Beispiel #1
0
/* Model initialize function */
void HConstfolding_initialize(void)
{
  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)HConstfolding_M, 0,
                sizeof(RT_MODEL_HConstfolding));

  /* Initialize timing info */
  {
    int_T *mdlTsMap = HConstfolding_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    HConstfolding_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    HConstfolding_M->Timing.sampleTimes =
      (&HConstfolding_M->Timing.sampleTimesArray[0]);
    HConstfolding_M->Timing.offsetTimes =
      (&HConstfolding_M->Timing.offsetTimesArray[0]);

    /* task periods */
    HConstfolding_M->Timing.sampleTimes[0] = (1.0);

    /* task offsets */
    HConstfolding_M->Timing.offsetTimes[0] = (0.0);
  }

  rtmSetTPtr(HConstfolding_M, &HConstfolding_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = HConstfolding_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    HConstfolding_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(HConstfolding_M, 1.0E+8);
  HConstfolding_M->Timing.stepSize0 = 1.0;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    HConstfolding_M->rtwLogInfo = &rt_DataLoggingInfo;
  }

  /* Setup for data logging */
  {
    rtliSetLogXSignalInfo(HConstfolding_M->rtwLogInfo, (NULL));
    rtliSetLogXSignalPtrs(HConstfolding_M->rtwLogInfo, (NULL));
    rtliSetLogT(HConstfolding_M->rtwLogInfo, "tout");
    rtliSetLogX(HConstfolding_M->rtwLogInfo, "");
    rtliSetLogXFinal(HConstfolding_M->rtwLogInfo, "");
    rtliSetSigLog(HConstfolding_M->rtwLogInfo, "");
    rtliSetLogVarNameModifier(HConstfolding_M->rtwLogInfo, "rt_");
    rtliSetLogFormat(HConstfolding_M->rtwLogInfo, 0);
    rtliSetLogMaxRows(HConstfolding_M->rtwLogInfo, 1000);
    rtliSetLogDecimation(HConstfolding_M->rtwLogInfo, 1);

    /*
     * Set pointers to the data and signal info for each output
     */
    {
      static void * rt_LoggedOutputSignalPtrs[] = {
        &HConstfolding_Y.Out1
      };

      rtliSetLogYSignalPtrs(HConstfolding_M->rtwLogInfo, ((LogSignalPtrsType)
        rt_LoggedOutputSignalPtrs));
    }

    {
      static int_T rt_LoggedOutputWidths[] = {
        1
      };

      static int_T rt_LoggedOutputNumDimensions[] = {
        1
      };

      static int_T rt_LoggedOutputDimensions[] = {
        1
      };

      static boolean_T rt_LoggedOutputIsVarDims[] = {
        0
      };

      static void* rt_LoggedCurrentSignalDimensions[] = {
        (NULL)
      };

      static int_T rt_LoggedCurrentSignalDimensionsSize[] = {
        4
      };

      static BuiltInDTypeId rt_LoggedOutputDataTypeIds[] = {
        SS_DOUBLE
      };

      static int_T rt_LoggedOutputComplexSignals[] = {
        0
      };

      static const char_T *rt_LoggedOutputLabels[] = {
        "" };

      static const char_T *rt_LoggedOutputBlockNames[] = {
        "HConstfolding/Out1" };

      static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = {
        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 }
      };

      static RTWLogSignalInfo rt_LoggedOutputSignalInfo[] = {
        {
          1,
          rt_LoggedOutputWidths,
          rt_LoggedOutputNumDimensions,
          rt_LoggedOutputDimensions,
          rt_LoggedOutputIsVarDims,
          rt_LoggedCurrentSignalDimensions,
          rt_LoggedCurrentSignalDimensionsSize,
          rt_LoggedOutputDataTypeIds,
          rt_LoggedOutputComplexSignals,
          (NULL),

          { rt_LoggedOutputLabels },
          (NULL),
          (NULL),
          (NULL),

          { rt_LoggedOutputBlockNames },

          { (NULL) },
          (NULL),
          rt_RTWLogDataTypeConvert
        }
      };

      rtliSetLogYSignalInfo(HConstfolding_M->rtwLogInfo,
                            rt_LoggedOutputSignalInfo);

      /* set currSigDims field */
      rt_LoggedCurrentSignalDimensions[0] = &rt_LoggedOutputWidths[0];
    }

    rtliSetLogY(HConstfolding_M->rtwLogInfo, "yout");
  }

  HConstfolding_M->solverInfoPtr = (&HConstfolding_M->solverInfo);
  HConstfolding_M->Timing.stepSize = (1.0);
  rtsiSetFixedStepSize(&HConstfolding_M->solverInfo, 1.0);
  rtsiSetSolverMode(&HConstfolding_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* states (dwork) */
  (void) memset((void *)&HConstfolding_DWork, 0,
                sizeof(D_Work_HConstfolding));

  /* external outputs */
  HConstfolding_Y.Out1 = 0.0;

  /* Matfile logging */
  rt_StartDataLoggingWithStartTime(HConstfolding_M->rtwLogInfo, 0.0,
    rtmGetTFinal(HConstfolding_M), HConstfolding_M->Timing.stepSize0,
    (&rtmGetErrorStatus(HConstfolding_M)));

  /* Initialize Sizes */
  HConstfolding_M->Sizes.numContStates = (0);/* Number of continuous states */
  HConstfolding_M->Sizes.numY = (1);   /* Number of model outputs */
  HConstfolding_M->Sizes.numU = (0);   /* Number of model inputs */
  HConstfolding_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough */
  HConstfolding_M->Sizes.numSampTimes = (1);/* Number of sample times */
  HConstfolding_M->Sizes.numBlocks = (14);/* Number of blocks */
  HConstfolding_M->Sizes.numBlockIO = (0);/* Number of block outputs */
  HConstfolding_M->Sizes.numBlockPrms = (10);/* Sum of parameter "widths" */

  /* InitializeConditions for UnitDelay: '<Root>/Unit Delay' */
  HConstfolding_DWork.UnitDelay_DSTATE = HConstfolding_P.UnitDelay_X0;

  /* InitializeConditions for UnitDelay: '<Root>/Unit Delay1' */
  HConstfolding_DWork.UnitDelay1_DSTATE = HConstfolding_P.UnitDelay1_X0;
}
Beispiel #2
0
/* Model initialize function */
void xpcosc_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)xpcosc_rtM, 0,
                sizeof(rtModel_xpcosc));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&xpcosc_rtM->solverInfo,
                          &xpcosc_rtM->Timing.simTimeStep);
    rtsiSetTPtr(&xpcosc_rtM->solverInfo, &rtmGetTPtr(xpcosc_rtM));
    rtsiSetStepSizePtr(&xpcosc_rtM->solverInfo, &xpcosc_rtM->Timing.stepSize0);
    rtsiSetdXPtr(&xpcosc_rtM->solverInfo, &xpcosc_rtM->ModelData.derivs);
    rtsiSetContStatesPtr(&xpcosc_rtM->solverInfo,
                         &xpcosc_rtM->ModelData.contStates);
    rtsiSetNumContStatesPtr(&xpcosc_rtM->solverInfo,
      &xpcosc_rtM->Sizes.numContStates);
    rtsiSetErrorStatusPtr(&xpcosc_rtM->solverInfo, (&rtmGetErrorStatus
      (xpcosc_rtM)));
    rtsiSetRTModelPtr(&xpcosc_rtM->solverInfo, xpcosc_rtM);
  }

  rtsiSetSimTimeStep(&xpcosc_rtM->solverInfo, MAJOR_TIME_STEP);
  xpcosc_rtM->ModelData.intgData.y = xpcosc_rtM->ModelData.odeY;
  xpcosc_rtM->ModelData.intgData.f[0] = xpcosc_rtM->ModelData.odeF[0];
  xpcosc_rtM->ModelData.intgData.f[1] = xpcosc_rtM->ModelData.odeF[1];
  xpcosc_rtM->ModelData.intgData.f[2] = xpcosc_rtM->ModelData.odeF[2];
  xpcosc_rtM->ModelData.intgData.f[3] = xpcosc_rtM->ModelData.odeF[3];
  xpcosc_rtM->ModelData.contStates = ((real_T *) &xpcosc_X);
  rtsiSetSolverData(&xpcosc_rtM->solverInfo, (void *)
                    &xpcosc_rtM->ModelData.intgData);
  rtsiSetSolverName(&xpcosc_rtM->solverInfo,"ode4");
  xpcosc_rtM->solverInfoPtr = (&xpcosc_rtM->solverInfo);

  /* Initialize timing info */
  {
    int_T *mdlTsMap = xpcosc_rtM->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    xpcosc_rtM->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    xpcosc_rtM->Timing.sampleTimes = (&xpcosc_rtM->Timing.sampleTimesArray[0]);
    xpcosc_rtM->Timing.offsetTimes = (&xpcosc_rtM->Timing.offsetTimesArray[0]);

    /* task periods */
    xpcosc_rtM->Timing.sampleTimes[0] = (0.0);
    xpcosc_rtM->Timing.sampleTimes[1] = (0.001);

    /* task offsets */
    xpcosc_rtM->Timing.offsetTimes[0] = (0.0);
    xpcosc_rtM->Timing.offsetTimes[1] = (0.0);
  }

  rtmSetTPtr(xpcosc_rtM, &xpcosc_rtM->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = xpcosc_rtM->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    xpcosc_rtM->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(xpcosc_rtM, 0.2);
  xpcosc_rtM->Timing.stepSize0 = 0.001;
  xpcosc_rtM->Timing.stepSize1 = 0.001;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    xpcosc_rtM->rtwLogInfo = &rt_DataLoggingInfo;
  }

  /* Setup for data logging */
  {
    /*
     * Set pointers to the data and signal info each state
     */
    {
      static int_T rt_LoggedStateWidths[] = {
        1,
        1
      };

      static int_T rt_LoggedStateNumDimensions[] = {
        1,
        1
      };

      static int_T rt_LoggedStateDimensions[] = {
        1,
        1
      };

      static boolean_T rt_LoggedStateIsVarDims[] = {
        0,
        0
      };

      static BuiltInDTypeId rt_LoggedStateDataTypeIds[] = {
        SS_DOUBLE,
        SS_DOUBLE
      };

      static int_T rt_LoggedStateComplexSignals[] = {
        0,
        0
      };

      static const char_T *rt_LoggedStateLabels[] = {
        "CSTATE",
        "CSTATE"
      };

      static const char_T *rt_LoggedStateBlockNames[] = {
        "xpcosc/Integrator1",
        "xpcosc/Integrator"
      };

      static const char_T *rt_LoggedStateNames[] = {
        "",
        ""
      };

      static boolean_T rt_LoggedStateCrossMdlRef[] = {
        0,
        0
      };

      static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = {
        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 },

        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 }
      };

      static RTWLogSignalInfo rt_LoggedStateSignalInfo = {
        2,
        rt_LoggedStateWidths,
        rt_LoggedStateNumDimensions,
        rt_LoggedStateDimensions,
        rt_LoggedStateIsVarDims,
        (NULL),
        rt_LoggedStateDataTypeIds,
        rt_LoggedStateComplexSignals,
        (NULL),

        { rt_LoggedStateLabels },
        (NULL),
        (NULL),
        (NULL),

        { rt_LoggedStateBlockNames },

        { rt_LoggedStateNames },
        rt_LoggedStateCrossMdlRef,
        rt_RTWLogDataTypeConvert
      };

      static void * rt_LoggedStateSignalPtrs[2];
      rtliSetLogXSignalPtrs(xpcosc_rtM->rtwLogInfo, (LogSignalPtrsType)
                            rt_LoggedStateSignalPtrs);
      rtliSetLogXSignalInfo(xpcosc_rtM->rtwLogInfo, &rt_LoggedStateSignalInfo);
      rt_LoggedStateSignalPtrs[0] = (void*)&xpcosc_X.Integrator1_CSTATE;
      rt_LoggedStateSignalPtrs[1] = (void*)&xpcosc_X.Integrator_CSTATE;
    }

    rtliSetLogT(xpcosc_rtM->rtwLogInfo, "tout");
    rtliSetLogX(xpcosc_rtM->rtwLogInfo, "xout");
    rtliSetLogXFinal(xpcosc_rtM->rtwLogInfo, "");
    rtliSetSigLog(xpcosc_rtM->rtwLogInfo, "");
    rtliSetLogVarNameModifier(xpcosc_rtM->rtwLogInfo, "rt_");
    rtliSetLogFormat(xpcosc_rtM->rtwLogInfo, 0);
    rtliSetLogMaxRows(xpcosc_rtM->rtwLogInfo, 0);
    rtliSetLogDecimation(xpcosc_rtM->rtwLogInfo, 1);

    /*
     * Set pointers to the data and signal info for each output
     */
    {
      static void * rt_LoggedOutputSignalPtrs[] = {
        &xpcosc_Y.Outport[0]
      };

      rtliSetLogYSignalPtrs(xpcosc_rtM->rtwLogInfo, ((LogSignalPtrsType)
        rt_LoggedOutputSignalPtrs));
    }

    {
      static int_T rt_LoggedOutputWidths[] = {
        2
      };

      static int_T rt_LoggedOutputNumDimensions[] = {
        1
      };

      static int_T rt_LoggedOutputDimensions[] = {
        2
      };

      static boolean_T rt_LoggedOutputIsVarDims[] = {
        0
      };

      static int_T* rt_LoggedCurrentSignalDimensions[] = {
        (NULL)
      };

      static BuiltInDTypeId rt_LoggedOutputDataTypeIds[] = {
        SS_DOUBLE
      };

      static int_T rt_LoggedOutputComplexSignals[] = {
        0
      };

      static const char_T *rt_LoggedOutputLabels[] = {
        "" };

      static const char_T *rt_LoggedOutputBlockNames[] = {
        "xpcosc/Outport" };

      static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = {
        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 }
      };

      static RTWLogSignalInfo rt_LoggedOutputSignalInfo[] = {
        {
          1,
          rt_LoggedOutputWidths,
          rt_LoggedOutputNumDimensions,
          rt_LoggedOutputDimensions,
          rt_LoggedOutputIsVarDims,
          rt_LoggedCurrentSignalDimensions,
          rt_LoggedOutputDataTypeIds,
          rt_LoggedOutputComplexSignals,
          (NULL),

          { rt_LoggedOutputLabels },
          (NULL),
          (NULL),
          (NULL),

          { rt_LoggedOutputBlockNames },

          { (NULL) },
          (NULL),
          rt_RTWLogDataTypeConvert
        }
      };

      rtliSetLogYSignalInfo(xpcosc_rtM->rtwLogInfo, rt_LoggedOutputSignalInfo);

      /* set currSigDims field */
      rt_LoggedCurrentSignalDimensions[0] = &rt_LoggedOutputWidths[0];
    }

    rtliSetLogY(xpcosc_rtM->rtwLogInfo, "yout");
  }

  /* external mode info */
  xpcosc_rtM->Sizes.checksums[0] = (1235351435U);
  xpcosc_rtM->Sizes.checksums[1] = (4143988505U);
  xpcosc_rtM->Sizes.checksums[2] = (362576123U);
  xpcosc_rtM->Sizes.checksums[3] = (1068881914U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    xpcosc_rtM->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(xpcosc_rtM->extModeInfo,
      &xpcosc_rtM->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(xpcosc_rtM->extModeInfo, xpcosc_rtM->Sizes.checksums);
    rteiSetTPtr(xpcosc_rtM->extModeInfo, rtmGetTPtr(xpcosc_rtM));
  }

  xpcosc_rtM->solverInfoPtr = (&xpcosc_rtM->solverInfo);
  xpcosc_rtM->Timing.stepSize = (0.001);
  rtsiSetFixedStepSize(&xpcosc_rtM->solverInfo, 0.001);
  rtsiSetSolverMode(&xpcosc_rtM->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  xpcosc_rtM->ModelData.blockIO = ((void *) &xpcosc_B);

  {
    xpcosc_B.Integrator1 = 0.0;
    xpcosc_B.PCI6221AD = 0.0;
    xpcosc_B.RateTransition1 = 0.0;
    xpcosc_B.SignalGenerator = 0.0;
    xpcosc_B.RateTransition = 0.0;
    xpcosc_B.Gain = 0.0;
    xpcosc_B.Integrator = 0.0;
    xpcosc_B.Gain1 = 0.0;
    xpcosc_B.Gain2 = 0.0;
    xpcosc_B.Sum = 0.0;
  }

  /* parameters */
  xpcosc_rtM->ModelData.defaultParam = ((real_T *)&xpcosc_P);

  /* states (continuous) */
  {
    real_T *x = (real_T *) &xpcosc_X;
    xpcosc_rtM->ModelData.contStates = (x);
    (void) memset((void *)&xpcosc_X, 0,
                  sizeof(ContinuousStates_xpcosc));
  }

  /* states (dwork) */
  xpcosc_rtM->Work.dwork = ((void *) &xpcosc_DWork);
  (void) memset((void *)&xpcosc_DWork, 0,
                sizeof(D_Work_xpcosc));
  xpcosc_DWork.PCI6713DA_RWORK = 0.0;

  /* external outputs */
  xpcosc_rtM->ModelData.outputs = (&xpcosc_Y);
  xpcosc_Y.Outport[0] = 0.0;
  xpcosc_Y.Outport[1] = 0.0;

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    xpcosc_rtM->SpecialInfo.mappingInfo = (&dtInfo);
    xpcosc_rtM->SpecialInfo.xpcData = ((void*) &dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  /* Initialize DataMapInfo substructure containing ModelMap for C API */
  xpcosc_InitializeDataMapInfo(xpcosc_rtM);

  /* child S-Function registration */
  {
    RTWSfcnInfo *sfcnInfo = &xpcosc_rtM->NonInlinedSFcns.sfcnInfo;
    xpcosc_rtM->sfcnInfo = (sfcnInfo);
    rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(xpcosc_rtM)));
    rtssSetNumRootSampTimesPtr(sfcnInfo, &xpcosc_rtM->Sizes.numSampTimes);
    xpcosc_rtM->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(xpcosc_rtM)[0]);
    xpcosc_rtM->NonInlinedSFcns.taskTimePtrs[1] = &(rtmGetTPtr(xpcosc_rtM)[1]);
    rtssSetTPtrPtr(sfcnInfo,xpcosc_rtM->NonInlinedSFcns.taskTimePtrs);
    rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(xpcosc_rtM));
    rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(xpcosc_rtM));
    rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(xpcosc_rtM));
    rtssSetStepSizePtr(sfcnInfo, &xpcosc_rtM->Timing.stepSize);
    rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(xpcosc_rtM));
    rtssSetDerivCacheNeedsResetPtr(sfcnInfo,
      &xpcosc_rtM->ModelData.derivCacheNeedsReset);
    rtssSetZCCacheNeedsResetPtr(sfcnInfo,
      &xpcosc_rtM->ModelData.zCCacheNeedsReset);
    rtssSetBlkStateChangePtr(sfcnInfo, &xpcosc_rtM->ModelData.blkStateChange);
    rtssSetSampleHitsPtr(sfcnInfo, &xpcosc_rtM->Timing.sampleHits);
    rtssSetPerTaskSampleHitsPtr(sfcnInfo, &xpcosc_rtM->Timing.perTaskSampleHits);
    rtssSetSimModePtr(sfcnInfo, &xpcosc_rtM->simMode);
    rtssSetSolverInfoPtr(sfcnInfo, &xpcosc_rtM->solverInfoPtr);
  }

  xpcosc_rtM->Sizes.numSFcns = (2);

  /* register each child */
  {
    (void) memset((void *)&xpcosc_rtM->NonInlinedSFcns.childSFunctions[0], 0,
                  2*sizeof(SimStruct));
    xpcosc_rtM->childSfunctions =
      (&xpcosc_rtM->NonInlinedSFcns.childSFunctionPtrs[0]);
    xpcosc_rtM->childSfunctions[0] =
      (&xpcosc_rtM->NonInlinedSFcns.childSFunctions[0]);
    xpcosc_rtM->childSfunctions[1] =
      (&xpcosc_rtM->NonInlinedSFcns.childSFunctions[1]);

    /* Level2 S-Function Block: xpcosc/<Root>/PCI-6221 AD (adnipcim) */
    {
      SimStruct *rts = xpcosc_rtM->childSfunctions[0];

      /* timing info */
      time_T *sfcnPeriod = xpcosc_rtM->NonInlinedSFcns.Sfcn0.sfcnPeriod;
      time_T *sfcnOffset = xpcosc_rtM->NonInlinedSFcns.Sfcn0.sfcnOffset;
      int_T *sfcnTsMap = xpcosc_rtM->NonInlinedSFcns.Sfcn0.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &xpcosc_rtM->NonInlinedSFcns.blkInfo2[0]);
      }

      ssSetRTWSfcnInfo(rts, xpcosc_rtM->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &xpcosc_rtM->NonInlinedSFcns.methods2[0]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &xpcosc_rtM->NonInlinedSFcns.methods3[0]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &xpcosc_rtM->NonInlinedSFcns.statesInfo2[0]);
      }

      /* outputs */
      {
        ssSetPortInfoForOutputs(rts,
          &xpcosc_rtM->NonInlinedSFcns.Sfcn0.outputPortInfo[0]);
        _ssSetNumOutputPorts(rts, 1);

        /* port 0 */
        {
          _ssSetOutputPortNumDimensions(rts, 0, 1);
          ssSetOutputPortWidth(rts, 0, 1);
          ssSetOutputPortSignal(rts, 0, ((real_T *) &xpcosc_B.PCI6221AD));
        }
      }

      /* path info */
      ssSetModelName(rts, "PCI-6221 AD");
      ssSetPath(rts, "xpcosc/PCI-6221 AD");
      ssSetRTModel(rts,xpcosc_rtM);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn0.params;
        ssSetSFcnParamsCount(rts, 7);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)xpcosc_P.PCI6221AD_P1_Size);
        ssSetSFcnParam(rts, 1, (mxArray*)xpcosc_P.PCI6221AD_P2_Size);
        ssSetSFcnParam(rts, 2, (mxArray*)xpcosc_P.PCI6221AD_P3_Size);
        ssSetSFcnParam(rts, 3, (mxArray*)xpcosc_P.PCI6221AD_P4_Size);
        ssSetSFcnParam(rts, 4, (mxArray*)xpcosc_P.PCI6221AD_P5_Size);
        ssSetSFcnParam(rts, 5, (mxArray*)xpcosc_P.PCI6221AD_P6_Size);
        ssSetSFcnParam(rts, 6, (mxArray*)xpcosc_P.PCI6221AD_P7_Size);
      }

      /* work vectors */
      ssSetIWork(rts, (int_T *) &xpcosc_DWork.PCI6221AD_IWORK[0]);
      ssSetPWork(rts, (void **) &xpcosc_DWork.PCI6221AD_PWORK);

      {
        struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn0.dWork;
        struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn0.dWorkAux;
        ssSetSFcnDWork(rts, dWorkRecord);
        ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
        _ssSetNumDWork(rts, 2);

        /* IWORK */
        ssSetDWorkWidth(rts, 0, 41);
        ssSetDWorkDataType(rts, 0,SS_INTEGER);
        ssSetDWorkComplexSignal(rts, 0, 0);
        ssSetDWork(rts, 0, &xpcosc_DWork.PCI6221AD_IWORK[0]);

        /* PWORK */
        ssSetDWorkWidth(rts, 1, 1);
        ssSetDWorkDataType(rts, 1,SS_POINTER);
        ssSetDWorkComplexSignal(rts, 1, 0);
        ssSetDWork(rts, 1, &xpcosc_DWork.PCI6221AD_PWORK);
      }

      /* registration */
      adnipcim(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.001);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 1;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetOutputPortConnected(rts, 0, 1);
      _ssSetOutputPortBeingMerged(rts, 0, 0);

      /* Update the BufferDstPort flags for each input port */
    }

    /* Level2 S-Function Block: xpcosc/<Root>/PCI-6713 DA (danipci671x) */
    {
      SimStruct *rts = xpcosc_rtM->childSfunctions[1];

      /* timing info */
      time_T *sfcnPeriod = xpcosc_rtM->NonInlinedSFcns.Sfcn1.sfcnPeriod;
      time_T *sfcnOffset = xpcosc_rtM->NonInlinedSFcns.Sfcn1.sfcnOffset;
      int_T *sfcnTsMap = xpcosc_rtM->NonInlinedSFcns.Sfcn1.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &xpcosc_rtM->NonInlinedSFcns.blkInfo2[1]);
      }

      ssSetRTWSfcnInfo(rts, xpcosc_rtM->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &xpcosc_rtM->NonInlinedSFcns.methods2[1]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &xpcosc_rtM->NonInlinedSFcns.methods3[1]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &xpcosc_rtM->NonInlinedSFcns.statesInfo2[1]);
      }

      /* inputs */
      {
        _ssSetNumInputPorts(rts, 1);
        ssSetPortInfoForInputs(rts,
          &xpcosc_rtM->NonInlinedSFcns.Sfcn1.inputPortInfo[0]);

        /* port 0 */
        {
          real_T const **sfcnUPtrs = (real_T const **)
            &xpcosc_rtM->NonInlinedSFcns.Sfcn1.UPtrs0;
          sfcnUPtrs[0] = &xpcosc_B.RateTransition;
          ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]);
          _ssSetInputPortNumDimensions(rts, 0, 1);
          ssSetInputPortWidth(rts, 0, 1);
        }
      }

      /* path info */
      ssSetModelName(rts, "PCI-6713 DA");
      ssSetPath(rts, "xpcosc/PCI-6713 DA");
      ssSetRTModel(rts,xpcosc_rtM);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn1.params;
        ssSetSFcnParamsCount(rts, 6);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)xpcosc_P.PCI6713DA_P1_Size);
        ssSetSFcnParam(rts, 1, (mxArray*)xpcosc_P.PCI6713DA_P2_Size);
        ssSetSFcnParam(rts, 2, (mxArray*)xpcosc_P.PCI6713DA_P3_Size);
        ssSetSFcnParam(rts, 3, (mxArray*)xpcosc_P.PCI6713DA_P4_Size);
        ssSetSFcnParam(rts, 4, (mxArray*)xpcosc_P.PCI6713DA_P5_Size);
        ssSetSFcnParam(rts, 5, (mxArray*)xpcosc_P.PCI6713DA_P6_Size);
      }

      /* work vectors */
      ssSetRWork(rts, (real_T *) &xpcosc_DWork.PCI6713DA_RWORK);
      ssSetIWork(rts, (int_T *) &xpcosc_DWork.PCI6713DA_IWORK[0]);

      {
        struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn1.dWork;
        struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn1.dWorkAux;
        ssSetSFcnDWork(rts, dWorkRecord);
        ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
        _ssSetNumDWork(rts, 2);

        /* RWORK */
        ssSetDWorkWidth(rts, 0, 1);
        ssSetDWorkDataType(rts, 0,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 0, 0);
        ssSetDWork(rts, 0, &xpcosc_DWork.PCI6713DA_RWORK);

        /* IWORK */
        ssSetDWorkWidth(rts, 1, 2);
        ssSetDWorkDataType(rts, 1,SS_INTEGER);
        ssSetDWorkComplexSignal(rts, 1, 0);
        ssSetDWork(rts, 1, &xpcosc_DWork.PCI6713DA_IWORK[0]);
      }

      /* registration */
      danipci671x(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.001);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 1;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetInputPortConnected(rts, 0, 1);

      /* Update the BufferDstPort flags for each input port */
      ssSetInputPortBufferDstPort(rts, 0, -1);
    }
  }
}
Beispiel #3
0
/* Model initialize function */
void CelpSimulink_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((char_T *)CelpSimulink_M,0,
                sizeof(RT_MODEL_CelpSimulink));

  /* Initialize timing info */
  {
    int_T *mdlTsMap = CelpSimulink_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    CelpSimulink_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    CelpSimulink_M->Timing.sampleTimes =
      (&CelpSimulink_M->Timing.sampleTimesArray[0]);
    CelpSimulink_M->Timing.offsetTimes =
      (&CelpSimulink_M->Timing.offsetTimesArray[0]);

    /* task periods */
    CelpSimulink_M->Timing.sampleTimes[0] = (0.01);

    /* task offsets */
    CelpSimulink_M->Timing.offsetTimes[0] = (0.0);
  }

  rtmSetTPtr(CelpSimulink_M, &CelpSimulink_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = CelpSimulink_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    CelpSimulink_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(CelpSimulink_M, -1);
  CelpSimulink_M->Timing.stepSize0 = 0.01;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    CelpSimulink_M->rtwLogInfo = &rt_DataLoggingInfo;
    rtliSetLogXSignalInfo(CelpSimulink_M->rtwLogInfo, NULL);
    rtliSetLogXSignalPtrs(CelpSimulink_M->rtwLogInfo, NULL);
    rtliSetLogT(CelpSimulink_M->rtwLogInfo, "tout");
    rtliSetLogX(CelpSimulink_M->rtwLogInfo, "");
    rtliSetLogXFinal(CelpSimulink_M->rtwLogInfo, "");
    rtliSetSigLog(CelpSimulink_M->rtwLogInfo, "");
    rtliSetLogVarNameModifier(CelpSimulink_M->rtwLogInfo, "rt_");
    rtliSetLogFormat(CelpSimulink_M->rtwLogInfo, 0);
    rtliSetLogMaxRows(CelpSimulink_M->rtwLogInfo, 1000);
    rtliSetLogDecimation(CelpSimulink_M->rtwLogInfo, 1);
    rtliSetLogY(CelpSimulink_M->rtwLogInfo, "");
    rtliSetLogYSignalInfo(CelpSimulink_M->rtwLogInfo, NULL);
    rtliSetLogYSignalPtrs(CelpSimulink_M->rtwLogInfo, NULL);
  }

  CelpSimulink_M->solverInfoPtr = (&CelpSimulink_M->solverInfo);
  CelpSimulink_M->Timing.stepSize = (0.01);
  rtsiSetFixedStepSize(&CelpSimulink_M->solverInfo, 0.01);
  rtsiSetSolverMode(&CelpSimulink_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  CelpSimulink_M->ModelData.blockIO = ((void *) &CelpSimulink_B);
  (void) memset(((void *) &CelpSimulink_B),0,
                sizeof(BlockIO_CelpSimulink));

  {
    int_T i;
    void *pVoidBlockIORegion;
    pVoidBlockIORegion = (void *)(&CelpSimulink_B.FromWaveFile[0]);
    for (i = 0; i < 411; i++) {
      ((real32_T*)pVoidBlockIORegion)[i] = 0.0F;
    }
  }

  /* parameters */
  CelpSimulink_M->ModelData.defaultParam = ((real_T *) &CelpSimulink_P);

  /* states (dwork) */
  CelpSimulink_M->Work.dwork = ((void *) &CelpSimulink_DWork);
  (void) memset((char_T *) &CelpSimulink_DWork,0,
                sizeof(D_Work_CelpSimulink));
  CelpSimulink_DWork.Maximum1_Valdata = 0.0;

  {
    int_T i;
    real32_T *dwork_ptr = (real32_T *)
      &CelpSimulink_DWork.PreEmphasis_FILT_STATES[0];
    for (i = 0; i < 1122; i++) {
      dwork_ptr[i] = 0.0F;
    }
  }
}
/* Model initialize function */
void BP_MC1_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)BP_MC1_M,0,
                sizeof(RT_MODEL_BP_MC1));

  /* Initialize timing info */
  {
    int_T *mdlTsMap = BP_MC1_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    BP_MC1_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    BP_MC1_M->Timing.sampleTimes = (&BP_MC1_M->Timing.sampleTimesArray[0]);
    BP_MC1_M->Timing.offsetTimes = (&BP_MC1_M->Timing.offsetTimesArray[0]);

    /* task periods */
    BP_MC1_M->Timing.sampleTimes[0] = (0.05);

    /* task offsets */
    BP_MC1_M->Timing.offsetTimes[0] = (0.0);
  }

  rtmSetTPtr(BP_MC1_M, &BP_MC1_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = BP_MC1_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    BP_MC1_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(BP_MC1_M, -1);
  BP_MC1_M->Timing.stepSize0 = 0.05;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    BP_MC1_M->rtwLogInfo = &rt_DataLoggingInfo;
  }

  /* Setup for data logging */
  {
    rtliSetLogXSignalInfo(BP_MC1_M->rtwLogInfo, (NULL));
    rtliSetLogXSignalPtrs(BP_MC1_M->rtwLogInfo, (NULL));
    rtliSetLogT(BP_MC1_M->rtwLogInfo, "");
    rtliSetLogX(BP_MC1_M->rtwLogInfo, "");
    rtliSetLogXFinal(BP_MC1_M->rtwLogInfo, "");
    rtliSetSigLog(BP_MC1_M->rtwLogInfo, "");
    rtliSetLogVarNameModifier(BP_MC1_M->rtwLogInfo, "rt_");
    rtliSetLogFormat(BP_MC1_M->rtwLogInfo, 0);
    rtliSetLogMaxRows(BP_MC1_M->rtwLogInfo, 1000);
    rtliSetLogDecimation(BP_MC1_M->rtwLogInfo, 1);
    rtliSetLogY(BP_MC1_M->rtwLogInfo, "");
    rtliSetLogYSignalInfo(BP_MC1_M->rtwLogInfo, (NULL));
    rtliSetLogYSignalPtrs(BP_MC1_M->rtwLogInfo, (NULL));
  }

  BP_MC1_M->solverInfoPtr = (&BP_MC1_M->solverInfo);
  BP_MC1_M->Timing.stepSize = (0.05);
  rtsiSetFixedStepSize(&BP_MC1_M->solverInfo, 0.05);
  rtsiSetSolverMode(&BP_MC1_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  BP_MC1_M->ModelData.blockIO = ((void *) &BP_MC1_B);
  (void) memset(((void *) &BP_MC1_B),0,
                sizeof(BlockIO_BP_MC1));

  {
    BP_MC1_B.u1 = 0.0;
    BP_MC1_B.Sign = 0.0;
    BP_MC1_B.PortVPS_X = 0.0;
    BP_MC1_B.PortVPS_X_g = 0.0;
    BP_MC1_B.u1_p = 0.0;
    BP_MC1_B.PortVSP_Y = 0.0;
    BP_MC1_B.PortVSP_Y_i = 0.0;
    BP_MC1_B.u1_g = 0.0;
    BP_MC1_B.StarboardVSP_X = 0.0;
    BP_MC1_B.u1_pj = 0.0;
    BP_MC1_B.StarboardVSP_Y = 0.0;
    BP_MC1_B.Servo1 = 0.0;
    BP_MC1_B.Servo2 = 0.0;
    BP_MC1_B.Servo3 = 0.0;
    BP_MC1_B.Servo4 = 0.0;
    BP_MC1_B.VPS_Speed_Gain = 0.0;
    BP_MC1_B.Sum = 0.0;
    BP_MC1_B.BowThrusterdirection = 0.0;
    BP_MC1_B.BT_D_Gain1 = 0.0;
    BP_MC1_B.BT_D_Gain2 = 0.0;
    BP_MC1_B.Add = 0.0;
    BP_MC1_B.BT_L_Gain1 = 0.0;
    BP_MC1_B.BT_L_Gain2 = 0.0;
    BP_MC1_B.Sum1 = 0.0;
    BP_MC1_B.Sum2 = 0.0;
    BP_MC1_B.Switch = 0.0;
    BP_MC1_B.Switch2 = 0.0;
  }

  /* parameters */
  BP_MC1_M->ModelData.defaultParam = ((real_T *) &BP_MC1_P);

  /* states (dwork) */
  BP_MC1_M->Work.dwork = ((void *) &BP_MC1_DWork);
  (void) memset((void *)&BP_MC1_DWork, 0,
                sizeof(D_Work_BP_MC1));
}
Beispiel #5
0
/* Model initialize function */
void fi_mdl_radix2fft_withscaling_initialize(boolean_T firstTime)
{

  if (firstTime) {
    /* registration code */
    /* initialize real-time model */
    (void)memset((char_T *)fi_mdl_radix2fft_withscaling_M, 0,
     sizeof(rtModel_fi_mdl_radix2fft_withscaling));

    /* Initialize timing info */
    {
      int_T *mdlTsMap =
        fi_mdl_radix2fft_withscaling_M->Timing.sampleTimeTaskIDArray;
      mdlTsMap[0] = 0;
      fi_mdl_radix2fft_withscaling_M->Timing.sampleTimeTaskIDPtr =
        (&mdlTsMap[0]);
      fi_mdl_radix2fft_withscaling_M->Timing.sampleTimes =
        (&fi_mdl_radix2fft_withscaling_M->Timing.sampleTimesArray[0]);
      fi_mdl_radix2fft_withscaling_M->Timing.offsetTimes =
        (&fi_mdl_radix2fft_withscaling_M->Timing.offsetTimesArray[0]);
      /* task periods */
      fi_mdl_radix2fft_withscaling_M->Timing.sampleTimes[0] = (0.25);

      /* task offsets */
      fi_mdl_radix2fft_withscaling_M->Timing.offsetTimes[0] = (0.0);
    }

    rtmSetTPtr(fi_mdl_radix2fft_withscaling_M,
     &fi_mdl_radix2fft_withscaling_M->Timing.tArray[0]);

    {
      int_T *mdlSampleHits =
        fi_mdl_radix2fft_withscaling_M->Timing.sampleHitArray;
      mdlSampleHits[0] = 1;
      fi_mdl_radix2fft_withscaling_M->Timing.sampleHits = (&mdlSampleHits[0]);
    }

    rtmSetTFinal(fi_mdl_radix2fft_withscaling_M, 0.0);
    fi_mdl_radix2fft_withscaling_M->Timing.stepSize0 = 0.25;

    /* Setup for data logging */
    {
      static RTWLogInfo rt_DataLoggingInfo;

      fi_mdl_radix2fft_withscaling_M->rtwLogInfo = &rt_DataLoggingInfo;

      rtliSetLogFormat(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, 0);

      rtliSetLogMaxRows(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, 1000);

      rtliSetLogDecimation(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, 1);

      rtliSetLogVarNameModifier(fi_mdl_radix2fft_withscaling_M->rtwLogInfo,
       "rt_");

      rtliSetLogT(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, "tout");

      rtliSetLogX(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, "");

      rtliSetLogXFinal(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, "");

      rtliSetSigLog(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, "");

      rtliSetLogXSignalInfo(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, NULL);

      rtliSetLogXSignalPtrs(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, NULL);

      rtliSetLogY(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, "");

      rtliSetLogYSignalInfo(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, NULL);

      rtliSetLogYSignalPtrs(fi_mdl_radix2fft_withscaling_M->rtwLogInfo, NULL);
    }

    fi_mdl_radix2fft_withscaling_M->solverInfoPtr =
      (&fi_mdl_radix2fft_withscaling_M->solverInfo);
    fi_mdl_radix2fft_withscaling_M->Timing.stepSize = (0.25);
    rtsiSetFixedStepSize(&fi_mdl_radix2fft_withscaling_M->solverInfo, 0.25);
    rtsiSetSolverMode(&fi_mdl_radix2fft_withscaling_M->solverInfo,
     SOLVER_MODE_SINGLETASKING);

    /* parameters */
    fi_mdl_radix2fft_withscaling_M->ModelData.defaultParam = ((real_T *)
      &fi_mdl_radix2fft_withscaling_P);

    /* data type work */
    fi_mdl_radix2fft_withscaling_M->Work.dwork = ((void *)
      &fi_mdl_radix2fft_withscaling_DWork);
    (void)memset((char_T *) &fi_mdl_radix2fft_withscaling_DWork, 0,
     sizeof(D_Work_fi_mdl_radix2fft_withscaling));

    /* initialize non-finites */
    rt_InitInfAndNaN(sizeof(real_T));
  }
}
Beispiel #6
0
/* Registration function */
RT_MODEL_sfcndemo_sfunmem_T *sfcndemo_sfunmem(void)
{
  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)sfcndemo_sfunmem_M, 0,
                sizeof(RT_MODEL_sfcndemo_sfunmem_T));

  /* Initialize timing info */
  {
    int_T *mdlTsMap = sfcndemo_sfunmem_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    sfcndemo_sfunmem_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    sfcndemo_sfunmem_M->Timing.sampleTimes =
      (&sfcndemo_sfunmem_M->Timing.sampleTimesArray[0]);
    sfcndemo_sfunmem_M->Timing.offsetTimes =
      (&sfcndemo_sfunmem_M->Timing.offsetTimesArray[0]);

    /* task periods */
    sfcndemo_sfunmem_M->Timing.sampleTimes[0] = (0.01);

    /* task offsets */
    sfcndemo_sfunmem_M->Timing.offsetTimes[0] = (0.0);
  }

  rtmSetTPtr(sfcndemo_sfunmem_M, &sfcndemo_sfunmem_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = sfcndemo_sfunmem_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    sfcndemo_sfunmem_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(sfcndemo_sfunmem_M, 0.5);
  sfcndemo_sfunmem_M->Timing.stepSize0 = 0.01;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    sfcndemo_sfunmem_M->rtwLogInfo = &rt_DataLoggingInfo;
  }

  /* Setup for data logging */
  {
    rtliSetLogXSignalInfo(sfcndemo_sfunmem_M->rtwLogInfo, (NULL));
    rtliSetLogXSignalPtrs(sfcndemo_sfunmem_M->rtwLogInfo, (NULL));
    rtliSetLogT(sfcndemo_sfunmem_M->rtwLogInfo, "tout");
    rtliSetLogX(sfcndemo_sfunmem_M->rtwLogInfo, "");
    rtliSetLogXFinal(sfcndemo_sfunmem_M->rtwLogInfo, "");
    rtliSetSigLog(sfcndemo_sfunmem_M->rtwLogInfo, "");
    rtliSetLogVarNameModifier(sfcndemo_sfunmem_M->rtwLogInfo, "rt_");
    rtliSetLogFormat(sfcndemo_sfunmem_M->rtwLogInfo, 0);
    rtliSetLogMaxRows(sfcndemo_sfunmem_M->rtwLogInfo, 0);
    rtliSetLogDecimation(sfcndemo_sfunmem_M->rtwLogInfo, 1);

    /*
     * Set pointers to the data and signal info for each output
     */
    {
      static void * rt_LoggedOutputSignalPtrs[] = {
        &sfcndemo_sfunmem_Y.Out1,
        &sfcndemo_sfunmem_Y.Out2[0]
      };

      rtliSetLogYSignalPtrs(sfcndemo_sfunmem_M->rtwLogInfo, ((LogSignalPtrsType)
        rt_LoggedOutputSignalPtrs));
    }

    {
      static int_T rt_LoggedOutputWidths[] = {
        1,
        2
      };

      static int_T rt_LoggedOutputNumDimensions[] = {
        1,
        1
      };

      static int_T rt_LoggedOutputDimensions[] = {
        1,
        2
      };

      static boolean_T rt_LoggedOutputIsVarDims[] = {
        0,
        0
      };

      static void* rt_LoggedCurrentSignalDimensions[] = {
        (NULL),
        (NULL)
      };

      static int_T rt_LoggedCurrentSignalDimensionsSize[] = {
        4,
        4
      };

      static BuiltInDTypeId rt_LoggedOutputDataTypeIds[] = {
        SS_DOUBLE,
        SS_DOUBLE
      };

      static int_T rt_LoggedOutputComplexSignals[] = {
        0,
        0
      };

      static const char_T *rt_LoggedOutputLabels[] = {
        "",
        "" };

      static const char_T *rt_LoggedOutputBlockNames[] = {
        "sfcndemo_sfunmem/Out1",
        "sfcndemo_sfunmem/Out2" };

      static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = {
        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 },

        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 }
      };

      static RTWLogSignalInfo rt_LoggedOutputSignalInfo[] = {
        {
          2,
          rt_LoggedOutputWidths,
          rt_LoggedOutputNumDimensions,
          rt_LoggedOutputDimensions,
          rt_LoggedOutputIsVarDims,
          rt_LoggedCurrentSignalDimensions,
          rt_LoggedCurrentSignalDimensionsSize,
          rt_LoggedOutputDataTypeIds,
          rt_LoggedOutputComplexSignals,
          (NULL),

          { rt_LoggedOutputLabels },
          (NULL),
          (NULL),
          (NULL),

          { rt_LoggedOutputBlockNames },

          { (NULL) },
          (NULL),
          rt_RTWLogDataTypeConvert
        }
      };

      rtliSetLogYSignalInfo(sfcndemo_sfunmem_M->rtwLogInfo,
                            rt_LoggedOutputSignalInfo);

      /* set currSigDims field */
      rt_LoggedCurrentSignalDimensions[0] = &rt_LoggedOutputWidths[0];
      rt_LoggedCurrentSignalDimensions[1] = &rt_LoggedOutputWidths[1];
    }

    rtliSetLogY(sfcndemo_sfunmem_M->rtwLogInfo, "yout");
  }

  sfcndemo_sfunmem_M->solverInfoPtr = (&sfcndemo_sfunmem_M->solverInfo);
  sfcndemo_sfunmem_M->Timing.stepSize = (0.01);
  rtsiSetFixedStepSize(&sfcndemo_sfunmem_M->solverInfo, 0.01);
  rtsiSetSolverMode(&sfcndemo_sfunmem_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  sfcndemo_sfunmem_M->ModelData.blockIO = ((void *) &sfcndemo_sfunmem_B);

  {
    sfcndemo_sfunmem_B.DiscretePulseGenerator = 0.0;
    sfcndemo_sfunmem_B.Sum = 0.0;
  }

  /* parameters */
  sfcndemo_sfunmem_M->ModelData.defaultParam = ((real_T *)&sfcndemo_sfunmem_P);

  /* states (dwork) */
  sfcndemo_sfunmem_M->ModelData.dwork = ((void *) &sfcndemo_sfunmem_DW);
  (void) memset((void *)&sfcndemo_sfunmem_DW, 0,
                sizeof(DW_sfcndemo_sfunmem_T));
  sfcndemo_sfunmem_DW.SFunction1_RWORK.InputAtLastUpdate = 0.0;
  sfcndemo_sfunmem_DW.SFunction2_RWORK.InputAtLastUpdate[0] = 0.0;
  sfcndemo_sfunmem_DW.SFunction2_RWORK.InputAtLastUpdate[1] = 0.0;

  /* external outputs */
  sfcndemo_sfunmem_M->ModelData.outputs = (&sfcndemo_sfunmem_Y);
  sfcndemo_sfunmem_Y.Out1 = 0.0;
  sfcndemo_sfunmem_Y.Out2[0] = 0.0;
  sfcndemo_sfunmem_Y.Out2[1] = 0.0;

  /* Initialize Sizes */
  sfcndemo_sfunmem_M->Sizes.numContStates = (0);/* Number of continuous states */
  sfcndemo_sfunmem_M->Sizes.numY = (3);/* Number of model outputs */
  sfcndemo_sfunmem_M->Sizes.numU = (0);/* Number of model inputs */
  sfcndemo_sfunmem_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough */
  sfcndemo_sfunmem_M->Sizes.numSampTimes = (1);/* Number of sample times */
  sfcndemo_sfunmem_M->Sizes.numBlocks = (7);/* Number of blocks */
  sfcndemo_sfunmem_M->Sizes.numBlockIO = (4);/* Number of block outputs */
  sfcndemo_sfunmem_M->Sizes.numBlockPrms = (4);/* Sum of parameter "widths" */
  return sfcndemo_sfunmem_M;
}
/* Model initialize function */
void testSHM_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)testSHM_M,0,
                sizeof(RT_MODEL_testSHM));
  rtsiSetSolverName(&testSHM_M->solverInfo,"FixedStepDiscrete");
  testSHM_M->solverInfoPtr = (&testSHM_M->solverInfo);

  /* Initialize timing info */
  {
    int_T *mdlTsMap = testSHM_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    testSHM_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    testSHM_M->Timing.sampleTimes = (&testSHM_M->Timing.sampleTimesArray[0]);
    testSHM_M->Timing.offsetTimes = (&testSHM_M->Timing.offsetTimesArray[0]);

    /* task periods */
    testSHM_M->Timing.sampleTimes[0] = (0.001);

    /* task offsets */
    testSHM_M->Timing.offsetTimes[0] = (0.0);
  }

  rtmSetTPtr(testSHM_M, &testSHM_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = testSHM_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    testSHM_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(testSHM_M, 10.0);
  testSHM_M->Timing.stepSize0 = 0.001;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    testSHM_M->rtwLogInfo = &rt_DataLoggingInfo;
    rtliSetLogXSignalInfo(testSHM_M->rtwLogInfo, (NULL));
    rtliSetLogXSignalPtrs(testSHM_M->rtwLogInfo, (NULL));
    rtliSetLogT(testSHM_M->rtwLogInfo, "tout");
    rtliSetLogX(testSHM_M->rtwLogInfo, "");
    rtliSetLogXFinal(testSHM_M->rtwLogInfo, "");
    rtliSetSigLog(testSHM_M->rtwLogInfo, "");
    rtliSetLogVarNameModifier(testSHM_M->rtwLogInfo, "rt_");
    rtliSetLogFormat(testSHM_M->rtwLogInfo, 0);
    rtliSetLogMaxRows(testSHM_M->rtwLogInfo, 1000);
    rtliSetLogDecimation(testSHM_M->rtwLogInfo, 1);
    rtliSetLogY(testSHM_M->rtwLogInfo, "");
    rtliSetLogYSignalInfo(testSHM_M->rtwLogInfo, (NULL));
    rtliSetLogYSignalPtrs(testSHM_M->rtwLogInfo, (NULL));
  }

  testSHM_M->solverInfoPtr = (&testSHM_M->solverInfo);
  testSHM_M->Timing.stepSize = (0.001);
  rtsiSetFixedStepSize(&testSHM_M->solverInfo, 0.001);
  rtsiSetSolverMode(&testSHM_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  testSHM_M->ModelData.blockIO = ((void *) &testSHM_B);
  (void) memset(((void *) &testSHM_B),0,
                sizeof(BlockIO_testSHM));

  /* parameters */
  testSHM_M->ModelData.defaultParam = ((real_T *) &testSHM_P);

  /* states (dwork) */
  testSHM_M->Work.dwork = ((void *) &testSHM_DWork);
  (void) memset((void *)&testSHM_DWork, 0,
                sizeof(D_Work_testSHM));

  /* C API for Parameter Tuning and/or Signal Monitoring */
  {
    static ModelMappingInfo mapInfo;
    (void) memset((char_T *) &mapInfo,0,
                  sizeof(mapInfo));

    /* block signal monitoring map */
    mapInfo.Signals.blockIOSignals = &rtBIOSignals[0];
    mapInfo.Signals.numBlockIOSignals = 2;

    /* parameter tuning maps */
    mapInfo.Parameters.blockTuning = &rtBlockTuning[0];
    mapInfo.Parameters.variableTuning = &rtVariableTuning[0];
    mapInfo.Parameters.parametersMap = rtParametersMap;
    mapInfo.Parameters.dimensionsMap = rtDimensionsMap;
    mapInfo.Parameters.numBlockTuning = 4;
    mapInfo.Parameters.numVariableTuning = 0;
    testSHM_M->SpecialInfo.mappingInfo = (&mapInfo);
  }

  /* child S-Function registration */
  {
    RTWSfcnInfo *sfcnInfo = &testSHM_M->NonInlinedSFcns.sfcnInfo;
    testSHM_M->sfcnInfo = (sfcnInfo);
    rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(testSHM_M)));
    rtssSetNumRootSampTimesPtr(sfcnInfo, &testSHM_M->Sizes.numSampTimes);
    rtssSetTPtrPtr(sfcnInfo, &rtmGetTPtr(testSHM_M));
    rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(testSHM_M));
    rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(testSHM_M));
    rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(testSHM_M));
    rtssSetStepSizePtr(sfcnInfo, &testSHM_M->Timing.stepSize);
    rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(testSHM_M));
    rtssSetDerivCacheNeedsResetPtr(sfcnInfo,
      &testSHM_M->ModelData.derivCacheNeedsReset);
    rtssSetZCCacheNeedsResetPtr(sfcnInfo,
      &testSHM_M->ModelData.zCCacheNeedsReset);
    rtssSetBlkStateChangePtr(sfcnInfo, &testSHM_M->ModelData.blkStateChange);
    rtssSetSampleHitsPtr(sfcnInfo, &testSHM_M->Timing.sampleHits);
    rtssSetPerTaskSampleHitsPtr(sfcnInfo, &testSHM_M->Timing.perTaskSampleHits);
    rtssSetSimModePtr(sfcnInfo, &testSHM_M->simMode);
    rtssSetSolverInfoPtr(sfcnInfo, &testSHM_M->solverInfoPtr);
  }

  testSHM_M->Sizes.numSFcns = (2);

  /* register each child */
  {
    (void) memset((void *)&testSHM_M->NonInlinedSFcns.childSFunctions[0],0,
                  2*sizeof(SimStruct));
    testSHM_M->childSfunctions = (&testSHM_M->
      NonInlinedSFcns.childSFunctionPtrs[0]);
    testSHM_M->childSfunctions[0] = (&testSHM_M->
      NonInlinedSFcns.childSFunctions[0]);
    testSHM_M->childSfunctions[1] = (&testSHM_M->
      NonInlinedSFcns.childSFunctions[1]);

    /* Level2 S-Function Block: testSHM/<Root>/S-Function (sSHM) */
    {
      SimStruct *rts = testSHM_M->childSfunctions[0];

      /* timing info */
      time_T *sfcnPeriod = testSHM_M->NonInlinedSFcns.Sfcn0.sfcnPeriod;
      time_T *sfcnOffset = testSHM_M->NonInlinedSFcns.Sfcn0.sfcnOffset;
      int_T *sfcnTsMap = testSHM_M->NonInlinedSFcns.Sfcn0.sfcnTsMap;
      (void) memset((void*)sfcnPeriod,0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset,0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &testSHM_M->NonInlinedSFcns.blkInfo2[0]);
        ssSetRTWSfcnInfo(rts, testSHM_M->sfcnInfo);
      }

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &testSHM_M->NonInlinedSFcns.methods2[0]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &testSHM_M->NonInlinedSFcns.methods3[0]);
      }

      /* inputs */
      {
        _ssSetNumInputPorts(rts, 1);
        ssSetPortInfoForInputs(rts,
          &testSHM_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]);

        /* port 0 */
        {
          ssSetInputPortRequiredContiguous(rts, 0, 1);
          ssSetInputPortSignal(rts, 0, testSHM_B.TmpHiddenBufferAtSFunctionInpor);
          _ssSetInputPortNumDimensions(rts, 0, 1);
          ssSetInputPortWidth(rts, 0, 3);
        }
      }

      /* outputs */
      {
        ssSetPortInfoForOutputs(rts,
          &testSHM_M->NonInlinedSFcns.Sfcn0.outputPortInfo[0]);
        _ssSetNumOutputPorts(rts, 1);

        /* port 0 */
        {
          _ssSetOutputPortNumDimensions(rts, 0, 1);
          ssSetOutputPortWidth(rts, 0, 3);
          ssSetOutputPortSignal(rts, 0, ((real_T *) testSHM_B.SFunction));
        }
      }

      /* path info */
      ssSetModelName(rts, "S-Function");
      ssSetPath(rts, "testSHM/S-Function");
      ssSetRTModel(rts,testSHM_M);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* work vectors */
      {
        struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
          &testSHM_M->NonInlinedSFcns.Sfcn0.dWork;
        struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
          &testSHM_M->NonInlinedSFcns.Sfcn0.dWorkAux;
        ssSetSFcnDWork(rts, dWorkRecord);
        ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
        _ssSetNumDWork(rts, 2);

        /* DWORK1 */
        ssSetDWorkWidth(rts, 0, 1);
        ssSetDWorkDataType(rts, 0,SS_POINTER);
        ssSetDWorkComplexSignal(rts, 0, 0);
        ssSetDWork(rts, 0, &testSHM_DWork.SFunction_DWORK1);

        /* DWORK2 */
        ssSetDWorkWidth(rts, 1, 1);
        ssSetDWorkDataType(rts, 1,SS_POINTER);
        ssSetDWorkComplexSignal(rts, 1, 0);
        ssSetDWork(rts, 1, &testSHM_DWork.SFunction_DWORK2);
      }

      /* registration */
      sSHM(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.001);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 0;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetInputPortConnected(rts, 0, 1);
      _ssSetOutputPortConnected(rts, 0, 1);
      _ssSetOutputPortBeingMerged(rts, 0, 0);

      /* Update the BufferDstPort flags for each input port */
      ssSetInputPortBufferDstPort(rts, 0, -1);
    }

    /* Level2 S-Function Block: testSHM/<Root>/RTAI_SCOPE (sfun_rtai_scope) */
    {
      SimStruct *rts = testSHM_M->childSfunctions[1];

      /* timing info */
      time_T *sfcnPeriod = testSHM_M->NonInlinedSFcns.Sfcn1.sfcnPeriod;
      time_T *sfcnOffset = testSHM_M->NonInlinedSFcns.Sfcn1.sfcnOffset;
      int_T *sfcnTsMap = testSHM_M->NonInlinedSFcns.Sfcn1.sfcnTsMap;
      (void) memset((void*)sfcnPeriod,0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset,0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &testSHM_M->NonInlinedSFcns.blkInfo2[1]);
        ssSetRTWSfcnInfo(rts, testSHM_M->sfcnInfo);
      }

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &testSHM_M->NonInlinedSFcns.methods2[1]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &testSHM_M->NonInlinedSFcns.methods3[1]);
      }

      /* inputs */
      {
        _ssSetNumInputPorts(rts, 3);
        ssSetPortInfoForInputs(rts,
          &testSHM_M->NonInlinedSFcns.Sfcn1.inputPortInfo[0]);

        /* port 0 */
        {
          real_T const **sfcnUPtrs = (real_T const **)
            &testSHM_M->NonInlinedSFcns.Sfcn1.UPtrs0;
          sfcnUPtrs[0] = &testSHM_B.SFunction[0];
          ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]);
          _ssSetInputPortNumDimensions(rts, 0, 1);
          ssSetInputPortWidth(rts, 0, 1);
        }

        /* port 1 */
        {
          real_T const **sfcnUPtrs = (real_T const **)
            &testSHM_M->NonInlinedSFcns.Sfcn1.UPtrs1;
          sfcnUPtrs[0] = &testSHM_B.SFunction[1];
          ssSetInputPortSignalPtrs(rts, 1, (InputPtrsType)&sfcnUPtrs[0]);
          _ssSetInputPortNumDimensions(rts, 1, 1);
          ssSetInputPortWidth(rts, 1, 1);
        }

        /* port 2 */
        {
          real_T const **sfcnUPtrs = (real_T const **)
            &testSHM_M->NonInlinedSFcns.Sfcn1.UPtrs2;
          sfcnUPtrs[0] = &testSHM_B.SFunction[2];
          ssSetInputPortSignalPtrs(rts, 2, (InputPtrsType)&sfcnUPtrs[0]);
          _ssSetInputPortNumDimensions(rts, 2, 1);
          ssSetInputPortWidth(rts, 2, 1);
        }
      }

      /* path info */
      ssSetModelName(rts, "RTAI_SCOPE");
      ssSetPath(rts, "testSHM/RTAI_SCOPE");
      ssSetRTModel(rts,testSHM_M);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &testSHM_M->NonInlinedSFcns.Sfcn1.params;
        ssSetSFcnParamsCount(rts, 2);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)&testSHM_P.RTAI_SCOPE_P1_Size[0]);
        ssSetSFcnParam(rts, 1, (mxArray*)&testSHM_P.RTAI_SCOPE_P2_Size[0]);
      }

      /* work vectors */
      ssSetPWork(rts, (void **) &testSHM_DWork.RTAI_SCOPE_PWORK);

      {
        struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
          &testSHM_M->NonInlinedSFcns.Sfcn1.dWork;
        struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
          &testSHM_M->NonInlinedSFcns.Sfcn1.dWorkAux;
        ssSetSFcnDWork(rts, dWorkRecord);
        ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
        _ssSetNumDWork(rts, 1);

        /* PWORK */
        ssSetDWorkWidth(rts, 0, 1);
        ssSetDWorkDataType(rts, 0,SS_POINTER);
        ssSetDWorkComplexSignal(rts, 0, 0);
        ssSetDWork(rts, 0, &testSHM_DWork.RTAI_SCOPE_PWORK);
      }

      /* registration */
      sfun_rtai_scope(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.001);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 0;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetInputPortConnected(rts, 0, 1);
      _ssSetInputPortConnected(rts, 1, 1);
      _ssSetInputPortConnected(rts, 2, 1);

      /* Update the BufferDstPort flags for each input port */
      ssSetInputPortBufferDstPort(rts, 0, -1);
      ssSetInputPortBufferDstPort(rts, 1, -1);
      ssSetInputPortBufferDstPort(rts, 2, -1);
    }
  }
}
/* Model initialize function */
void Mechanics_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));    /* initialize real-time model */
  (void) memset((char_T *)Mechanics_M,0,
                sizeof(RT_MODEL_Mechanics));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&Mechanics_M->solverInfo,
                          &Mechanics_M->Timing.simTimeStep);
    rtsiSetTPtr(&Mechanics_M->solverInfo, &rtmGetTPtr(Mechanics_M));
    rtsiSetStepSizePtr(&Mechanics_M->solverInfo, &Mechanics_M->Timing.stepSize0);
    rtsiSetdXPtr(&Mechanics_M->solverInfo, &Mechanics_M->ModelData.derivs);
    rtsiSetContStatesPtr(&Mechanics_M->solverInfo,
                         &Mechanics_M->ModelData.contStates);
    rtsiSetNumContStatesPtr(&Mechanics_M->solverInfo,
      &Mechanics_M->Sizes.numContStates);
    rtsiSetErrorStatusPtr(&Mechanics_M->solverInfo, (&rtmGetErrorStatus
      (Mechanics_M)));
    rtsiSetRTModelPtr(&Mechanics_M->solverInfo, Mechanics_M);
  }

  rtsiSetSimTimeStep(&Mechanics_M->solverInfo, MAJOR_TIME_STEP);
  Mechanics_M->ModelData.intgData.y = Mechanics_M->ModelData.odeY;
  Mechanics_M->ModelData.intgData.f[0] = Mechanics_M->ModelData.odeF[0];
  Mechanics_M->ModelData.intgData.f[1] = Mechanics_M->ModelData.odeF[1];
  Mechanics_M->ModelData.intgData.f[2] = Mechanics_M->ModelData.odeF[2];
  Mechanics_M->ModelData.contStates = ((real_T *) &Mechanics_X);
  rtsiSetSolverData(&Mechanics_M->solverInfo, (void *)
                    &Mechanics_M->ModelData.intgData);
  rtsiSetSolverName(&Mechanics_M->solverInfo,"ode3");
  Mechanics_M->solverInfoPtr = (&Mechanics_M->solverInfo);

  /* Initialize timing info */
  {
    int_T *mdlTsMap = Mechanics_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    Mechanics_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    Mechanics_M->Timing.sampleTimes = (&Mechanics_M->Timing.sampleTimesArray[0]);
    Mechanics_M->Timing.offsetTimes = (&Mechanics_M->Timing.offsetTimesArray[0]);

    /* task periods */
    Mechanics_M->Timing.sampleTimes[0] = (0.0);
    Mechanics_M->Timing.sampleTimes[1] = (35.0);

    /* task offsets */
    Mechanics_M->Timing.offsetTimes[0] = (0.0);
    Mechanics_M->Timing.offsetTimes[1] = (0.0);
  }

  rtmSetTPtr(Mechanics_M, &Mechanics_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = Mechanics_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    Mechanics_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(Mechanics_M, -1);
  Mechanics_M->Timing.stepSize0 = 35.0;
  Mechanics_M->Timing.stepSize1 = 35.0;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    Mechanics_M->rtwLogInfo = &rt_DataLoggingInfo;
    rtliSetLogFormat(Mechanics_M->rtwLogInfo, 0);
    rtliSetLogMaxRows(Mechanics_M->rtwLogInfo, 1000);
    rtliSetLogDecimation(Mechanics_M->rtwLogInfo, 1);
    rtliSetLogVarNameModifier(Mechanics_M->rtwLogInfo, "rt_");
    rtliSetLogT(Mechanics_M->rtwLogInfo, "tout");
    rtliSetLogX(Mechanics_M->rtwLogInfo, "");
    rtliSetLogXFinal(Mechanics_M->rtwLogInfo, "");
    rtliSetSigLog(Mechanics_M->rtwLogInfo, "");
    rtliSetLogXSignalInfo(Mechanics_M->rtwLogInfo, NULL);
    rtliSetLogXSignalPtrs(Mechanics_M->rtwLogInfo, NULL);
    rtliSetLogY(Mechanics_M->rtwLogInfo, "");
    rtliSetLogYSignalInfo(Mechanics_M->rtwLogInfo, NULL);
    rtliSetLogYSignalPtrs(Mechanics_M->rtwLogInfo, NULL);
  }

  Mechanics_M->solverInfoPtr = (&Mechanics_M->solverInfo);
  Mechanics_M->Timing.stepSize = (35.0);
  rtsiSetFixedStepSize(&Mechanics_M->solverInfo, 35.0);
  rtsiSetSolverMode(&Mechanics_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  Mechanics_M->ModelData.blockIO = ((void *) &Mechanics_B);

  {
    int_T i;
    void *pVoidBlockIORegion;
    pVoidBlockIORegion = (void *)(&Mechanics_B.Arduino);
    for (i = 0; i < 18; i++) {
      ((real_T*)pVoidBlockIORegion)[i] = 0.0;
    }
  }

  /* parameters */
  Mechanics_M->ModelData.defaultParam = ((real_T *) &Mechanics_P);

  /* states (continuous) */
  {
    real_T *x = (real_T *) &Mechanics_X;
    Mechanics_M->ModelData.contStates = (x);
    (void) memset((char_T *)x,0,
                  sizeof(ContinuousStates_Mechanics));
  }

  /* states (dwork) */
  Mechanics_M->Work.dwork = ((void *) &Mechanics_DWork);
  (void) memset((char_T *) &Mechanics_DWork,0,
                sizeof(D_Work_Mechanics));

  /* child S-Function registration */
  {
    RTWSfcnInfo *sfcnInfo = &Mechanics_M->NonInlinedSFcns.sfcnInfo;
    Mechanics_M->sfcnInfo = (sfcnInfo);
    rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(Mechanics_M)));
    rtssSetNumRootSampTimesPtr(sfcnInfo, &Mechanics_M->Sizes.numSampTimes);
    rtssSetTPtrPtr(sfcnInfo, &rtmGetTPtr(Mechanics_M));
    rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(Mechanics_M));
    rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(Mechanics_M));
    rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(Mechanics_M));
    rtssSetStepSizePtr(sfcnInfo, &Mechanics_M->Timing.stepSize);
    rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(Mechanics_M));
    rtssSetDerivCacheNeedsResetPtr(sfcnInfo,
      &Mechanics_M->ModelData.derivCacheNeedsReset);
    rtssSetZCCacheNeedsResetPtr(sfcnInfo,
      &Mechanics_M->ModelData.zCCacheNeedsReset);
    rtssSetBlkStateChangePtr(sfcnInfo, &Mechanics_M->ModelData.blkStateChange);
    rtssSetSampleHitsPtr(sfcnInfo, &Mechanics_M->Timing.sampleHits);
    rtssSetPerTaskSampleHitsPtr(sfcnInfo, &Mechanics_M->Timing.perTaskSampleHits);
    rtssSetSimModePtr(sfcnInfo, &Mechanics_M->simMode);
    rtssSetSolverInfoPtr(sfcnInfo, &Mechanics_M->solverInfoPtr);
  }

  Mechanics_M->Sizes.numSFcns = (1);

  /* register each child */
  {
    (void) memset((void *)&Mechanics_M->NonInlinedSFcns.childSFunctions[0],0,
                  1*sizeof(SimStruct));
    Mechanics_M->childSfunctions =
      (&Mechanics_M->NonInlinedSFcns.childSFunctionPtrs[0]);
    Mechanics_M->childSfunctions[0] =
      (&Mechanics_M->NonInlinedSFcns.childSFunctions[0]);

    /* Level2 S-Function Block: Mechanics/<Root>/Arduino (QueryInstrument) */
    {
      SimStruct *rts = Mechanics_M->childSfunctions[0];

      /* timing info */
      time_T *sfcnPeriod = Mechanics_M->NonInlinedSFcns.Sfcn0.sfcnPeriod;
      time_T *sfcnOffset = Mechanics_M->NonInlinedSFcns.Sfcn0.sfcnOffset;
      int_T *sfcnTsMap = Mechanics_M->NonInlinedSFcns.Sfcn0.sfcnTsMap;
      (void) memset((void*)sfcnPeriod,0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset,0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &Mechanics_M->NonInlinedSFcns.blkInfo2[0]);
        ssSetRTWSfcnInfo(rts, Mechanics_M->sfcnInfo);
      }

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &Mechanics_M->NonInlinedSFcns.methods2[0]);
      }

      /* outputs */
      {
        ssSetPortInfoForOutputs(rts,
          &Mechanics_M->NonInlinedSFcns.Sfcn0.outputPortInfo[0]);
        _ssSetNumOutputPorts(rts, 1);

        /* port 0 */
        {
          _ssSetOutputPortNumDimensions(rts, 0, 1);
          ssSetOutputPortWidth(rts, 0, 1);
          ssSetOutputPortSignal(rts, 0, ((real_T *) &Mechanics_B.Arduino));
        }
      }

      /* path info */
      ssSetModelName(rts, "Arduino");
      ssSetPath(rts, "Mechanics/Arduino");
      ssSetRTModel(rts,Mechanics_M);
      ssSetParentSS(rts, NULL);
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &Mechanics_M->NonInlinedSFcns.Sfcn0.params;
        ssSetSFcnParamsCount(rts, 39);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)&Mechanics_P.Arduino_P1_Size[0]);
        ssSetSFcnParam(rts, 1, (mxArray*)&Mechanics_P.Arduino_P2_Size[0]);
        ssSetSFcnParam(rts, 2, (mxArray*)&Mechanics_P.Arduino_P3_Size[0]);
        ssSetSFcnParam(rts, 3, (mxArray*)&Mechanics_P.Arduino_P4_Size[0]);
        ssSetSFcnParam(rts, 4, (mxArray*)&Mechanics_P.Arduino_P5_Size[0]);
        ssSetSFcnParam(rts, 5, (mxArray*)&Mechanics_P.Arduino_P6_Size[0]);
        ssSetSFcnParam(rts, 6, (mxArray*)&Mechanics_P.Arduino_P7_Size[0]);
        ssSetSFcnParam(rts, 7, (mxArray*)&Mechanics_P.Arduino_P8_Size[0]);
        ssSetSFcnParam(rts, 8, (mxArray*)&Mechanics_P.Arduino_P9_Size[0]);
        ssSetSFcnParam(rts, 9, (mxArray*)&Mechanics_P.Arduino_P10_Size[0]);
        ssSetSFcnParam(rts, 10, (mxArray*)&Mechanics_P.Arduino_P11_Size[0]);
        ssSetSFcnParam(rts, 11, (mxArray*)&Mechanics_P.Arduino_P12_Size[0]);
        ssSetSFcnParam(rts, 12, (mxArray*)&Mechanics_P.Arduino_P13_Size[0]);
        ssSetSFcnParam(rts, 13, (mxArray*)&Mechanics_P.Arduino_P14_Size[0]);
        ssSetSFcnParam(rts, 14, (mxArray*)&Mechanics_P.Arduino_P15_Size[0]);
        ssSetSFcnParam(rts, 15, (mxArray*)&Mechanics_P.Arduino_P16_Size[0]);
        ssSetSFcnParam(rts, 16, (mxArray*)&Mechanics_P.Arduino_P17_Size[0]);
        ssSetSFcnParam(rts, 17, (mxArray*)&Mechanics_P.Arduino_P18_Size[0]);
        ssSetSFcnParam(rts, 18, (mxArray*)&Mechanics_P.Arduino_P19_Size[0]);
        ssSetSFcnParam(rts, 19, (mxArray*)&Mechanics_P.Arduino_P20_Size[0]);
        ssSetSFcnParam(rts, 20, (mxArray*)&Mechanics_P.Arduino_P21_Size[0]);
        ssSetSFcnParam(rts, 21, (mxArray*)&Mechanics_P.Arduino_P22_Size[0]);
        ssSetSFcnParam(rts, 22, (mxArray*)&Mechanics_P.Arduino_P23_Size[0]);
        ssSetSFcnParam(rts, 23, (mxArray*)&Mechanics_P.Arduino_P24_Size[0]);
        ssSetSFcnParam(rts, 24, (mxArray*)&Mechanics_P.Arduino_P25_Size[0]);
        ssSetSFcnParam(rts, 25, (mxArray*)&Mechanics_P.Arduino_P26_Size[0]);
        ssSetSFcnParam(rts, 26, (mxArray*)&Mechanics_P.Arduino_P27_Size[0]);
        ssSetSFcnParam(rts, 27, (mxArray*)&Mechanics_P.Arduino_P28_Size[0]);
        ssSetSFcnParam(rts, 28, (mxArray*)&Mechanics_P.Arduino_P29_Size[0]);
        ssSetSFcnParam(rts, 29, (mxArray*)&Mechanics_P.Arduino_P30_Size[0]);
        ssSetSFcnParam(rts, 30, (mxArray*)&Mechanics_P.Arduino_P31_Size[0]);
        ssSetSFcnParam(rts, 31, (mxArray*)&Mechanics_P.Arduino_P32_Size[0]);
        ssSetSFcnParam(rts, 32, (mxArray*)&Mechanics_P.Arduino_P33_Size[0]);
        ssSetSFcnParam(rts, 33, (mxArray*)&Mechanics_P.Arduino_P34_Size[0]);
        ssSetSFcnParam(rts, 34, (mxArray*)&Mechanics_P.Arduino_P35_Size[0]);
        ssSetSFcnParam(rts, 35, (mxArray*)&Mechanics_P.Arduino_P36_Size[0]);
        ssSetSFcnParam(rts, 36, (mxArray*)&Mechanics_P.Arduino_P37_Size[0]);
        ssSetSFcnParam(rts, 37, (mxArray*)&Mechanics_P.Arduino_P38_Size[0]);
        ssSetSFcnParam(rts, 38, (mxArray*)&Mechanics_P.Arduino_P39_Size[0]);
      }

      /* work vectors */
      ssSetPWork(rts, (void **) &Mechanics_DWork.Arduino_PWORK);

      {
        struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
          &Mechanics_M->NonInlinedSFcns.Sfcn0.dWork;
        ssSetSFcnDWork(rts, dWorkRecord);
        _ssSetNumDWork(rts, 1);

        /* PWORK */
        ssSetDWorkWidth(rts, 0, 1);
        ssSetDWorkDataType(rts, 0,SS_POINTER);
        ssSetDWorkComplexSignal(rts, 0, 0);
        ssSetDWork(rts, 0, &Mechanics_DWork.Arduino_PWORK);
      }

      /* registration */
      QueryInstrument(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 35.0);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 1;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetOutputPortConnected(rts, 0, 1);
      _ssSetOutputPortBeingMerged(rts, 0, 0);

      /* Update the BufferDstPort flags for each input port */
    }
  }
}
Beispiel #9
0
/* Model initialize function */
void m1006_initialize(boolean_T firstTime)
{

  if (firstTime) {
    /* registration code */
    /* initialize real-time model */
    (void)memset((char_T *)m1006_M, 0, sizeof(rtModel_m1006));

    {
      /* Setup solver object */

      rtsiSetSimTimeStepPtr(&m1006_M->solverInfo, &m1006_M->Timing.simTimeStep);
      rtsiSetTPtr(&m1006_M->solverInfo, &rtmGetTPtr(m1006_M));
      rtsiSetStepSizePtr(&m1006_M->solverInfo, &m1006_M->Timing.stepSize0);
      rtsiSetdXPtr(&m1006_M->solverInfo, &m1006_M->ModelData.derivs);
      rtsiSetContStatesPtr(&m1006_M->solverInfo, &m1006_M->ModelData.contStates);
      rtsiSetNumContStatesPtr(&m1006_M->solverInfo,
       &m1006_M->Sizes.numContStates);
      rtsiSetErrorStatusPtr(&m1006_M->solverInfo, &rtmGetErrorStatus(m1006_M));

      rtsiSetRTModelPtr(&m1006_M->solverInfo, m1006_M);
    }
    rtsiSetSimTimeStep(&m1006_M->solverInfo, MAJOR_TIME_STEP);
    m1006_M->ModelData.intgData.y = m1006_M->ModelData.odeY;
    m1006_M->ModelData.intgData.f[0] = m1006_M->ModelData.odeF[0];
    m1006_M->ModelData.intgData.f[1] = m1006_M->ModelData.odeF[1];
    m1006_M->ModelData.intgData.f[2] = m1006_M->ModelData.odeF[2];
    m1006_M->ModelData.intgData.f[3] = m1006_M->ModelData.odeF[3];
    m1006_M->ModelData.contStates = ((real_T *) &m1006_X);
    rtsiSetSolverData(&m1006_M->solverInfo, (void
      *)&m1006_M->ModelData.intgData);
    rtsiSetSolverName(&m1006_M->solverInfo,"ode4");

    /* Initialize timing info */
    {
      int_T *mdlTsMap = m1006_M->Timing.sampleTimeTaskIDArray;
      mdlTsMap[0] = 0;
      mdlTsMap[1] = 1;
      m1006_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
      m1006_M->Timing.sampleTimes = (&m1006_M->Timing.sampleTimesArray[0]);
      m1006_M->Timing.offsetTimes = (&m1006_M->Timing.offsetTimesArray[0]);
      /* task periods */
      m1006_M->Timing.sampleTimes[0] = (0.0);
      m1006_M->Timing.sampleTimes[1] = (0.1);

      /* task offsets */
      m1006_M->Timing.offsetTimes[0] = (0.0);
      m1006_M->Timing.offsetTimes[1] = (0.0);
    }

    rtmSetTPtr(m1006_M, &m1006_M->Timing.tArray[0]);

    {
      int_T *mdlSampleHits = m1006_M->Timing.sampleHitArray;
      mdlSampleHits[0] = 1;
      mdlSampleHits[1] = 1;
      m1006_M->Timing.sampleHits = (&mdlSampleHits[0]);
    }

    rtmSetTFinal(m1006_M, 10.0);
    m1006_M->Timing.stepSize0 = 0.1;
    m1006_M->Timing.stepSize1 = 0.1;

    /* Setup for data logging */
    {
      static RTWLogInfo rt_DataLoggingInfo;

      m1006_M->rtwLogInfo = &rt_DataLoggingInfo;

      rtliSetLogFormat(m1006_M->rtwLogInfo, 0);

      rtliSetLogMaxRows(m1006_M->rtwLogInfo, 1000);

      rtliSetLogDecimation(m1006_M->rtwLogInfo, 1);

      rtliSetLogVarNameModifier(m1006_M->rtwLogInfo, "rt_");

      rtliSetLogT(m1006_M->rtwLogInfo, "tout");

      rtliSetLogX(m1006_M->rtwLogInfo, "");

      rtliSetLogXFinal(m1006_M->rtwLogInfo, "");

      rtliSetSigLog(m1006_M->rtwLogInfo, "");

      rtliSetLogXSignalInfo(m1006_M->rtwLogInfo, NULL);

      rtliSetLogXSignalPtrs(m1006_M->rtwLogInfo, NULL);

      rtliSetLogY(m1006_M->rtwLogInfo, "yout");

      /*
       * Set pointers to the data and signal info for each output
       */
      {
        static void * rt_LoggedOutputSignalPtrs[] = {
          &m1006_Y.Out1
        };

        rtliSetLogYSignalPtrs(m1006_M->rtwLogInfo,
         ((LogSignalPtrsType)rt_LoggedOutputSignalPtrs));
      }
      {

        static int_T rt_LoggedOutputWidths[] = {
          1
        };

        static int_T rt_LoggedOutputNumDimensions[] = {
          1
        };

        static int_T rt_LoggedOutputDimensions[] = {
          1
        };

        static BuiltInDTypeId rt_LoggedOutputDataTypeIds[] = {
          SS_DOUBLE
        };

        static int_T rt_LoggedOutputComplexSignals[] = {
          0
        };

        static const char_T *rt_LoggedOutputLabels[] = {
          ""};

        static const char_T *rt_LoggedOutputBlockNames[] = {
          "m1006/Out1"};

        static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = {
          { 0, SS_DOUBLE, SS_DOUBLE, 1.0, 0, 0.0}
        };

        static RTWLogSignalInfo rt_LoggedOutputSignalInfo[] = {
          {
            1,
            rt_LoggedOutputWidths,
            rt_LoggedOutputNumDimensions,
            rt_LoggedOutputDimensions,
            rt_LoggedOutputDataTypeIds,
            rt_LoggedOutputComplexSignals,
            NULL,
            rt_LoggedOutputLabels,
            NULL,
            NULL,
            NULL,
            rt_LoggedOutputBlockNames,
            NULL,
            rt_RTWLogDataTypeConvert
          }
        };

        rtliSetLogYSignalInfo(m1006_M->rtwLogInfo, rt_LoggedOutputSignalInfo);
      }
    }

    m1006_M->solverInfoPtr = (&m1006_M->solverInfo);
    m1006_M->Timing.stepSize = (0.1);
    rtsiSetFixedStepSize(&m1006_M->solverInfo, 0.1);
    rtsiSetSolverMode(&m1006_M->solverInfo, SOLVER_MODE_SINGLETASKING);

    {
      /* block I/O */
      void *b = (void *) &m1006_B;
      m1006_M->ModelData.blockIO = (b);

      {

        int_T i;
        b =&m1006_B.SineWave;
        for (i = 0; i < 2; i++) {
          ((real_T*)b)[i] = 0.0;
        }
      }
    }
    /* parameters */
    m1006_M->ModelData.defaultParam = ((real_T *) &m1006_P);
    /* states */
    {
      real_T *x = (real_T *) &m1006_X;
      m1006_M->ModelData.contStates = (x);
      (void)memset((char_T *)x, 0, sizeof(ContinuousStates_m1006));
    }

    /* external outputs */
    m1006_M->ModelData.outputs = (&m1006_Y);
    m1006_Y.Out1 = 0.0;

    /* initialize non-finites */
    rt_InitInfAndNaN(sizeof(real_T));
  }
}
Beispiel #10
0
void trajectory_test_initialize(boolean_T firstTime)
{
    if (firstTime) {

        /* Registration code */
        /* initialize real-time model */
        (void) memset((char_T *)trajectory_test_M,0,
                      sizeof(RT_MODEL_trajectory_test));

        /* Initialize timing info */
        {
            int_T *mdlTsMap = trajectory_test_M->Timing.sampleTimeTaskIDArray;
            mdlTsMap[0] = 0;
            trajectory_test_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
            trajectory_test_M->Timing.sampleTimes =
                (&trajectory_test_M->Timing.sampleTimesArray[0]);
            trajectory_test_M->Timing.offsetTimes =
                (&trajectory_test_M->Timing.offsetTimesArray[0]);
            /* task periods */
            trajectory_test_M->Timing.sampleTimes[0] = (0.01);

            /* task offsets */
            trajectory_test_M->Timing.offsetTimes[0] = (0.0);
        }

        rtmSetTPtr(trajectory_test_M, &trajectory_test_M->Timing.tArray[0]);

        {
            int_T *mdlSampleHits = trajectory_test_M->Timing.sampleHitArray;
            mdlSampleHits[0] = 1;
            trajectory_test_M->Timing.sampleHits = (&mdlSampleHits[0]);
        }

        rtmSetTFinal(trajectory_test_M, 20.0);
        trajectory_test_M->Timing.stepSize0 = 0.01;

        /* Setup for data logging */
        {
            static RTWLogInfo rt_DataLoggingInfo;

            trajectory_test_M->rtwLogInfo = &rt_DataLoggingInfo;

            rtliSetLogFormat(trajectory_test_M->rtwLogInfo, 0);

            rtliSetLogMaxRows(trajectory_test_M->rtwLogInfo, 1000);

            rtliSetLogDecimation(trajectory_test_M->rtwLogInfo, 1);

            rtliSetLogVarNameModifier(trajectory_test_M->rtwLogInfo, "rt_");

            rtliSetLogT(trajectory_test_M->rtwLogInfo, "tout");

            rtliSetLogX(trajectory_test_M->rtwLogInfo, "");

            rtliSetLogXFinal(trajectory_test_M->rtwLogInfo, "");

            rtliSetSigLog(trajectory_test_M->rtwLogInfo, "");

            rtliSetLogXSignalInfo(trajectory_test_M->rtwLogInfo, NULL);

            rtliSetLogXSignalPtrs(trajectory_test_M->rtwLogInfo, NULL);

            rtliSetLogY(trajectory_test_M->rtwLogInfo, "");

            rtliSetLogYSignalInfo(trajectory_test_M->rtwLogInfo, NULL);

            rtliSetLogYSignalPtrs(trajectory_test_M->rtwLogInfo, NULL);
        }

        trajectory_test_M->solverInfoPtr = (&trajectory_test_M->solverInfo);
        trajectory_test_M->Timing.stepSize = (0.01);
        rtsiSetFixedStepSize(&trajectory_test_M->solverInfo, 0.01);
        rtsiSetSolverMode(&trajectory_test_M->solverInfo, SOLVER_MODE_SINGLETASKING);

        /* block I/O */
        trajectory_test_M->ModelData.blockIO = ((void *) &trajectory_test_B);

        {

            int_T i;
            void *pVoidBlockIORegion;

            pVoidBlockIORegion = (void *)(&trajectory_test_B.sf_Trajectorydesign2.a0);
            for (i = 0; i < 6; i++) {
                ((real_T*)pVoidBlockIORegion)[i] = 0.0;
            }

            pVoidBlockIORegion = (void *)(&trajectory_test_B.sf_Trajectorydesign1.a0);
            for (i = 0; i < 6; i++) {
                ((real_T*)pVoidBlockIORegion)[i] = 0.0;
            }

            ((real_T*)&trajectory_test_B.sf_Jointreferencesi_m.qa)[0] = 0.0;

            ((real_T*)&trajectory_test_B.sf_Jointreferencesing.qa)[0] = 0.0;
        }

        /* parameters */
        trajectory_test_M->ModelData.defaultParam = ((real_T *) &trajectory_test_P);

        /* states (dwork) */

        trajectory_test_M->Work.dwork = ((void *) &trajectory_test_DWork);

        (void) memset((char_T *) &trajectory_test_DWork,0,
                      sizeof(D_Work_trajectory_test));

        /* initialize non-finites */
        rt_InitInfAndNaN(sizeof(real_T));
    }
}
Beispiel #11
0
/* Model initialize function */
void Hammerstein_initialize(void)
{
  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)Hammerstein_M, 0,
                sizeof(RT_MODEL_Hammerstein));
  rtsiSetSolverName(&Hammerstein_M->solverInfo,"FixedStepDiscrete");
  Hammerstein_M->solverInfoPtr = (&Hammerstein_M->solverInfo);

  /* Initialize timing info */
  {
    int_T *mdlTsMap = Hammerstein_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    Hammerstein_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    Hammerstein_M->Timing.sampleTimes = (&Hammerstein_M->
      Timing.sampleTimesArray[0]);
    Hammerstein_M->Timing.offsetTimes = (&Hammerstein_M->
      Timing.offsetTimesArray[0]);

    /* task periods */
    Hammerstein_M->Timing.sampleTimes[0] = (0.06);

    /* task offsets */
    Hammerstein_M->Timing.offsetTimes[0] = (0.0);
  }

  rtmSetTPtr(Hammerstein_M, &Hammerstein_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = Hammerstein_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    Hammerstein_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(Hammerstein_M, 9.9599999999999991);
  Hammerstein_M->Timing.stepSize0 = 0.06;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    Hammerstein_M->rtwLogInfo = &rt_DataLoggingInfo;
  }

  /* Setup for data logging */
  {
    rtliSetLogXSignalInfo(Hammerstein_M->rtwLogInfo, (NULL));
    rtliSetLogXSignalPtrs(Hammerstein_M->rtwLogInfo, (NULL));
    rtliSetLogT(Hammerstein_M->rtwLogInfo, "tout");
    rtliSetLogX(Hammerstein_M->rtwLogInfo, "");
    rtliSetLogXFinal(Hammerstein_M->rtwLogInfo, "");
    rtliSetSigLog(Hammerstein_M->rtwLogInfo, "");
    rtliSetLogVarNameModifier(Hammerstein_M->rtwLogInfo, "rt_");
    rtliSetLogFormat(Hammerstein_M->rtwLogInfo, 0);
    rtliSetLogMaxRows(Hammerstein_M->rtwLogInfo, 1000);
    rtliSetLogDecimation(Hammerstein_M->rtwLogInfo, 1);

    /*
     * Set pointers to the data and signal info for each output
     */
    {
      static void * rt_LoggedOutputSignalPtrs[] = {
        &Hammerstein_Y.Out1
      };

      rtliSetLogYSignalPtrs(Hammerstein_M->rtwLogInfo, ((LogSignalPtrsType)
        rt_LoggedOutputSignalPtrs));
    }

    {
      static int_T rt_LoggedOutputWidths[] = {
        1
      };

      static int_T rt_LoggedOutputNumDimensions[] = {
        1
      };

      static int_T rt_LoggedOutputDimensions[] = {
        1
      };

      static boolean_T rt_LoggedOutputIsVarDims[] = {
        0
      };

      static void* rt_LoggedCurrentSignalDimensions[] = {
        (NULL)
      };

      static int_T rt_LoggedCurrentSignalDimensionsSize[] = {
        4
      };

      static BuiltInDTypeId rt_LoggedOutputDataTypeIds[] = {
        SS_DOUBLE
      };

      static int_T rt_LoggedOutputComplexSignals[] = {
        0
      };

      static const char_T *rt_LoggedOutputLabels[] = {
        "" };

      static const char_T *rt_LoggedOutputBlockNames[] = {
        "Hammerstein/Out1" };

      static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = {
        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 }
      };

      static RTWLogSignalInfo rt_LoggedOutputSignalInfo[] = {
        {
          1,
          rt_LoggedOutputWidths,
          rt_LoggedOutputNumDimensions,
          rt_LoggedOutputDimensions,
          rt_LoggedOutputIsVarDims,
          rt_LoggedCurrentSignalDimensions,
          rt_LoggedCurrentSignalDimensionsSize,
          rt_LoggedOutputDataTypeIds,
          rt_LoggedOutputComplexSignals,
          (NULL),

          { rt_LoggedOutputLabels },
          (NULL),
          (NULL),
          (NULL),

          { rt_LoggedOutputBlockNames },

          { (NULL) },
          (NULL),
          rt_RTWLogDataTypeConvert
        }
      };

      rtliSetLogYSignalInfo(Hammerstein_M->rtwLogInfo, rt_LoggedOutputSignalInfo);

      /* set currSigDims field */
      rt_LoggedCurrentSignalDimensions[0] = &rt_LoggedOutputWidths[0];
    }

    rtliSetLogY(Hammerstein_M->rtwLogInfo, "yout");
  }

  Hammerstein_M->solverInfoPtr = (&Hammerstein_M->solverInfo);
  Hammerstein_M->Timing.stepSize = (0.06);
  rtsiSetFixedStepSize(&Hammerstein_M->solverInfo, 0.06);
  rtsiSetSolverMode(&Hammerstein_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  (void) memset(((void *) &Hammerstein_B), 0,
                sizeof(BlockIO_Hammerstein));

  /* states (dwork) */
  (void) memset((void *)&Hammerstein_DWork, 0,
                sizeof(D_Work_Hammerstein));

  /* external inputs */
  Hammerstein_U.In1 = 0.0;

  /* external outputs */
  Hammerstein_Y.Out1 = 0.0;

  /* child S-Function registration */
  {
    RTWSfcnInfo *sfcnInfo = &Hammerstein_M->NonInlinedSFcns.sfcnInfo;
    Hammerstein_M->sfcnInfo = (sfcnInfo);
    rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(Hammerstein_M)));
    rtssSetNumRootSampTimesPtr(sfcnInfo, &Hammerstein_M->Sizes.numSampTimes);
    Hammerstein_M->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(Hammerstein_M)
      [0]);
    rtssSetTPtrPtr(sfcnInfo,Hammerstein_M->NonInlinedSFcns.taskTimePtrs);
    rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(Hammerstein_M));
    rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(Hammerstein_M));
    rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(Hammerstein_M));
    rtssSetStepSizePtr(sfcnInfo, &Hammerstein_M->Timing.stepSize);
    rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(Hammerstein_M));
    rtssSetDerivCacheNeedsResetPtr(sfcnInfo,
      &Hammerstein_M->ModelData.derivCacheNeedsReset);
    rtssSetZCCacheNeedsResetPtr(sfcnInfo,
      &Hammerstein_M->ModelData.zCCacheNeedsReset);
    rtssSetBlkStateChangePtr(sfcnInfo, &Hammerstein_M->ModelData.blkStateChange);
    rtssSetSampleHitsPtr(sfcnInfo, &Hammerstein_M->Timing.sampleHits);
    rtssSetPerTaskSampleHitsPtr(sfcnInfo,
      &Hammerstein_M->Timing.perTaskSampleHits);
    rtssSetSimModePtr(sfcnInfo, &Hammerstein_M->simMode);
    rtssSetSolverInfoPtr(sfcnInfo, &Hammerstein_M->solverInfoPtr);
  }

  Hammerstein_M->Sizes.numSFcns = (2);

  /* register each child */
  {
    (void) memset((void *)&Hammerstein_M->NonInlinedSFcns.childSFunctions[0], 0,
                  2*sizeof(SimStruct));
    Hammerstein_M->childSfunctions =
      (&Hammerstein_M->NonInlinedSFcns.childSFunctionPtrs[0]);
    Hammerstein_M->childSfunctions[0] =
      (&Hammerstein_M->NonInlinedSFcns.childSFunctions[0]);
    Hammerstein_M->childSfunctions[1] =
      (&Hammerstein_M->NonInlinedSFcns.childSFunctions[1]);

    /* Level2 S-Function Block: Hammerstein/<S1>/Pwlinear1 (sfunpwlinear) */
    {
      SimStruct *rts = Hammerstein_M->childSfunctions[0];

      /* timing info */
      time_T *sfcnPeriod = Hammerstein_M->NonInlinedSFcns.Sfcn0.sfcnPeriod;
      time_T *sfcnOffset = Hammerstein_M->NonInlinedSFcns.Sfcn0.sfcnOffset;
      int_T *sfcnTsMap = Hammerstein_M->NonInlinedSFcns.Sfcn0.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &Hammerstein_M->NonInlinedSFcns.blkInfo2[0]);
      }

      ssSetRTWSfcnInfo(rts, Hammerstein_M->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &Hammerstein_M->NonInlinedSFcns.methods2[0]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &Hammerstein_M->NonInlinedSFcns.methods3[0]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &Hammerstein_M->NonInlinedSFcns.statesInfo2[0]);
      }

      /* inputs */
      {
        _ssSetNumInputPorts(rts, 1);
        ssSetPortInfoForInputs(rts,
          &Hammerstein_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]);

        /* port 0 */
        {
          ssSetInputPortRequiredContiguous(rts, 0, 1);
          ssSetInputPortSignal(rts, 0, &Hammerstein_B.LinearModel);
          _ssSetInputPortNumDimensions(rts, 0, 1);
          ssSetInputPortWidth(rts, 0, 1);
        }
      }

      /* outputs */
      {
        ssSetPortInfoForOutputs(rts,
          &Hammerstein_M->NonInlinedSFcns.Sfcn0.outputPortInfo[0]);
        _ssSetNumOutputPorts(rts, 1);

        /* port 0 */
        {
          _ssSetOutputPortNumDimensions(rts, 0, 1);
          ssSetOutputPortWidth(rts, 0, 1);
          ssSetOutputPortSignal(rts, 0, ((real_T *) &Hammerstein_Y.Out1));
        }
      }

      /* path info */
      ssSetModelName(rts, "Pwlinear1");
      ssSetPath(rts, "Hammerstein/Hammerstein-Wiener Model1/Pwlinear1");
      ssSetRTModel(rts,Hammerstein_M);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &Hammerstein_M->NonInlinedSFcns.Sfcn0.params;
        ssSetSFcnParamsCount(rts, 7);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)Hammerstein_P.Pwlinear1_P1_Size);
        ssSetSFcnParam(rts, 1, (mxArray*)Hammerstein_P.Pwlinear1_P2_Size);
        ssSetSFcnParam(rts, 2, (mxArray*)Hammerstein_P.Pwlinear1_P3_Size);
        ssSetSFcnParam(rts, 3, (mxArray*)Hammerstein_P.Pwlinear1_P4_Size);
        ssSetSFcnParam(rts, 4, (mxArray*)Hammerstein_P.Pwlinear1_P5_Size);
        ssSetSFcnParam(rts, 5, (mxArray*)Hammerstein_P.Pwlinear1_P6_Size);
        ssSetSFcnParam(rts, 6, (mxArray*)Hammerstein_P.Pwlinear1_P7_Size);
      }

      /* registration */
      sfunpwlinear(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.06);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 0;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetInputPortConnected(rts, 0, 1);
      _ssSetOutputPortConnected(rts, 0, 1);
      _ssSetOutputPortBeingMerged(rts, 0, 0);

      /* Update the BufferDstPort flags for each input port */
      ssSetInputPortBufferDstPort(rts, 0, -1);
    }

    /* Level2 S-Function Block: Hammerstein/<S1>/Pwlinear (sfunpwlinear) */
    {
      SimStruct *rts = Hammerstein_M->childSfunctions[1];

      /* timing info */
      time_T *sfcnPeriod = Hammerstein_M->NonInlinedSFcns.Sfcn1.sfcnPeriod;
      time_T *sfcnOffset = Hammerstein_M->NonInlinedSFcns.Sfcn1.sfcnOffset;
      int_T *sfcnTsMap = Hammerstein_M->NonInlinedSFcns.Sfcn1.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &Hammerstein_M->NonInlinedSFcns.blkInfo2[1]);
      }

      ssSetRTWSfcnInfo(rts, Hammerstein_M->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &Hammerstein_M->NonInlinedSFcns.methods2[1]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &Hammerstein_M->NonInlinedSFcns.methods3[1]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &Hammerstein_M->NonInlinedSFcns.statesInfo2[1]);
      }

      /* inputs */
      {
        _ssSetNumInputPorts(rts, 1);
        ssSetPortInfoForInputs(rts,
          &Hammerstein_M->NonInlinedSFcns.Sfcn1.inputPortInfo[0]);

        /* port 0 */
        {
          ssSetInputPortRequiredContiguous(rts, 0, 1);
          ssSetInputPortSignal(rts, 0, &Hammerstein_U.In1);
          _ssSetInputPortNumDimensions(rts, 0, 1);
          ssSetInputPortWidth(rts, 0, 1);
        }
      }

      /* outputs */
      {
        ssSetPortInfoForOutputs(rts,
          &Hammerstein_M->NonInlinedSFcns.Sfcn1.outputPortInfo[0]);
        _ssSetNumOutputPorts(rts, 1);

        /* port 0 */
        {
          _ssSetOutputPortNumDimensions(rts, 0, 1);
          ssSetOutputPortWidth(rts, 0, 1);
          ssSetOutputPortSignal(rts, 0, ((real_T *) &Hammerstein_B.Pwlinear));
        }
      }

      /* path info */
      ssSetModelName(rts, "Pwlinear");
      ssSetPath(rts, "Hammerstein/Hammerstein-Wiener Model1/Pwlinear");
      ssSetRTModel(rts,Hammerstein_M);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &Hammerstein_M->NonInlinedSFcns.Sfcn1.params;
        ssSetSFcnParamsCount(rts, 7);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)Hammerstein_P.Pwlinear_P1_Size);
        ssSetSFcnParam(rts, 1, (mxArray*)Hammerstein_P.Pwlinear_P2_Size);
        ssSetSFcnParam(rts, 2, (mxArray*)Hammerstein_P.Pwlinear_P3_Size);
        ssSetSFcnParam(rts, 3, (mxArray*)Hammerstein_P.Pwlinear_P4_Size);
        ssSetSFcnParam(rts, 4, (mxArray*)Hammerstein_P.Pwlinear_P5_Size);
        ssSetSFcnParam(rts, 5, (mxArray*)Hammerstein_P.Pwlinear_P6_Size);
        ssSetSFcnParam(rts, 6, (mxArray*)Hammerstein_P.Pwlinear_P7_Size);
      }

      /* registration */
      sfunpwlinear(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.06);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 0;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetInputPortConnected(rts, 0, 1);
      _ssSetOutputPortConnected(rts, 0, 1);
      _ssSetOutputPortBeingMerged(rts, 0, 0);

      /* Update the BufferDstPort flags for each input port */
      ssSetInputPortBufferDstPort(rts, 0, -1);
    }
  }

  /* Matfile logging */
  rt_StartDataLoggingWithStartTime(Hammerstein_M->rtwLogInfo, 0.0, rtmGetTFinal
    (Hammerstein_M), Hammerstein_M->Timing.stepSize0, (&rtmGetErrorStatus
    (Hammerstein_M)));

  /* Level2 S-Function Block: '<S1>/Pwlinear1' (sfunpwlinear) */
  {
    SimStruct *rts = Hammerstein_M->childSfunctions[0];
    sfcnStart(rts);
    if (ssGetErrorStatus(rts) != (NULL))
      return;
  }

  /* Level2 S-Function Block: '<S1>/Pwlinear' (sfunpwlinear) */
  {
    SimStruct *rts = Hammerstein_M->childSfunctions[1];
    sfcnStart(rts);
    if (ssGetErrorStatus(rts) != (NULL))
      return;
  }

  /* InitializeConditions for DiscreteStateSpace: '<S1>/LinearModel' */
  Hammerstein_DWork.LinearModel_DSTATE = Hammerstein_P.LinearModel_X0;

  /* Level2 S-Function Block: '<S1>/Pwlinear1' (sfunpwlinear) */
  {
    SimStruct *rts = Hammerstein_M->childSfunctions[0];
    sfcnInitializeConditions(rts);
    if (ssGetErrorStatus(rts) != (NULL))
      return;
  }

  /* Level2 S-Function Block: '<S1>/Pwlinear' (sfunpwlinear) */
  {
    SimStruct *rts = Hammerstein_M->childSfunctions[1];
    sfcnInitializeConditions(rts);
    if (ssGetErrorStatus(rts) != (NULL))
      return;
  }
}