Beispiel #1
0
/* returns the number of resource or resource composites found */
int64_t resrc_tree_search (resrc_t *resrc_in, resrc_reqst_t *resrc_reqst,
                           resrc_tree_t **found_tree, bool available)
{
    int64_t nfound = 0;
    resrc_tree_list_t *children = NULL;
    resrc_tree_t *child_tree;
    resrc_tree_t *new_tree = NULL;

    if (!resrc_in || !found_tree || !resrc_reqst) {
        goto ret;
    }

    if (resrc_match_resource (resrc_in, resrc_reqst, available)) {
        if (resrc_reqst_num_children (resrc_reqst)) {
            if (resrc_tree_num_children (resrc_phys_tree (resrc_in))) {
                new_tree = resrc_tree_new (*found_tree, resrc_in);
                children = resrc_tree_children (resrc_phys_tree (resrc_in));
                if (match_children (children, resrc_reqst->children, new_tree,
                                    available)) {
                    nfound = 1;
                    resrc_reqst->nfound++;
                } else {
                    resrc_tree_destroy (new_tree, false);
                }
            }
        } else {
            (void) resrc_tree_new (*found_tree, resrc_in);
            nfound = 1;
            resrc_reqst->nfound++;
        }
    } else if (resrc_tree_num_children (resrc_phys_tree (resrc_in))) {
        /*
         * This clause visits the children of the current resource
         * searching for a match to the resource request.  The found
         * tree must be extended to include this intermediate
         * resource.
         *
         * This also allows the resource request to be sparsely
         * defined.  E.g., it might only stipulate a node with 4 cores
         * and omit the intervening socket.
         */
        if (*found_tree)
            new_tree = resrc_tree_new (*found_tree, resrc_in);
        else {
            new_tree = resrc_tree_new (NULL, resrc_in);
            *found_tree = new_tree;
        }
        children = resrc_tree_children (resrc_phys_tree (resrc_in));
        child_tree = resrc_tree_list_first (children);
        while (child_tree) {
            nfound += resrc_tree_search (resrc_tree_resrc (child_tree),
                                         resrc_reqst, &new_tree, available);
            child_tree = resrc_tree_list_next (children);
        }
    }
ret:
    return nfound;
}
Beispiel #2
0
int resrc_reqst_set_starttime (resrc_reqst_t *resrc_reqst, int64_t time)
{
    if (resrc_reqst) {
        resrc_reqst->starttime = time;
        if (resrc_reqst_num_children (resrc_reqst)) {
            resrc_reqst_t *child = resrc_reqst_list_first
                (resrc_reqst->children);
            while (child) {
                resrc_reqst_set_starttime (child, time);
                child = resrc_reqst_list_next (resrc_reqst->children);
            }
        }
        return 0;
    }
    return -1;
}
Beispiel #3
0
int resrc_reqst_clear_found (resrc_reqst_t *resrc_reqst)
{
    if (resrc_reqst) {
        resrc_reqst->nfound = 0;
        if (resrc_reqst_num_children (resrc_reqst)) {
            resrc_reqst_t *child = resrc_reqst_list_first
                (resrc_reqst->children);
            while (child) {
                resrc_reqst_clear_found (child);
                child = resrc_reqst_list_next (resrc_reqst->children);
            }
        }
        return 0;
    }
    return -1;
}
Beispiel #4
0
void resrc_reqst_print (resrc_reqst_t *resrc_reqst)
{
    if (resrc_reqst) {
        char *shared = resrc_reqst->exclusive ? "exclusive" : "shared";

        printf ("%"PRId64" of %"PRId64" %s ", resrc_reqst->nfound,
                resrc_reqst->reqrd_qty, shared);
        resrc_print_resource (resrc_reqst->resrc);
        resrc_graph_req_print (resrc_reqst->g_reqs);
        if (resrc_reqst_num_children (resrc_reqst)) {
            resrc_reqst_t *child = resrc_reqst_list_first
                (resrc_reqst->children);
            while (child) {
                resrc_reqst_print (child);
                child = resrc_reqst_list_next (resrc_reqst->children);
            }
        }
    }
}
Beispiel #5
0
bool resrc_reqst_all_found (resrc_reqst_t *resrc_reqst)
{
    bool all_found = false;

    if (resrc_reqst) {
        if (resrc_reqst_nfound (resrc_reqst) >=
            resrc_reqst_reqrd_qty (resrc_reqst))
            all_found = true;

        if (resrc_reqst_num_children (resrc_reqst)) {
            resrc_reqst_t *child = resrc_reqst_list_first(resrc_reqst->children);
            while (child) {
                if (!resrc_reqst_all_found (child)) {
                    all_found = false;
                    break;
                }
                child = resrc_reqst_list_next (resrc_reqst->children);
            }
        }
    }
    return all_found;
}
Beispiel #6
0
/*
 * select_resources() selects from the set of resource candidates the
 * best resources for the job.
 *
 * Inputs:  found_tree      - tree of resource tree candidates
 *          resrc_reqst     - the resources the job requests
 *          selected_parent - parent of the selected resource tree
 * Returns: a resource tree of however many resources were selected
 */
resrc_tree_t *select_resources (flux_t *h, resrc_tree_t *found_tree,
                                resrc_reqst_t *resrc_reqst,
                                resrc_tree_t *selected_parent)
{
    resrc_t *resrc;
    resrc_tree_list_t *children = NULL;
    resrc_tree_t *child_tree;
    resrc_tree_t *selected_tree = NULL;

    if (!resrc_reqst) {
        flux_log (h, LOG_ERR, "%s: called with empty request", __FUNCTION__);
        return NULL;
    }

    /*
     * A start time of zero is used to restrict the search to now
     * (appropriate for FCFS) and prevent any search into the future.
     */
    if (resrc_reqst_set_starttime (resrc_reqst, 0) ||
        resrc_reqst_set_endtime (resrc_reqst, 0))
        return NULL;

    resrc = resrc_tree_resrc (found_tree);
    if (resrc_match_resource (resrc, resrc_reqst, true)) {
        if (resrc_reqst_num_children (resrc_reqst)) {
            if (resrc_tree_num_children (found_tree)) {
                selected_tree = resrc_tree_new (selected_parent, resrc);
                if (select_children (h, resrc_tree_children (found_tree),
                                     resrc_reqst_children (resrc_reqst),
                                     selected_tree)) {
                    resrc_stage_resrc (resrc,
                                       resrc_reqst_reqrd_size (resrc_reqst),
                                       resrc_reqst_graph_reqs (resrc_reqst));
                    resrc_reqst_add_found (resrc_reqst, 1);
                    flux_log (h, LOG_DEBUG, "selected %s", resrc_name (resrc));
                } else {
                    resrc_tree_destroy (selected_tree, false);
                }
            }
        } else {
            selected_tree = resrc_tree_new (selected_parent, resrc);
            resrc_stage_resrc (resrc, resrc_reqst_reqrd_size (resrc_reqst),
                               resrc_reqst_graph_reqs (resrc_reqst));
            resrc_reqst_add_found (resrc_reqst, 1);
            flux_log (h, LOG_DEBUG, "selected %s", resrc_name (resrc));
        }
    } else if (resrc_tree_num_children (found_tree)) {
        /*
         * This clause visits the children of the current resource
         * searching for a match to the resource request.  The selected
         * tree must be extended to include this intermediate
         * resource.
         *
         * This also allows the resource request to be sparsely
         * defined.  E.g., it might only stipulate a node with 4 cores
         * and omit the intervening socket.
         */
        selected_tree = resrc_tree_new (selected_parent, resrc);
        children = resrc_tree_children (found_tree);
        child_tree = resrc_tree_list_first (children);
        while (child_tree) {
            if (select_resources (h, child_tree, resrc_reqst, selected_tree) &&
                resrc_reqst_nfound (resrc_reqst) >=
                resrc_reqst_reqrd_qty (resrc_reqst))
                break;
            child_tree = resrc_tree_list_next (children);
        }
    }

    return selected_tree;
}