setDirection(Timing::playbackDirectionString(specifiedTiming().direction));
    computedTiming.setEasing(specifiedTiming().timingFunction->toString());
}
void AnimationEffect::updateInheritedTime(double inheritedTime, TimingUpdateReason reason) const
{
    bool needsUpdate = m_needsUpdate || (m_lastUpdateTime != inheritedTime && !(isNull(m_lastUpdateTime) && isNull(inheritedTime))) || (animation() && animation()->effectSuppressed());
    m_needsUpdate = false;
    m_lastUpdateTime = inheritedTime;

    const double localTime = inheritedTime;
    double timeToNextIteration = std::numeric_limits<double>::infinity();
    if (needsUpdate) {
        const double activeDuration = this->activeDurationInternal();

        const Phase currentPhase = calculatePhase(activeDuration, localTime, m_timing);
        // FIXME: parentPhase depends on groups being implemented.
        const AnimationEffect::Phase parentPhase = AnimationEffect::PhaseActive;
        const double activeTime = calculateActiveTime(activeDuration, resolvedFillMode(m_timing.fillMode, isKeyframeEffect()), localTime, parentPhase, currentPhase, m_timing);

        double currentIteration;
        double progress;
        if (const double iterationDuration = this->iterationDuration()) {
            const double startOffset = multiplyZeroAlwaysGivesZero(m_timing.iterationStart, iterationDuration);
            ASSERT(startOffset >= 0);
            const double scaledActiveTime = calculateScaledActiveTime(activeDuration, activeTime, startOffset, m_timing);
            const double iterationTime = calculateIterationTime(iterationDuration, repeatedDuration(), scaledActiveTime, startOffset, m_timing);

            currentIteration = calculateCurrentIteration(iterationDuration, iterationTime, scaledActiveTime, m_timing);
            const double transformedTime = calculateTransformedTime(currentIteration, iterationDuration, iterationTime, m_timing);

            // The infinite iterationDuration case here is a workaround because
            // the specified behaviour does not handle infinite durations well.
            // There is an open issue against the spec to fix this:
            // https://github.com/w3c/web-animations/issues/142
            if (!std::isfinite(iterationDuration))
                progress = fmod(m_timing.iterationStart, 1.0);
            else
                progress = transformedTime / iterationDuration;

            if (!isNull(iterationTime)) {
                timeToNextIteration = (iterationDuration - iterationTime) / std::abs(m_timing.playbackRate);
                if (activeDuration - activeTime < timeToNextIteration)
                    timeToNextIteration = std::numeric_limits<double>::infinity();
            }
        } else {
            const double localIterationDuration = 1;
            const double localRepeatedDuration = localIterationDuration * m_timing.iterationCount;
            ASSERT(localRepeatedDuration >= 0);
            const double localActiveDuration = m_timing.playbackRate ? localRepeatedDuration / std::abs(m_timing.playbackRate) : std::numeric_limits<double>::infinity();
            ASSERT(localActiveDuration >= 0);
            const double localLocalTime = localTime < m_timing.startDelay ? localTime : localActiveDuration + m_timing.startDelay;
            const AnimationEffect::Phase localCurrentPhase = calculatePhase(localActiveDuration, localLocalTime, m_timing);
            const double localActiveTime = calculateActiveTime(localActiveDuration, resolvedFillMode(m_timing.fillMode, isKeyframeEffect()), localLocalTime, parentPhase, localCurrentPhase, m_timing);
            const double startOffset = m_timing.iterationStart * localIterationDuration;
            ASSERT(startOffset >= 0);
            const double scaledActiveTime = calculateScaledActiveTime(localActiveDuration, localActiveTime, startOffset, m_timing);
            const double iterationTime = calculateIterationTime(localIterationDuration, localRepeatedDuration, scaledActiveTime, startOffset, m_timing);

            currentIteration = calculateCurrentIteration(localIterationDuration, iterationTime, scaledActiveTime, m_timing);
            progress = calculateTransformedTime(currentIteration, localIterationDuration, iterationTime, m_timing);
        }

        m_calculated.currentIteration = currentIteration;
        m_calculated.progress = progress;

        m_calculated.phase = currentPhase;
        m_calculated.isInEffect = !isNull(activeTime);
        m_calculated.isInPlay = getPhase() == PhaseActive;
        m_calculated.isCurrent = getPhase() == PhaseBefore || isInPlay();
        m_calculated.localTime = m_lastUpdateTime;
    }

    // Test for events even if timing didn't need an update as the animation may have gained a start time.
    // FIXME: Refactor so that we can ASSERT(m_animation) here, this is currently required to be nullable for testing.
    if (reason == TimingUpdateForAnimationFrame && (!m_animation || m_animation->hasStartTime() || m_animation->paused())) {
        if (m_eventDelegate)
            m_eventDelegate->onEventCondition(*this);
    }

    if (needsUpdate)  {
        // FIXME: This probably shouldn't be recursive.
        updateChildrenAndEffects();
        m_calculated.timeToForwardsEffectChange = calculateTimeToEffectChange(true, localTime, timeToNextIteration);
        m_calculated.timeToReverseEffectChange = calculateTimeToEffectChange(false, localTime, timeToNextIteration);
    }
}
Beispiel #3
0
void AnimationNode::updateInheritedTime(double inheritedTime, TimingUpdateReason reason) const
{
    bool needsUpdate = m_needsUpdate || (m_lastUpdateTime != inheritedTime && !(isNull(m_lastUpdateTime) && isNull(inheritedTime)));
    m_needsUpdate = false;
    m_lastUpdateTime = inheritedTime;

    const double localTime = inheritedTime - m_startTime;
    double timeToNextIteration = std::numeric_limits<double>::infinity();
    if (needsUpdate) {
        const double activeDuration = this->activeDurationInternal();

        const Phase currentPhase = calculatePhase(activeDuration, localTime, m_timing);
        // FIXME: parentPhase depends on groups being implemented.
        const AnimationNode::Phase parentPhase = AnimationNode::PhaseActive;
        const double activeTime = calculateActiveTime(activeDuration, resolvedFillMode(m_timing.fillMode, isAnimation()), localTime, parentPhase, currentPhase, m_timing);

        double currentIteration;
        double timeFraction;
        if (const double iterationDuration = this->iterationDuration()) {
            const double startOffset = multiplyZeroAlwaysGivesZero(m_timing.iterationStart, iterationDuration);
            ASSERT(startOffset >= 0);
            const double scaledActiveTime = calculateScaledActiveTime(activeDuration, activeTime, startOffset, m_timing);
            const double iterationTime = calculateIterationTime(iterationDuration, repeatedDuration(), scaledActiveTime, startOffset, m_timing);

            currentIteration = calculateCurrentIteration(iterationDuration, iterationTime, scaledActiveTime, m_timing);
            timeFraction = calculateTransformedTime(currentIteration, iterationDuration, iterationTime, m_timing) / iterationDuration;

            if (!isNull(iterationTime)) {
                timeToNextIteration = (iterationDuration - iterationTime) / std::abs(m_timing.playbackRate);
                if (activeDuration - activeTime < timeToNextIteration)
                    timeToNextIteration = std::numeric_limits<double>::infinity();
            }
        } else {
            const double localIterationDuration = 1;
            const double localRepeatedDuration = localIterationDuration * m_timing.iterationCount;
            ASSERT(localRepeatedDuration >= 0);
            const double localActiveDuration = m_timing.playbackRate ? localRepeatedDuration / std::abs(m_timing.playbackRate) : std::numeric_limits<double>::infinity();
            ASSERT(localActiveDuration >= 0);
            const double localLocalTime = localTime < m_timing.startDelay ? localTime : localActiveDuration + m_timing.startDelay;
            const AnimationNode::Phase localCurrentPhase = calculatePhase(localActiveDuration, localLocalTime, m_timing);
            const double localActiveTime = calculateActiveTime(localActiveDuration, resolvedFillMode(m_timing.fillMode, isAnimation()), localLocalTime, parentPhase, localCurrentPhase, m_timing);
            const double startOffset = m_timing.iterationStart * localIterationDuration;
            ASSERT(startOffset >= 0);
            const double scaledActiveTime = calculateScaledActiveTime(localActiveDuration, localActiveTime, startOffset, m_timing);
            const double iterationTime = calculateIterationTime(localIterationDuration, localRepeatedDuration, scaledActiveTime, startOffset, m_timing);

            currentIteration = calculateCurrentIteration(localIterationDuration, iterationTime, scaledActiveTime, m_timing);
            timeFraction = calculateTransformedTime(currentIteration, localIterationDuration, iterationTime, m_timing);
        }

        m_calculated.currentIteration = currentIteration;
        m_calculated.timeFraction = timeFraction;

        m_calculated.phase = currentPhase;
        m_calculated.isInEffect = !isNull(activeTime);
        m_calculated.isInPlay = phase() == PhaseActive && (!m_parent || m_parent->isInPlay());
        m_calculated.isCurrent = phase() == PhaseBefore || isInPlay() || (m_parent && m_parent->isCurrent());
        m_calculated.localTime = m_lastUpdateTime - m_startTime;
    }

    // Test for events even if timing didn't need an update as the player may have gained a start time.
    // FIXME: Refactor so that we can ASSERT(m_player) here, this is currently required to be nullable for testing.
    if (reason == TimingUpdateForAnimationFrame && (!m_player || m_player->hasStartTime() || m_player->paused())) {
        if (m_eventDelegate)
            m_eventDelegate->onEventCondition(this);
    }

    if (needsUpdate)  {
        // FIXME: This probably shouldn't be recursive.
        updateChildrenAndEffects();
        m_calculated.timeToForwardsEffectChange = calculateTimeToEffectChange(true, localTime, timeToNextIteration);
        m_calculated.timeToReverseEffectChange = calculateTimeToEffectChange(false, localTime, timeToNextIteration);
    }
}