int main(int argc, char **argv) { int res = ERR_SUCCESS; #ifdef WITH_PETSC PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL); #endif set_verbose(false); if (argc < 5) error("Not enough parameters."); H1ShapesetLobattoHex shapeset; printf("* Loading mesh '%s'\n", argv[1]); Mesh mesh; Mesh3DReader mloader; if (!mloader.load(argv[1], &mesh)) error("Loading mesh file '%s'\n", argv[1]); printf("* Setting the space up\n"); H1Space space(&mesh, &shapeset); space.set_bc_types(bc_types); space.set_essential_bc_values(essential_bc_values); int o[3] = { 0, 0, 0 }; sscanf(argv[2], "%d", o + 0); sscanf(argv[3], "%d", o + 1); sscanf(argv[4], "%d", o + 2); order3_t order(o[0], o[1], o[2]); printf(" - Setting uniform order to (%d, %d, %d)\n", order.x, order.y, order.z); space.set_uniform_order(order); WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM, ANY); wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>, ANY); LinearProblem lp(&wf); lp.set_space(&space); bool done = false; int iter = 0; do { Timer assemble_timer("Assembling stiffness matrix"); Timer solve_timer("Solving stiffness matrix"); printf("\n=== Iter #%d ================================================================\n", iter); printf("\nSolution\n"); #if defined WITH_UMFPACK UMFPackMatrix mat; UMFPackVector rhs; UMFPackLinearSolver solver(&mat, &rhs); #elif defined WITH_PARDISO PardisoMatrix mat; PardisoVector rhs; PardisoLinearSolver solver(&mat, &rhs); #elif defined WITH_PETSC PetscMatrix mat; PetscVector rhs; PetscLinearSolver solver(&mat, &rhs); #elif defined WITH_MUMPS MumpsMatrix mat; MumpsVector rhs; MumpsSolver solver(&mat, &rhs); #endif int ndofs = space.assign_dofs(); printf(" - Number of DOFs: %d\n", ndofs); // assemble stiffness matrix printf(" - Assembling... "); fflush(stdout); assemble_timer.reset(); assemble_timer.start(); lp.assemble(&mat, &rhs); assemble_timer.stop(); printf("done in %s (%lf secs)\n", assemble_timer.get_human_time(), assemble_timer.get_seconds()); // solve the stiffness matrix printf(" - Solving... "); fflush(stdout); solve_timer.reset(); solve_timer.start(); bool solved = solver.solve(); solve_timer.stop(); if (solved) printf("done in %s (%lf secs)\n", solve_timer.get_human_time(), solve_timer.get_seconds()); else { res = ERR_FAILURE; printf("failed\n"); break; } printf("Reference solution\n"); #if defined WITH_UMFPACK UMFPackLinearSolver rsolver(&mat, &rhs); #elif defined WITH_PARDISO PardisoLinearSolver rsolver(&mat, &rhs); #elif defined WITH_PETSC PetscLinearSolver rsolver(&mat, &rhs); #elif defined WITH_MUMPS MumpsSolver rsolver(&mat, &rhs); #endif Mesh rmesh; rmesh.copy(mesh); rmesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); Space *rspace = space.dup(&rmesh); rspace->copy_orders(space, 1); LinearProblem rlp(&wf); rlp.set_space(rspace); int rndofs = rspace->assign_dofs(); printf(" - Number of DOFs: %d\n", rndofs); printf(" - Assembling... "); fflush(stdout); assemble_timer.reset(); assemble_timer.start(); rlp.assemble(&mat, &rhs); assemble_timer.stop(); printf("done in %s (%lf secs)\n", assemble_timer.get_human_time(), assemble_timer.get_seconds()); printf(" - Solving... "); fflush(stdout); solve_timer.reset(); solve_timer.start(); bool rsolved = rsolver.solve(); solve_timer.stop(); if (rsolved) printf("done in %s (%lf secs)\n", solve_timer.get_human_time(), solve_timer.get_seconds()); else { res = ERR_FAILURE; printf("failed\n"); break; } Solution sln(&mesh); sln.set_coeff_vector(&space, solver.get_solution()); Solution rsln(&rmesh); rsln.set_coeff_vector(rspace, rsolver.get_solution()); printf("Adaptivity:\n"); H1Adapt hp(&space); double tol = hp.calc_error(&sln, &rsln) * 100; printf(" - tolerance: "); fflush(stdout); printf("% lf\n", tol); if (tol < TOLERANCE) { printf("\nDone\n"); ExactSolution ex_sln(&mesh, exact_solution); // norm double h1_sln_norm = h1_norm(&sln); double h1_err_norm = h1_error(&sln, &ex_sln); printf(" - H1 solution norm: % le\n", h1_sln_norm); printf(" - H1 error norm: % le\n", h1_err_norm); double l2_sln_norm = l2_norm(&sln); double l2_err_norm = l2_error(&sln, &ex_sln); printf(" - L2 solution norm: % le\n", l2_sln_norm); printf(" - L2 error norm: % le\n", l2_err_norm); if (h1_err_norm > EPS || l2_err_norm > EPS) { // calculated solution is not enough precise res = ERR_FAILURE; } break; } Timer t(""); printf(" - adapting... "); fflush(stdout); t.start(); hp.adapt(THRESHOLD); t.stop(); printf("done in %lf secs (refined %d element(s))\n", t.get_seconds(), hp.get_num_refined_elements()); iter++; } while (!done); #ifdef WITH_PETSC PetscFinalize(); #endif return res; }
/*********************************************************************************** * main program * ************************************************************************************/ int main(int argc, char **args) { #ifdef WITH_PETSC PetscInitialize(NULL, NULL, PETSC_NULL, PETSC_NULL); PetscPushErrorHandler(PetscIgnoreErrorHandler, PETSC_NULL); // Disable PETSc error handler. #endif // Load the inital mesh. Mesh mesh; Mesh3DReader mesh_loader; mesh_loader.load("hexahedron.mesh3d", &mesh); // Initial uniform mesh refinements. printf("Performing %d initial mesh refinements.\n", INIT_REF_NUM); for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); Word_t (nelem) = mesh.get_num_elements(); printf("New number of elements is %d.\n", nelem); //Initialize the shapeset and the cache. H1ShapesetLobattoHex shapeset; //Matrix solver. #if defined WITH_UMFPACK UMFPackMatrix mat; UMFPackVector rhs; UMFPackLinearSolver solver(&mat, &rhs); #elif defined WITH_PETSC PetscMatrix mat; PetscVector rhs; PetscLinearSolver solver(&mat, &rhs); #elif defined WITH_MUMPS MumpsMatrix mat; MumpsVector rhs; MumpsSolver solver(&mat, &rhs); #endif // Graphs of DOF convergence. GnuplotGraph graph; graph.set_captions("", "Degrees of Freedom", "Error [%]"); graph.set_log_y(); graph.add_row("Total error", "k", "-", "O"); // Create H1 space to setup the problem. H1Space space(&mesh, &shapeset); space.set_bc_types(bc_types); space.set_essential_bc_values(essential_bc_values); space.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT)); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(biform<double, double>, biform<ord_t, ord_t>, SYM, ANY); wf.add_vector_form(liform<double, double>, liform<ord_t, ord_t>, ANY); // Initialize the coarse mesh problem. LinProblem lp(&wf); lp.set_space(&space); // Adaptivity loop. int as = 0; bool done = false; do { printf("\n---- Adaptivity step %d:\n", as); printf("\nSolving on coarse mesh:\n"); // Procedures for coarse mesh problem. // Assign DOF. int ndof = space.assign_dofs(); printf(" - Number of DOF: %d\n", ndof); // Assemble stiffness matrix and rhs. printf(" - Assembling... "); fflush(stdout); if (lp.assemble(&mat, &rhs)) printf("done in %lf secs.\n", lp.get_time()); else error("failed!"); // Solve the system. printf(" - Solving... "); fflush(stdout); bool solved = solver.solve(); if (solved) printf("done in %lf secs.\n", solver.get_time()); else { printf("Failed.\n"); break; } // Construct a solution. Solution sln(&mesh); sln.set_fe_solution(&space, solver.get_solution()); // Output the orders and the solution. if (do_output) { out_orders(&space, "order", as); out_fn(&sln, "sln", as); } // Solving fine mesh problem. printf("Solving on fine mesh:\n"); // Matrix solver. #if defined WITH_UMFPACK UMFPackLinearSolver rsolver(&mat, &rhs); #elif defined WITH_PETSC PetscLinearSolver rsolver(&mat, &rhs); #elif defined WITH_MUMPS MumpsSolver rsolver(&mat, &rhs); #endif // Construct the refined mesh for reference(refined) solution. Mesh rmesh; rmesh.copy(mesh); rmesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); // Setup space for the reference (globally refined) solution. Space *rspace = space.dup(&rmesh); rspace->copy_orders(space, 1); // Initialize the mesh problem for reference solution. LinProblem rlp(&wf); rlp.set_space(rspace); // Assign DOF. int rndof = rspace->assign_dofs(); printf(" - Number of DOF: %d\n", rndof); // Assemble stiffness matric and rhs. printf(" - Assembling... "); fflush(stdout); if (rlp.assemble(&mat, &rhs)) printf("done in %lf secs.\n", rlp.get_time()); else error("failed!"); // Solve the system. printf(" - Solving... "); fflush(stdout); bool rsolved = rsolver.solve(); if (rsolved) printf("done in %lf secs.\n", rsolver.get_time()); else { printf("failed.\n"); break; } // Construct the reference(refined) solution. Solution rsln(&rmesh); rsln.set_fe_solution(rspace, rsolver.get_solution()); // Compare coarse and fine mesh. // Calculate the error estimate wrt. refined mesh solution. double err = h1_error(&sln, &rsln); printf(" - H1 error: % lf\n", err * 100); // Save it to the graph. graph.add_value(0, ndof, err * 100); if (do_output) graph.save("conv.gp"); // Calculate error estimates for adaptivity. printf("Adaptivity\n"); printf(" - calculating error: "); fflush(stdout); H1Adapt hp(&space); double err_est = hp.calc_error(&sln, &rsln) * 100; printf("% lf %%\n", err_est); // If error is too large, adapt the mesh. if (err_est < ERR_STOP) { printf("\nDone\n"); break; } printf(" - adapting... "); fflush(stdout); hp.adapt(THRESHOLD); printf("done in %lf secs (refined %d element(s)).\n", hp.get_adapt_time(), hp.get_num_refined_elements()); if (rndof >= NDOF_STOP) { printf("\nDone.\n"); break; } // Clean up. delete rspace; // Next adaptivity step. as++; mat.free(); rhs.free(); } while (!done); #ifdef WITH_PETSC PetscFinalize(); #endif return 1; }