Beispiel #1
0
int main(void)
{
	// There are a lot of dependencies in the order of these inits.
	// Don't change the ordering unless you understand this.
	// Inits can assume that all memory has been zeroed by either 
	// a hardware reset or a watchdog timer reset.

	cli();

	// system and drivers
	sys_init();			// system hardware setup 			- must be first
	rtc_init();			// real time counter
	xio_init();			// xmega io subsystem
	sig_init();			// signal flags
	st_init(); 			// stepper subsystem 				- must precede gpio_init()
	gpio_init();		// switches and parallel IO
	pwm_init();			// pulse width modulation drivers	- must follow gpio_init()

	// application structures
	tg_init(STD_INPUT);	// tinyg controller (controller.c)	- must be first app init; reqs xio_init()
	cfg_init();			// config records from eeprom 		- must be next app init
	mp_init();			// motion planning subsystem
	cm_init();			// canonical machine				- must follow cfg_init()
	sp_init();			// spindle PWM and variables

	// now bring up the interupts and get started
	PMIC_SetVectorLocationToApplication(); // as opposed to boot ROM
	PMIC_EnableHighLevel();			// all levels are used, so don't bother to abstract them
	PMIC_EnableMediumLevel();
	PMIC_EnableLowLevel();
	sei();							// enable global interrupts
	rpt_print_system_ready_message();// (LAST) announce system is ready

	_unit_tests();					// run any unit tests that are enabled
	tg_canned_startup();			// run any pre-loaded commands

	while (true) {
//		if (tg.network == NET_MASTER) { 
//			tg_repeater();
//		} else if (tg.network == NET_SLAVE) { 
//			tg_receiver();
//		} else {
			tg_controller();		// NET_STANDALONE
//		}
	}
}
Beispiel #2
0
stat_t _command_dispatch()
{
#ifdef __AVR
	stat_t status;

	// read input line or return if not a completed line
	// xio_gets() is a non-blocking workalike of fgets()
	while (true) {
		if ((status = xio_gets(cs.primary_src, cs.in_buf, sizeof(cs.in_buf))) == STAT_OK) {
			cs.bufp = cs.in_buf;
			break;
		}
		// handle end-of-file from file devices
		if (status == STAT_EOF) {						// EOF can come from file devices only
			if (cfg.comm_mode == TEXT_MODE) {
				fprintf_P(stderr, PSTR("End of command file\n"));
			} else {
				rpt_exception(STAT_EOF);				// not really an exception
			}
			tg_reset_source();							// reset to default source
		}
		return (status);								// Note: STAT_EAGAIN, errors, etc. will drop through
	}
#endif // __AVR
#ifdef __ARM
	// detect USB connection and transition to disconnected state if it disconnected
	if (SerialUSB.isConnected() == false) cs.state = CONTROLLER_NOT_CONNECTED;

	// read input line and return if not a completed line
	if (cs.state == CONTROLLER_READY) {
		if (read_line(cs.in_buf, &cs.read_index, sizeof(cs.in_buf)) != STAT_OK) {
			cs.bufp = cs.in_buf;
			return (STAT_OK);	// This is an exception: returns OK for anything NOT OK, so the idler always runs
		}
	} else if (cs.state == CONTROLLER_NOT_CONNECTED) {
		if (SerialUSB.isConnected() == false) return (STAT_OK);
		cm_request_queue_flush();
		rpt_print_system_ready_message();
		cs.state = CONTROLLER_STARTUP;

	} else if (cs.state == CONTROLLER_STARTUP) {		// run startup code
		cs.state = CONTROLLER_READY;

	} else {
		return (STAT_OK);
	}
	cs.read_index = 0;
#endif // __ARM
#ifdef __RX
	stat_t status;
	parse_gcode_func_selection(CODE_PARSER);
	// read input line or return if not a completed line
	// xio_gets() is a non-blocking workalike of fgets()
	while (true) {
		if ((status = xio_gets(cs.primary_src, cs.in_buf, sizeof(cs.in_buf))) == STAT_OK) {
			cs.bufp = cs.in_buf;
			break;
		}
		// handle end-of-file from file devices
		if (status == STAT_EOF) {						// EOF can come from file devices only
			//gfilerunning = false;
			xio_close(cs.primary_src);
//			macro_func_ptr = command_idle;
			if (cfg.comm_mode == TEXT_MODE) {
				fprintf_P(stderr, PSTR("End of command file\n"));
			} else {
				rpt_exception(STAT_EOF);				// not really an exception
			}
			tg_reset_source();							// reset to default source
		}
		return (status);								// Note: STAT_EAGAIN, errors, etc. will drop through
	}
#endif // __AVR
	// set up the buffers
	cs.linelen = strlen(cs.in_buf)+1;					// linelen only tracks primary input
	strncpy(cs.saved_buf, cs.bufp, SAVED_BUFFER_LEN-1);	// save input buffer for reporting

	// dispatch the new text line
	switch (toupper(*cs.bufp)) {						// first char

		case '!': { cm_request_feedhold(); break; }		// include for AVR diagnostics and ARM serial
		case '%': { cm_request_queue_flush(); break; }
		case '~': { cm_request_cycle_start(); break; }

		case NUL: { 									// blank line (just a CR)
			if (cfg.comm_mode != JSON_MODE) {
				text_response(STAT_OK, cs.saved_buf);
			}
			break;
		}
		case '$': case '?': case 'H': { 				// text mode input
			cfg.comm_mode = TEXT_MODE;
			text_response(text_parser(cs.bufp), cs.saved_buf);
			break;
		}
		case '{': { 									// JSON input
			cfg.comm_mode = JSON_MODE;
			json_parser(cs.bufp);
			break;
		}
		default: {										// anything else must be Gcode
			if (cfg.comm_mode == JSON_MODE) {			// run it as JSON...
				strncpy(cs.out_buf, cs.bufp, INPUT_BUFFER_LEN -8);					// use out_buf as temp
				sprintf((char *)cs.bufp,"{\"gc\":\"%s\"}\n", (char *)cs.out_buf);	// '-8' is used for JSON chars
				json_parser(cs.bufp);
			} else {									//...or run it as text
				text_response(gc_gcode_parser(cs.bufp), cs.saved_buf);
			}
		}
	}
	return (STAT_OK);
}