Beispiel #1
0
rollPitchStatus_e calculateRollPitchCenterStatus(void)
{
    if (((rcData[PITCH] < (rxConfig()->midrc + AIRMODE_DEADBAND)) && (rcData[PITCH] > (rxConfig()->midrc -AIRMODE_DEADBAND)))
            && ((rcData[ROLL] < (rxConfig()->midrc + AIRMODE_DEADBAND)) && (rcData[ROLL] > (rxConfig()->midrc -AIRMODE_DEADBAND))))
        return CENTERED;

    return NOT_CENTERED;
}
Beispiel #2
0
throttleStatus_e calculateThrottleStatus(void)
{
    const uint16_t deadband3d_throttle = rcControlsConfig()->deadband3d_throttle;
    if (feature(FEATURE_3D) && (rcData[THROTTLE] > (rxConfig()->midrc - deadband3d_throttle) && rcData[THROTTLE] < (rxConfig()->midrc + deadband3d_throttle)))
        return THROTTLE_LOW;
    else if (!feature(FEATURE_3D) && (rcData[THROTTLE] < rxConfig()->mincheck))
        return THROTTLE_LOW;

    return THROTTLE_HIGH;
}
Beispiel #3
0
throttleStatus_e calculateThrottleStatus(void)
{
    if (feature(FEATURE_3D) && !IS_RC_MODE_ACTIVE(BOX3DDISABLE)) {
        if ((rcData[THROTTLE] > (rxConfig()->midrc - flight3DConfig()->deadband3d_throttle) && rcData[THROTTLE] < (rxConfig()->midrc + flight3DConfig()->deadband3d_throttle)))
            return THROTTLE_LOW;
    } else {
        if (rcData[THROTTLE] < rxConfig()->mincheck)
            return THROTTLE_LOW;
    }

    return THROTTLE_HIGH;
}
Beispiel #4
0
throttleStatus_e calculateThrottleStatus(void)
{
    if (feature(FEATURE_3D)) {
        if (IS_RC_MODE_ACTIVE(BOX3DDISABLE) || isModeActivationConditionPresent(BOX3DONASWITCH)) {
            if (rcData[THROTTLE] < rxConfig()->mincheck) {
                return THROTTLE_LOW;
            }
        } else if ((rcData[THROTTLE] > (rxConfig()->midrc - flight3DConfig()->deadband3d_throttle) && rcData[THROTTLE] < (rxConfig()->midrc + flight3DConfig()->deadband3d_throttle))) {
            return THROTTLE_LOW;
        }
    } else if (rcData[THROTTLE] < rxConfig()->mincheck) {
        return THROTTLE_LOW;
    }

    return THROTTLE_HIGH;
}
Beispiel #5
0
static void applyMixToMotors(float motorMix[MAX_SUPPORTED_MOTORS])
{
    // Now add in the desired throttle, but keep in a range that doesn't clip adjusted
    // roll/pitch/yaw. This could move throttle down, but also up for those low throttle flips.
    for (int i = 0; i < motorCount; i++) {
        float motorOutput = motorOutputMin + (motorOutputRange * (motorOutputMixSign * motorMix[i] + throttle * currentMixer[i].throttle));
#ifdef USE_SERVOS
        if (mixerIsTricopter()) {
            motorOutput += mixerTricopterMotorCorrection(i);
        }
#endif
        if (failsafeIsActive()) {
            if (isMotorProtocolDshot()) {
                motorOutput = (motorOutput < motorRangeMin) ? disarmMotorOutput : motorOutput; // Prevent getting into special reserved range
            }
            motorOutput = constrain(motorOutput, disarmMotorOutput, motorRangeMax);
        } else {
            motorOutput = constrain(motorOutput, motorRangeMin, motorRangeMax);
        }
        // Motor stop handling
        if (feature(FEATURE_MOTOR_STOP) && ARMING_FLAG(ARMED) && !feature(FEATURE_3D) && !isAirmodeActive()) {
            if (((rcData[THROTTLE]) < rxConfig()->mincheck)) {
                motorOutput = disarmMotorOutput;
            }
        }
        motor[i] = motorOutput;
    }

    // Disarmed mode
    if (!ARMING_FLAG(ARMED)) {
        for (int i = 0; i < motorCount; i++) {
            motor[i] = motor_disarmed[i];
        }
    }
}
Beispiel #6
0
static void failsafeApplyControlInput(void)
{
    for (int i = 0; i < 3; i++) {
        rcData[i] = rxConfig()->midrc;
    }
    rcData[THROTTLE] = failsafeConfig()->failsafe_throttle;
}
Beispiel #7
0
void taskUpdateBattery(void)
{
    static uint32_t vbatLastServiced = 0;
    static uint32_t ibatLastServiced = 0;

    if (feature(FEATURE_VBAT)) {
        if (cmp32(currentTime, vbatLastServiced) >= VBATINTERVAL) {
            vbatLastServiced = currentTime;

            voltageMeterUpdate();
            batteryUpdate();
        }
    }

    if (feature(FEATURE_AMPERAGE_METER)) {
        int32_t ibatTimeSinceLastServiced = cmp32(currentTime, ibatLastServiced);

        if (ibatTimeSinceLastServiced >= IBATINTERVAL) {
            ibatLastServiced = currentTime;

            if (batteryConfig()->amperageMeterSource == AMPERAGE_METER_ADC) {
                amperageUpdateMeter(ibatTimeSinceLastServiced);
            } else {
                throttleStatus_e throttleStatus = calculateThrottleStatus(rxConfig(), rcControlsConfig()->deadband3d_throttle);
                bool throttleLowAndMotorStop = (throttleStatus == THROTTLE_LOW && feature(FEATURE_MOTOR_STOP));
                int32_t throttleOffset = (int32_t)rcCommand[THROTTLE] - 1000;

                amperageUpdateVirtualMeter(ibatTimeSinceLastServiced, ARMING_FLAG(ARMED), throttleLowAndMotorStop, throttleOffset);
            }
        }
    }
}
Beispiel #8
0
// All PWM motor scaling is done to standard PWM range of 1000-2000 for easier tick conversion with legacy code / configurator
// DSHOT scaling is done to the actual dshot range
void initEscEndpoints(void)
{
    // Can't use 'isMotorProtocolDshot()' here since motors haven't been initialised yet
    switch (motorConfig()->dev.motorPwmProtocol) {
#ifdef USE_DSHOT
    case PWM_TYPE_PROSHOT1000:
    case PWM_TYPE_DSHOT1200:
    case PWM_TYPE_DSHOT600:
    case PWM_TYPE_DSHOT300:
    case PWM_TYPE_DSHOT150:
        disarmMotorOutput = DSHOT_DISARM_COMMAND;
        if (feature(FEATURE_3D)) {
            motorOutputLow = DSHOT_MIN_THROTTLE + ((DSHOT_3D_DEADBAND_LOW - DSHOT_MIN_THROTTLE) / 100.0f) * CONVERT_PARAMETER_TO_PERCENT(motorConfig()->digitalIdleOffsetValue);
        } else {
            motorOutputLow = DSHOT_MIN_THROTTLE + ((DSHOT_MAX_THROTTLE - DSHOT_MIN_THROTTLE) / 100.0f) * CONVERT_PARAMETER_TO_PERCENT(motorConfig()->digitalIdleOffsetValue);
        }
        motorOutputHigh = DSHOT_MAX_THROTTLE;
        deadbandMotor3dHigh = DSHOT_3D_DEADBAND_HIGH + ((DSHOT_MAX_THROTTLE - DSHOT_3D_DEADBAND_HIGH) / 100.0f) * CONVERT_PARAMETER_TO_PERCENT(motorConfig()->digitalIdleOffsetValue);
        deadbandMotor3dLow = DSHOT_3D_DEADBAND_LOW;

        break;
#endif
    default:
        if (feature(FEATURE_3D)) {
            disarmMotorOutput = flight3DConfig()->neutral3d;
            motorOutputLow = flight3DConfig()->limit3d_low;
            motorOutputHigh = flight3DConfig()->limit3d_high;
            deadbandMotor3dHigh = flight3DConfig()->deadband3d_high;
            deadbandMotor3dLow = flight3DConfig()->deadband3d_low;
        } else {
            disarmMotorOutput = motorConfig()->mincommand;
            motorOutputLow = motorConfig()->minthrottle;
            motorOutputHigh = motorConfig()->maxthrottle;
        }
        break;
    }

    rcCommandThrottleRange = PWM_RANGE_MAX - rxConfig()->mincheck;

    rcCommand3dDeadBandLow = rxConfig()->midrc - flight3DConfig()->deadband3d_throttle;
    rcCommand3dDeadBandHigh = rxConfig()->midrc + flight3DConfig()->deadband3d_throttle;

    rcCommandThrottleRange3dLow = rcCommand3dDeadBandLow - PWM_RANGE_MIN;
    rcCommandThrottleRange3dHigh = PWM_RANGE_MAX - rcCommand3dDeadBandHigh;
}
Beispiel #9
0
// determine if the R/P/Y stick deflection exceeds the specified limit - integer math is good enough here.
bool areSticksActive(uint8_t stickPercentLimit)
{
    for (int axis = FD_ROLL; axis <= FD_YAW; axis ++) {
        const uint8_t deadband = axis == FD_YAW ? rcControlsConfig()->yaw_deadband : rcControlsConfig()->deadband;
        uint8_t stickPercent = 0;
        if ((rcData[axis] >= PWM_RANGE_MAX) || (rcData[axis] <= PWM_RANGE_MIN)) {
            stickPercent = 100;
        } else {
            if (rcData[axis] > (rxConfig()->midrc + deadband)) {
                stickPercent = ((rcData[axis] - rxConfig()->midrc - deadband) * 100) / (PWM_RANGE_MAX - rxConfig()->midrc - deadband);
            } else if (rcData[axis] < (rxConfig()->midrc - deadband)) {
                stickPercent = ((rxConfig()->midrc - deadband - rcData[axis]) * 100) / (rxConfig()->midrc - deadband - PWM_RANGE_MIN);
            }
        }
        if (stickPercent >= stickPercentLimit) {
            return true;
        }
    }
    return false;
}
Beispiel #10
0
// calculate the throttle stick percent - integer math is good enough here.
uint8_t calculateThrottlePercent(void)
{
    uint8_t ret = 0;
    if (feature(FEATURE_3D)
        && !IS_RC_MODE_ACTIVE(BOX3D)
        && !flight3DConfig()->switched_mode3d) {

        if ((rcData[THROTTLE] >= PWM_RANGE_MAX) || (rcData[THROTTLE] <= PWM_RANGE_MIN)) {
            ret = 100;
        } else {
            if (rcData[THROTTLE] > (rxConfig()->midrc + flight3DConfig()->deadband3d_throttle)) {
                ret = ((rcData[THROTTLE] - rxConfig()->midrc - flight3DConfig()->deadband3d_throttle) * 100) / (PWM_RANGE_MAX - rxConfig()->midrc - flight3DConfig()->deadband3d_throttle);
            } else if (rcData[THROTTLE] < (rxConfig()->midrc - flight3DConfig()->deadband3d_throttle)) {
                ret = ((rxConfig()->midrc - flight3DConfig()->deadband3d_throttle - rcData[THROTTLE]) * 100) / (rxConfig()->midrc - flight3DConfig()->deadband3d_throttle - PWM_RANGE_MIN);
            }
        }
    } else {
        ret = constrain(((rcData[THROTTLE] - rxConfig()->mincheck) * 100) / (PWM_RANGE_MAX - rxConfig()->mincheck), 0, 100);
    }
    return ret;
}
Beispiel #11
0
static void sendThrottleOrBatterySizeAsRpm(uint16_t deadband3d_throttle)
{
    uint16_t throttleForRPM = rcCommand[THROTTLE] / BLADE_NUMBER_DIVIDER;
    sendDataHead(ID_RPM);
    if (ARMING_FLAG(ARMED)) {
        throttleStatus_e throttleStatus = calculateThrottleStatus(rxConfig(), deadband3d_throttle);
        if (throttleStatus == THROTTLE_LOW && feature(FEATURE_MOTOR_STOP))
                    throttleForRPM = 0;
        serialize16(throttleForRPM);
    } else {
        serialize16((batteryConfig()->batteryCapacity / BLADE_NUMBER_DIVIDER));
    }

}
Beispiel #12
0
void annexCode(void)
{
    int32_t tmp, tmp2;
    tmp = constrain(rcData[THROTTLE], rxConfig()->mincheck, PWM_RANGE_MAX);
    tmp = (uint32_t)(tmp - rxConfig()->mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - rxConfig()->mincheck);       // [MINCHECK;2000] -> [0;1000]
    tmp2 = tmp / 100;
    rcCommand[THROTTLE] = lookupThrottleRC[tmp2] + (tmp - tmp2 * 100) * (lookupThrottleRC[tmp2 + 1] - lookupThrottleRC[tmp2]) / 100;    // [0;1000] -> expo -> [MINTHROTTLE;MAXTHROTTLE]
    
    if (ARMING_FLAG(ARMED)) {
        LED0_ON;
    } else {
        if (rcModeIsActive(BOXARM) == 0) {
            ENABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (!imuIsAircraftArmable(armingConfig()->max_arm_angle)) {
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (isCalibrating() || isSystemOverloaded()) {
            warningLedFlash();
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        } else {
            if (ARMING_FLAG(OK_TO_ARM)) {
                warningLedDisable();
            } else {
                warningLedFlash();
            }
        }

        warningLedUpdate();
    }

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature)
        gyro.temperature(&telemTemperature1);
}
Beispiel #13
0
void subTaskPidController(void)
{
    const uint32_t startTime = micros();

    // PID - note this is function pointer set by setPIDController()
    pidLuxFloat(
        pidProfile(),
        currentControlRateProfile,
        imuConfig()->max_angle_inclination,
        &accelerometerConfig()->accelerometerTrims,
        rxConfig()
    );

    if (debugMode == DEBUG_PIDLOOP) {debug[2] = micros() - startTime;}
}
Beispiel #14
0
static void updateInflightCalibrationState(void)
{
    if (AccInflightCalibrationArmed && ARMING_FLAG(ARMED) && rcData[THROTTLE] > rxConfig()->mincheck && !IS_RC_MODE_ACTIVE(BOXARM)) {   // Copter is airborne and you are turning it off via boxarm : start measurement
        InflightcalibratingA = 50;
        AccInflightCalibrationArmed = false;
    }
    if (IS_RC_MODE_ACTIVE(BOXCALIB)) {      // Use the Calib Option to activate : Calib = TRUE measurement started, Land and Calib = 0 measurement stored
        if (!AccInflightCalibrationActive && !AccInflightCalibrationMeasurementDone)
            InflightcalibratingA = 50;
        AccInflightCalibrationActive = true;
    } else if (AccInflightCalibrationMeasurementDone && !ARMING_FLAG(ARMED)) {
        AccInflightCalibrationMeasurementDone = false;
        AccInflightCalibrationSavetoEEProm = true;
    }
}
Beispiel #15
0
static void updateRcStickPositions(void)
{
    stickPositions_e tmp = 0;

    tmp |= ((rcData[ROLL] > rxConfig()->mincheck) ? 0x02 : 0x00) << (ROLL * 2);
    tmp |= ((rcData[ROLL] < rxConfig()->maxcheck) ? 0x01 : 0x00) << (ROLL * 2);

    tmp |= ((rcData[PITCH] > rxConfig()->mincheck) ? 0x02 : 0x00) << (PITCH * 2);
    tmp |= ((rcData[PITCH] < rxConfig()->maxcheck) ? 0x01 : 0x00) << (PITCH * 2);

    tmp |= ((rcData[YAW] > rxConfig()->mincheck) ? 0x02 : 0x00) << (YAW * 2);
    tmp |= ((rcData[YAW] < rxConfig()->maxcheck) ? 0x01 : 0x00) << (YAW * 2);

    tmp |= ((rcData[THROTTLE] > rxConfig()->mincheck) ? 0x02 : 0x00) << (THROTTLE * 2);
    tmp |= ((rcData[THROTTLE] < rxConfig()->maxcheck) ? 0x01 : 0x00) << (THROTTLE * 2);

    rcStickPositions = tmp;
}
Beispiel #16
0
void targetConfiguration(void)
{
    gyroConfigMutable()->looptime = 1000;

    rxConfigMutable()->rcmap[0] = 1;
    rxConfigMutable()->rcmap[1] = 2;
    rxConfigMutable()->rcmap[2] = 3;
    rxConfigMutable()->rcmap[3] = 0;

    featureSet(FEATURE_VBAT);
    featureSet(FEATURE_LED_STRIP);

    serialConfigMutable()->portConfigs[0].functionMask = FUNCTION_MSP;
    if (rxConfig()->receiverType == RX_TYPE_SERIAL) {
        serialConfigMutable()->portConfigs[2].functionMask = FUNCTION_RX_SERIAL;
    }
}
Beispiel #17
0
bool telemetryCheckRxPortShared(const serialPortConfig_t *portConfig)
{
    if (portConfig->functionMask & FUNCTION_RX_SERIAL && portConfig->functionMask & TELEMETRY_SHAREABLE_PORT_FUNCTIONS_MASK &&
        (rxConfig()->serialrx_provider == SERIALRX_SPEKTRUM1024 ||
        rxConfig()->serialrx_provider == SERIALRX_SPEKTRUM2048 ||
        rxConfig()->serialrx_provider == SERIALRX_SBUS ||
        rxConfig()->serialrx_provider == SERIALRX_SUMD ||
        rxConfig()->serialrx_provider == SERIALRX_SUMH ||
        rxConfig()->serialrx_provider == SERIALRX_XBUS_MODE_B ||
        rxConfig()->serialrx_provider == SERIALRX_XBUS_MODE_B_RJ01 ||
        rxConfig()->serialrx_provider == SERIALRX_IBUS)) {

        return true;
    }
#ifdef USE_TELEMETRY_IBUS
    if (   portConfig->functionMask & FUNCTION_TELEMETRY_IBUS
        && portConfig->functionMask & FUNCTION_RX_SERIAL
        && rxConfig()->serialrx_provider == SERIALRX_IBUS) {
        // IBUS serial RX & telemetry
        return true;
    }
#endif
    return false;
}
Beispiel #18
0
static FAST_CODE_NOINLINE void subTaskRcCommand(timeUs_t currentTimeUs)
{
    UNUSED(currentTimeUs);

    // If we're armed, at minimum throttle, and we do arming via the
    // sticks, do not process yaw input from the rx.  We do this so the
    // motors do not spin up while we are trying to arm or disarm.
    // Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
    if (isUsingSticksForArming() && rcData[THROTTLE] <= rxConfig()->mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
                && !((mixerConfig()->mixerMode == MIXER_TRI || mixerConfig()->mixerMode == MIXER_CUSTOM_TRI) && servoConfig()->tri_unarmed_servo)
#endif
                && mixerConfig()->mixerMode != MIXER_AIRPLANE
                && mixerConfig()->mixerMode != MIXER_FLYING_WING
#endif
    ) {
        resetYawAxis();
    }

    processRcCommand();

}
Beispiel #19
0
void taskUpdateBattery(void)
{
    static uint32_t vbatLastServiced = 0;
    static uint32_t ibatLastServiced = 0;

    if (feature(FEATURE_VBAT)) {
        if (cmp32(currentTime, vbatLastServiced) >= VBATINTERVAL) {
            vbatLastServiced = currentTime;
            updateBattery();
        }
    }

    if (feature(FEATURE_CURRENT_METER)) {
        int32_t ibatTimeSinceLastServiced = cmp32(currentTime, ibatLastServiced);

        if (ibatTimeSinceLastServiced >= IBATINTERVAL) {
            ibatLastServiced = currentTime;

            throttleStatus_e throttleStatus = calculateThrottleStatus(rxConfig(), rcControlsConfig()->deadband3d_throttle);

            updateCurrentMeter(ibatTimeSinceLastServiced, throttleStatus);
        }
    }
}
Beispiel #20
0
void mixTable(void)
{
    uint32_t i;

    bool isFailsafeActive = failsafeIsActive();

    if (motorCount >= 4 && mixerConfig()->yaw_jump_prevention_limit < YAW_JUMP_PREVENTION_LIMIT_HIGH) {
        // prevent "yaw jump" during yaw correction
        axisPID[FD_YAW] = constrain(axisPID[FD_YAW], -mixerConfig()->yaw_jump_prevention_limit - ABS(rcCommand[YAW]), mixerConfig()->yaw_jump_prevention_limit + ABS(rcCommand[YAW]));
    }

    if (rcModeIsActive(BOXAIRMODE)) {
        // Initial mixer concept by bdoiron74 reused and optimized for Air Mode
        int16_t rollPitchYawMix[MAX_SUPPORTED_MOTORS];
        int16_t rollPitchYawMixMax = 0; // assumption: symetrical about zero.
        int16_t rollPitchYawMixMin = 0;

        // Find roll/pitch/yaw desired output
        for (i = 0; i < motorCount; i++) {
            rollPitchYawMix[i] =
                axisPID[FD_PITCH] * currentMixer[i].pitch +
                axisPID[FD_ROLL] * currentMixer[i].roll +
                -mixerConfig()->yaw_motor_direction * axisPID[FD_YAW] * currentMixer[i].yaw;

            if (rollPitchYawMix[i] > rollPitchYawMixMax) rollPitchYawMixMax = rollPitchYawMix[i];
            if (rollPitchYawMix[i] < rollPitchYawMixMin) rollPitchYawMixMin = rollPitchYawMix[i];
        }

        // Scale roll/pitch/yaw uniformly to fit within throttle range
        int16_t rollPitchYawMixRange = rollPitchYawMixMax - rollPitchYawMixMin;
        int16_t throttleRange, throttle;
        int16_t throttleMin, throttleMax;
        static int16_t throttlePrevious = 0;   // Store the last throttle direction for deadband transitions in 3D.

        // Find min and max throttle based on condition. Use rcData for 3D to prevent loss of power due to min_check
        if (feature(FEATURE_3D)) {
            if (!ARMING_FLAG(ARMED)) throttlePrevious = rxConfig()->midrc; // When disarmed set to mid_rc. It always results in positive direction after arming.

            if ((rcData[THROTTLE] <= (rxConfig()->midrc - rcControlsConfig()->deadband3d_throttle))) { // Out of band handling
                throttleMax = motor3DConfig()->deadband3d_low;
                throttleMin = motorAndServoConfig()->minthrottle;
                throttlePrevious = throttle = rcData[THROTTLE];
            } else if (rcData[THROTTLE] >= (rxConfig()->midrc + rcControlsConfig()->deadband3d_throttle)) { // Positive handling
                throttleMax = motorAndServoConfig()->maxthrottle;
                throttleMin = motor3DConfig()->deadband3d_high;
                throttlePrevious = throttle = rcData[THROTTLE];
            } else if ((throttlePrevious <= (rxConfig()->midrc - rcControlsConfig()->deadband3d_throttle)))  { // Deadband handling from negative to positive
                throttle = throttleMax = motor3DConfig()->deadband3d_low;
                throttleMin = motorAndServoConfig()->minthrottle;
            } else {  // Deadband handling from positive to negative
                throttleMax = motorAndServoConfig()->maxthrottle;
                throttle = throttleMin = motor3DConfig()->deadband3d_high;
            }
        } else {
            throttle = rcCommand[THROTTLE];
            throttleMin = motorAndServoConfig()->minthrottle;
            throttleMax = motorAndServoConfig()->maxthrottle;
        }

        throttleRange = throttleMax - throttleMin;

        if (rollPitchYawMixRange > throttleRange) {
            motorLimitReached = true;
            float mixReduction = (float) throttleRange / rollPitchYawMixRange;
            for (i = 0; i < motorCount; i++) {
                rollPitchYawMix[i] =  lrintf((float) rollPitchYawMix[i] * mixReduction);
            }
            // Get the maximum correction by setting throttle offset to center.
            throttleMin = throttleMax = throttleMin + (throttleRange / 2);
        } else {
            motorLimitReached = false;
            throttleMin = throttleMin + (rollPitchYawMixRange / 2);
            throttleMax = throttleMax - (rollPitchYawMixRange / 2);
        }

        // Now add in the desired throttle, but keep in a range that doesn't clip adjusted
        // roll/pitch/yaw. This could move throttle down, but also up for those low throttle flips.
        for (i = 0; i < motorCount; i++) {
            motor[i] = rollPitchYawMix[i] + constrain(throttle * currentMixer[i].throttle, throttleMin, throttleMax);

            if (isFailsafeActive) {
                motor[i] = mixConstrainMotorForFailsafeCondition(i);
            } else if (feature(FEATURE_3D)) {
                if (throttlePrevious <= (rxConfig()->midrc - rcControlsConfig()->deadband3d_throttle)) {
                    motor[i] = constrain(motor[i], motorAndServoConfig()->minthrottle, motor3DConfig()->deadband3d_low);
                } else {
                    motor[i] = constrain(motor[i], motor3DConfig()->deadband3d_high, motorAndServoConfig()->maxthrottle);
                }
            } else {
                motor[i] = constrain(motor[i], motorAndServoConfig()->minthrottle, motorAndServoConfig()->maxthrottle);
            }
        }
    } else {
        // motors for non-servo mixes
        for (i = 0; i < motorCount; i++) {
            motor[i] =
                rcCommand[THROTTLE] * currentMixer[i].throttle +
                axisPID[FD_PITCH] * currentMixer[i].pitch +
                axisPID[FD_ROLL] * currentMixer[i].roll +
                -mixerConfig()->yaw_motor_direction * axisPID[FD_YAW] * currentMixer[i].yaw;
        }

        // Find the maximum motor output.
        int16_t maxMotor = motor[0];
        for (i = 1; i < motorCount; i++) {
            // If one motor is above the maxthrottle threshold, we reduce the value
            // of all motors by the amount of overshoot.  That way, only one motor
            // is at max and the relative power of each motor is preserved.
            if (motor[i] > maxMotor) {
                maxMotor = motor[i];
            }
        }

        int16_t maxThrottleDifference = 0;
        if (maxMotor > motorAndServoConfig()->maxthrottle) {
            maxThrottleDifference = maxMotor - motorAndServoConfig()->maxthrottle;
        }

        for (i = 0; i < motorCount; i++) {
            // this is a way to still have good gyro corrections if at least one motor reaches its max.
            motor[i] -= maxThrottleDifference;

            if (feature(FEATURE_3D)) {
                if (mixerConfig()->pid_at_min_throttle
                        || rcData[THROTTLE] <= rxConfig()->midrc - rcControlsConfig()->deadband3d_throttle
                        || rcData[THROTTLE] >= rxConfig()->midrc + rcControlsConfig()->deadband3d_throttle) {
                    if (rcData[THROTTLE] > rxConfig()->midrc) {
                        motor[i] = constrain(motor[i], motor3DConfig()->deadband3d_high, motorAndServoConfig()->maxthrottle);
                    } else {
                        motor[i] = constrain(motor[i], motorAndServoConfig()->mincommand, motor3DConfig()->deadband3d_low);
                    }
                } else {
                    if (rcData[THROTTLE] > rxConfig()->midrc) {
                        motor[i] = motor3DConfig()->deadband3d_high;
                    } else {
                        motor[i] = motor3DConfig()->deadband3d_low;
                    }
                }
            } else {
                if (isFailsafeActive) {
                    motor[i] = mixConstrainMotorForFailsafeCondition(i);
                } else {
                    // If we're at minimum throttle and FEATURE_MOTOR_STOP enabled,
                    // do not spin the motors.
                    motor[i] = constrain(motor[i], motorAndServoConfig()->minthrottle, motorAndServoConfig()->maxthrottle);
                    if ((rcData[THROTTLE]) < rxConfig()->mincheck) {
                        if (feature(FEATURE_MOTOR_STOP)) {
                            motor[i] = motorAndServoConfig()->mincommand;
                        } else if (mixerConfig()->pid_at_min_throttle == 0) {
                            motor[i] = motorAndServoConfig()->minthrottle;
                        }
                    }
                }
            }
        }
    }


    /* Disarmed for all mixers */
    if (!ARMING_FLAG(ARMED)) {
        for (i = 0; i < motorCount; i++) {
            motor[i] = motor_disarmed[i];
        }
    }

    // motor outputs are used as sources for servo mixing, so motors must be calculated before servos.

#if !defined(USE_QUAD_MIXER_ONLY) && defined(USE_SERVOS)
    servoMixTable();
#endif
}
Beispiel #21
0
static void subTaskMainSubprocesses(timeUs_t currentTimeUs)
{
    uint32_t startTime = 0;
    if (debugMode == DEBUG_PIDLOOP) {startTime = micros();}

    // Read out gyro temperature if used for telemmetry
    if (feature(FEATURE_TELEMETRY)) {
        gyroReadTemperature();
    }

#ifdef MAG
    if (sensors(SENSOR_MAG)) {
        updateMagHold();
    }
#endif

#if defined(BARO) || defined(SONAR)
    // updateRcCommands sets rcCommand, which is needed by updateAltHoldState and updateSonarAltHoldState
    updateRcCommands();
    if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
        if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
            applyAltHold();
        }
    }
#endif

    // If we're armed, at minimum throttle, and we do arming via the
    // sticks, do not process yaw input from the rx.  We do this so the
    // motors do not spin up while we are trying to arm or disarm.
    // Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
    if (isUsingSticksForArming() && rcData[THROTTLE] <= rxConfig()->mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
                && !((mixerConfig()->mixerMode == MIXER_TRI || mixerConfig()->mixerMode == MIXER_CUSTOM_TRI) && servoConfig()->tri_unarmed_servo)
#endif
                && mixerConfig()->mixerMode != MIXER_AIRPLANE
                && mixerConfig()->mixerMode != MIXER_FLYING_WING
#endif
    ) {
        resetYawAxis();
    }

    if (throttleCorrectionConfig()->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
        rcCommand[THROTTLE] += calculateThrottleAngleCorrection(throttleCorrectionConfig()->throttle_correction_value);
    }

    processRcCommand();

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) {
            updateGpsStateForHomeAndHoldMode();
        }
    }
#endif

#ifdef USE_SDCARD
    afatfs_poll();
#endif

#ifdef BLACKBOX
    if (!cliMode && blackboxConfig()->device) {
        handleBlackbox(currentTimeUs);
    }
#else
    UNUSED(currentTimeUs);
#endif

#ifdef TRANSPONDER
    transponderUpdate(currentTimeUs);
#endif
    DEBUG_SET(DEBUG_PIDLOOP, 2, micros() - startTime);
}
Beispiel #22
0
void processRx(timeUs_t currentTimeUs)
{
    static bool armedBeeperOn = false;
    static bool airmodeIsActivated;

    calculateRxChannelsAndUpdateFailsafe(currentTimeUs);

    // in 3D mode, we need to be able to disarm by switch at any time
    if (feature(FEATURE_3D)) {
        if (!IS_RC_MODE_ACTIVE(BOXARM))
            mwDisarm();
    }

    updateRSSI(currentTimeUs);

    if (feature(FEATURE_FAILSAFE)) {

        if (currentTimeUs > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) {
            failsafeStartMonitoring();
        }

        failsafeUpdateState();
    }

    const throttleStatus_e throttleStatus = calculateThrottleStatus();

    if (isAirmodeActive() && ARMING_FLAG(ARMED)) {
        if (rcCommand[THROTTLE] >= rxConfig()->airModeActivateThreshold) airmodeIsActivated = true; // Prevent Iterm from being reset
    } else {
        airmodeIsActivated = false;
    }

    /* In airmode Iterm should be prevented to grow when Low thottle and Roll + Pitch Centered.
     This is needed to prevent Iterm winding on the ground, but keep full stabilisation on 0 throttle while in air */
    if (throttleStatus == THROTTLE_LOW && !airmodeIsActivated) {
        pidResetErrorGyroState();
        if (currentPidProfile->pidAtMinThrottle)
            pidStabilisationState(PID_STABILISATION_ON);
        else
            pidStabilisationState(PID_STABILISATION_OFF);
    } else {
        pidStabilisationState(PID_STABILISATION_ON);
    }

    // When armed and motors aren't spinning, do beeps and then disarm
    // board after delay so users without buzzer won't lose fingers.
    // mixTable constrains motor commands, so checking  throttleStatus is enough
    if (ARMING_FLAG(ARMED)
        && feature(FEATURE_MOTOR_STOP)
        && !STATE(FIXED_WING)
        && !feature(FEATURE_3D)
        && !isAirmodeActive()
    ) {
        if (isUsingSticksForArming()) {
            if (throttleStatus == THROTTLE_LOW) {
                if (armingConfig()->auto_disarm_delay != 0
                    && (int32_t)(disarmAt - millis()) < 0
                ) {
                    // auto-disarm configured and delay is over
                    mwDisarm();
                    armedBeeperOn = false;
                } else {
                    // still armed; do warning beeps while armed
                    beeper(BEEPER_ARMED);
                    armedBeeperOn = true;
                }
            } else {
                // throttle is not low
                if (armingConfig()->auto_disarm_delay != 0) {
                    // extend disarm time
                    disarmAt = millis() + armingConfig()->auto_disarm_delay * 1000;
                }

                if (armedBeeperOn) {
                    beeperSilence();
                    armedBeeperOn = false;
                }
            }
        } else {
            // arming is via AUX switch; beep while throttle low
            if (throttleStatus == THROTTLE_LOW) {
                beeper(BEEPER_ARMED);
                armedBeeperOn = true;
            } else if (armedBeeperOn) {
                beeperSilence();
                armedBeeperOn = false;
            }
        }
    }

    processRcStickPositions(throttleStatus);

    if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
        updateInflightCalibrationState();
    }

    updateActivatedModes();

    if (!cliMode) {
        updateAdjustmentStates();
        processRcAdjustments(currentControlRateProfile);
    }

    bool canUseHorizonMode = true;

    if ((IS_RC_MODE_ACTIVE(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeIsActive())) && (sensors(SENSOR_ACC))) {
        // bumpless transfer to Level mode
        canUseHorizonMode = false;

        if (!FLIGHT_MODE(ANGLE_MODE)) {
            ENABLE_FLIGHT_MODE(ANGLE_MODE);
        }
    } else {
        DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support
    }

    if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode) {

        DISABLE_FLIGHT_MODE(ANGLE_MODE);

        if (!FLIGHT_MODE(HORIZON_MODE)) {
            ENABLE_FLIGHT_MODE(HORIZON_MODE);
        }
    } else {
        DISABLE_FLIGHT_MODE(HORIZON_MODE);
    }

    if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) {
        LED1_ON;
    } else {
        LED1_OFF;
    }

#if defined(ACC) || defined(MAG)
    if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) {
#if defined(GPS) || defined(MAG)
        if (IS_RC_MODE_ACTIVE(BOXMAG)) {
            if (!FLIGHT_MODE(MAG_MODE)) {
                ENABLE_FLIGHT_MODE(MAG_MODE);
                magHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw);
            }
        } else {
            DISABLE_FLIGHT_MODE(MAG_MODE);
        }
#endif
        if (IS_RC_MODE_ACTIVE(BOXHEADFREE)) {
            if (!FLIGHT_MODE(HEADFREE_MODE)) {
                ENABLE_FLIGHT_MODE(HEADFREE_MODE);
            }
        } else {
            DISABLE_FLIGHT_MODE(HEADFREE_MODE);
        }
        if (IS_RC_MODE_ACTIVE(BOXHEADADJ)) {
            headFreeModeHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); // acquire new heading
        }
    }
#endif

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        updateGpsWaypointsAndMode();
    }
#endif

    if (IS_RC_MODE_ACTIVE(BOXPASSTHRU)) {
        ENABLE_FLIGHT_MODE(PASSTHRU_MODE);
    } else {
        DISABLE_FLIGHT_MODE(PASSTHRU_MODE);
    }

    if (mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_AIRPLANE) {
        DISABLE_FLIGHT_MODE(HEADFREE_MODE);
    }

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        if ((!telemetryConfig()->telemetry_switch && ARMING_FLAG(ARMED)) ||
                (telemetryConfig()->telemetry_switch && IS_RC_MODE_ACTIVE(BOXTELEMETRY))) {

            releaseSharedTelemetryPorts();
        } else {
            // the telemetry state must be checked immediately so that shared serial ports are released.
            telemetryCheckState();
            mspSerialAllocatePorts();
        }
    }
#endif

#ifdef VTX
    vtxUpdateActivatedChannel();
#endif
}
Beispiel #23
0
void taskMainPidLoop(void)
{
    cycleTime = getTaskDeltaTime(TASK_SELF);
    dT = (float)cycleTime * 0.000001f;

    // Calculate average cycle time and average jitter
    filteredCycleTime = filterApplyPt1(cycleTime, &filteredCycleTimeState, 1, dT);
    
    debug[0] = cycleTime;
    debug[1] = cycleTime - filteredCycleTime;

    imuUpdateGyroAndAttitude();

    annexCode();

    if (rxConfig()->rcSmoothing) {
        filterRc();
    }

#if defined(BARO) || defined(SONAR)
    haveProcessedAnnexCodeOnce = true;
#endif

#ifdef MAG
        if (sensors(SENSOR_MAG)) {
            updateMagHold();
        }
#endif

#if defined(BARO) || defined(SONAR)
        if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
            if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
                applyAltHold();
            }
        }
#endif

    // If we're armed, at minimum throttle, and we do arming via the
    // sticks, do not process yaw input from the rx.  We do this so the
    // motors do not spin up while we are trying to arm or disarm.
    // Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
    if (isUsingSticksForArming() && rcData[THROTTLE] <= rxConfig()->mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
                && !((mixerConfig()->mixerMode == MIXER_TRI || mixerConfig()->mixerMode == MIXER_CUSTOM_TRI) && mixerConfig()->tri_unarmed_servo)
#endif
                && mixerConfig()->mixerMode != MIXER_AIRPLANE
                && mixerConfig()->mixerMode != MIXER_FLYING_WING
#endif
    ) {
        rcCommand[YAW] = 0;
    }

    if (throttleCorrectionConfig()->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
        rcCommand[THROTTLE] += calculateThrottleAngleCorrection(throttleCorrectionConfig()->throttle_correction_value);
    }

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) {
            updateGpsStateForHomeAndHoldMode();
        }
    }
#endif

    // PID - note this is function pointer set by setPIDController()
    pid_controller(
        pidProfile(),
        currentControlRateProfile,
        imuConfig()->max_angle_inclination,
        &accelerometerConfig()->accelerometerTrims,
        rxConfig()
    );

    mixTable();

#ifdef USE_SERVOS
    filterServos();
    writeServos();
#endif

    if (motorControlEnable) {
        writeMotors();
    }

#ifdef USE_SDCARD
        afatfs_poll();
#endif

#ifdef BLACKBOX
    if (!cliMode && feature(FEATURE_BLACKBOX)) {
        handleBlackbox();
    }
#endif
}
Beispiel #24
0
void annexCode(void)
{
    int32_t tmp, tmp2;
    int32_t axis, prop1 = 0, prop2;

    // PITCH & ROLL only dynamic PID adjustment,  depending on throttle value
    if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) {
        prop2 = 100;
    } else {
        if (rcData[THROTTLE] < 2000) {
            prop2 = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint);
        } else {
            prop2 = 100 - currentControlRateProfile->dynThrPID;
        }
    }

    for (axis = 0; axis < 3; axis++) {
        tmp = MIN(ABS(rcData[axis] - rxConfig()->midrc), 500);
        if (axis == ROLL || axis == PITCH) {
            if (rcControlsConfig()->deadband) {
                if (tmp > rcControlsConfig()->deadband) {
                    tmp -= rcControlsConfig()->deadband;
                } else {
                    tmp = 0;
                }
            }

            tmp2 = tmp / 100;
            rcCommand[axis] = lookupPitchRollRC[tmp2] + (tmp - tmp2 * 100) * (lookupPitchRollRC[tmp2 + 1] - lookupPitchRollRC[tmp2]) / 100;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * tmp / 500;
            prop1 = (uint16_t)prop1 * prop2 / 100;
        } else if (axis == YAW) {
            if (rcControlsConfig()->yaw_deadband) {
                if (tmp > rcControlsConfig()->yaw_deadband) {
                    tmp -= rcControlsConfig()->yaw_deadband;
                } else {
                    tmp = 0;
                }
            }
            tmp2 = tmp / 100;
            rcCommand[axis] = (lookupYawRC[tmp2] + (tmp - tmp2 * 100) * (lookupYawRC[tmp2 + 1] - lookupYawRC[tmp2]) / 100) * -rcControlsConfig()->yaw_control_direction;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * ABS(tmp) / 500;
        }
        // FIXME axis indexes into pids.  use something like lookupPidIndex(rc_alias_e alias) to reduce coupling.
        dynP8[axis] = (uint16_t)pidProfile()->P8[axis] * prop1 / 100;
        dynI8[axis] = (uint16_t)pidProfile()->I8[axis] * prop1 / 100;
        dynD8[axis] = (uint16_t)pidProfile()->D8[axis] * prop1 / 100;

        // non coupled PID reduction scaler used in PID controller 1 and PID controller 2. YAW TPA disabled. 100 means 100% of the pids
        if (axis == YAW) {
            PIDweight[axis] = 100;
        }
        else {
            PIDweight[axis] = prop2;
        }

        if (rcData[axis] < rxConfig()->midrc)
            rcCommand[axis] = -rcCommand[axis];
    }

    tmp = constrain(rcData[THROTTLE], rxConfig()->mincheck, PWM_RANGE_MAX);
    tmp = (uint32_t)(tmp - rxConfig()->mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - rxConfig()->mincheck);       // [MINCHECK;2000] -> [0;1000]
    tmp2 = tmp / 100;
    rcCommand[THROTTLE] = lookupThrottleRC[tmp2] + (tmp - tmp2 * 100) * (lookupThrottleRC[tmp2 + 1] - lookupThrottleRC[tmp2]) / 100;    // [0;1000] -> expo -> [MINTHROTTLE;MAXTHROTTLE]

    if (FLIGHT_MODE(HEADFREE_MODE)) {
        float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        float cosDiff = cos_approx(radDiff);
        float sinDiff = sin_approx(radDiff);
        int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }

    if (ARMING_FLAG(ARMED)) {
        LED0_ON;
    } else {
        if (IS_RC_MODE_ACTIVE(BOXARM) == 0) {
            ENABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (!imuIsAircraftArmable(armingConfig()->max_arm_angle)) {
            DISABLE_ARMING_FLAG(OK_TO_ARM);
            debug[3] = ARMING_FLAG(OK_TO_ARM);
        }

        if (isCalibrating() || isSystemOverloaded()) {
            warningLedFlash();
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        } else {
            if (ARMING_FLAG(OK_TO_ARM)) {
                warningLedDisable();
            } else {
                warningLedFlash();
            }
        }

        debug[3] = ARMING_FLAG(OK_TO_ARM);

        warningLedUpdate();
    }

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature)
        gyro.temperature(&telemTemperature1);
}
Beispiel #25
0
void init(void)
{
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(systemConfig()->emf_avoidance);
#endif
    i2cSetOverclock(systemConfig()->i2c_highspeed);

    systemInit();

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

    // initialize IO (needed for all IO operations)
    IOInitGlobal();

    debugMode = debugConfig()->debug_mode;

#ifdef USE_EXTI
    EXTIInit();
#endif

#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_1) {
        ledInit(false);
    } else {
        ledInit(true);
    }
#else
    ledInit(false);
#endif

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioPeripheral = BEEP_PERIPHERAL,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
#ifdef BEEPER_INVERTED
        .gpioMode = Mode_Out_PP,
        .isInverted = true
#else
        .gpioMode = Mode_Out_OD,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef BUTTONS
    buttonsInit();

    if (!isMPUSoftReset()) {
        buttonsHandleColdBootButtonPresses();
    }
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (rxConfig()->serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(rxConfig());
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    dmaInit();


    serialInit(feature(FEATURE_SOFTSERIAL));

    mixerInit(customMotorMixer(0));
#ifdef USE_SERVOS
    mixerInitServos(customServoMixer(0));
#endif

    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    const sonarHardware_t *sonarHardware = NULL;
    sonarGPIOConfig_t sonarGPIOConfig;
    if (feature(FEATURE_SONAR)) {
        bool usingCurrentMeterIOPins = (feature(FEATURE_AMPERAGE_METER) && batteryConfig()->amperageMeterSource == AMPERAGE_METER_ADC);
        sonarHardware = sonarGetHardwareConfiguration(usingCurrentMeterIOPins);
        sonarGPIOConfig.triggerGPIO = sonarHardware->trigger_gpio;
        sonarGPIOConfig.triggerPin = sonarHardware->trigger_pin;
        sonarGPIOConfig.echoGPIO = sonarHardware->echo_gpio;
        sonarGPIOConfig.echoPin = sonarHardware->echo_pin;
        pwm_params.sonarGPIOConfig = &sonarGPIOConfig;
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (mixerConfig()->mixerMode == MIXER_AIRPLANE || mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_UART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_UART2);
#endif
#if defined(USE_UART3)
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_UART3);
#endif
#if defined(USE_UART4)
    pwm_params.useUART4 = doesConfigurationUsePort(SERIAL_PORT_UART4);
#endif
#if defined(USE_UART5)
    pwm_params.useUART5 = doesConfigurationUsePort(SERIAL_PORT_UART5);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = (
        feature(FEATURE_AMPERAGE_METER)
        && batteryConfig()->amperageMeterSource == AMPERAGE_METER_ADC
    );
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
    pwm_params.useSonar = feature(FEATURE_SONAR);
#endif

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = servoConfig()->servoCenterPulse;
    pwm_params.servoPwmRate = servoConfig()->servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = motorConfig()->motor_pwm_rate;
    pwm_params.idlePulse = calculateMotorOff();
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit();

    // pwmInit() needs to be called as soon as possible for ESC compatibility reasons
    pwmIOConfiguration_t *pwmIOConfiguration = pwmInit(&pwm_params);

    mixerUsePWMIOConfiguration(pwmIOConfiguration);

#ifdef DEBUG_PWM_CONFIGURATION
    debug[2] = pwmIOConfiguration->pwmInputCount;
    debug[3] = pwmIOConfiguration->ppmInputCount;
#endif

    if (!feature(FEATURE_ONESHOT125))
        motorControlEnable = true;

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
#ifdef STM32F303xC
#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_2) {
        spiInit(SPI3);
    }
#else
    spiInit(SPI3);
#endif
#endif
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_UART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(SPRACINGF3MINI) && defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif


#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.channelMask = 0;

#ifdef ADC_BATTERY
    adc_params.channelMask = (feature(FEATURE_VBAT) ? ADC_CHANNEL_MASK(ADC_BATTERY) : 0);
#endif
#ifdef ADC_RSSI
    adc_params.channelMask |= (feature(FEATURE_RSSI_ADC) ? ADC_CHANNEL_MASK(ADC_RSSI) : 0);
#endif
#ifdef ADC_AMPERAGE
    adc_params.channelMask |=  (feature(FEATURE_AMPERAGE_METER) ? ADC_CHANNEL_MASK(ADC_AMPERAGE) : 0);
#endif

#ifdef ADC_POWER_12V
    adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_12V);
#endif
#ifdef ADC_POWER_5V
    adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_5V);
#endif
#ifdef ADC_POWER_3V
    adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_3V);
#endif

#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.channelMask |= (hardwareRevision >= NAZE32_REV5) ? ADC_CHANNEL_MASK(ADC_EXTERNAL) : 0;
#endif

    adcInit(&adc_params);
#endif

    initBoardAlignment();

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit();
    }
#endif

#ifdef NAZE
    if (hardwareRevision < NAZE32_REV5) {
        gyroConfig()->gyro_sync = 0;
    }
#endif

    if (!sensorsAutodetect()) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    flashLedsAndBeep();

    mspInit();
    mspSerialInit();

    const uint16_t pidPeriodUs = US_FROM_HZ(gyro.sampleFrequencyHz);
    pidSetTargetLooptime(pidPeriodUs * gyroConfig()->pid_process_denom);
    pidInitFilters(pidProfile());

#ifdef USE_SERVOS
    mixerInitialiseServoFiltering(targetPidLooptime);
#endif

    imuInit();


#ifdef USE_CLI
    cliInit();
#endif

    failsafeInit();

    rxInit(modeActivationProfile()->modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit();
        navigationInit(pidProfile());
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(sonarHardware);
    }
#endif

#ifdef LED_STRIP
    ledStripInit();

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USB_CABLE_DETECTION
    usbCableDetectInit();
#endif

#ifdef TRANSPONDER
    if (feature(FEATURE_TRANSPONDER)) {
        transponderInit(transponderConfig()->data);
        transponderEnable();
        transponderStartRepeating();
        systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init();
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

#ifdef BLACKBOX
    initBlackbox();
#endif

    if (mixerConfig()->mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif


    if (feature(FEATURE_VBAT)) {
        // Now that everything has powered up the voltage and cell count be determined.

        voltageMeterInit();
        batteryInit();
    }

    if (feature(FEATURE_AMPERAGE_METER)) {
        amperageMeterInit();
    }

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

void configureScheduler(void)
{
    schedulerInit();
    setTaskEnabled(TASK_SYSTEM, true);

    uint16_t gyroPeriodUs = US_FROM_HZ(gyro.sampleFrequencyHz);
    rescheduleTask(TASK_GYRO, gyroPeriodUs);
    setTaskEnabled(TASK_GYRO, true);

    rescheduleTask(TASK_PID, gyroPeriodUs);
    setTaskEnabled(TASK_PID, true);

    if (sensors(SENSOR_ACC)) {
        setTaskEnabled(TASK_ACCEL, true);
    }

    setTaskEnabled(TASK_ATTITUDE, sensors(SENSOR_ACC));
    setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
    setTaskEnabled(TASK_BEEPER, true);
#endif
    setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_AMPERAGE_METER));
    setTaskEnabled(TASK_RX, true);
#ifdef GPS
    setTaskEnabled(TASK_GPS, feature(FEATURE_GPS));
#endif
#ifdef MAG
    setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#if defined(MPU6500_SPI_INSTANCE) && defined(USE_MAG_AK8963)
    // fixme temporary solution for AK6983 via slave I2C on MPU9250
    rescheduleTask(TASK_COMPASS, 1000000 / 40);
#endif
#endif
#ifdef BARO
    setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#ifdef SONAR
    setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR));
#endif
#if defined(BARO) || defined(SONAR)
    setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR));
#endif
#ifdef DISPLAY
    setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY));
#endif
#ifdef TELEMETRY
    setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY));
#endif
#ifdef LED_STRIP
    setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP));
#endif
#ifdef TRANSPONDER
    setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER));
#endif
}
Beispiel #26
0
/*
This function processes RX dependent coefficients when new RX commands are available
Those are: TPA, throttle expo
*/
static void updateRcCommands(void)
{
    int32_t prop2;

    // PITCH & ROLL only dynamic PID adjustment,  depending on throttle value
    if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) {
        prop2 = 100;
    } else {
        if (rcData[THROTTLE] < 2000) {
            prop2 = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint);
        } else {
            prop2 = 100 - currentControlRateProfile->dynThrPID;
        }
    }

    for (int axis = 0; axis < 3; axis++) {
        int32_t prop1;
        int32_t tmp = MIN(ABS(rcData[axis] - rxConfig()->midrc), 500);
        if (axis == ROLL || axis == PITCH) {
            if (rcControlsConfig()->deadband) {
                if (tmp > rcControlsConfig()->deadband) {
                    tmp -= rcControlsConfig()->deadband;
                } else {
                    tmp = 0;
                }
            }

            rcCommand[axis] = rcLookupPitchRoll(tmp);
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * tmp / 500;
            prop1 = (uint16_t)prop1 * prop2 / 100;
            // non coupled PID reduction scaler used in PID controller 1 and PID controller 2. 100 means 100% of the pids
            PIDweight[axis] = prop2;
        } else {
            if (rcControlsConfig()->yaw_deadband) {
                if (tmp > rcControlsConfig()->yaw_deadband) {
                    tmp -= rcControlsConfig()->yaw_deadband;
                } else {
                    tmp = 0;
                }
            }
            rcCommand[axis] = rcLookupYaw(tmp) * -rcControlsConfig()->yaw_control_direction;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * ABS(tmp) / 500;
            // YAW TPA disabled.
            PIDweight[axis] = 100;
        }
#ifdef USE_PID_MW23
        // FIXME axis indexes into pids.  use something like lookupPidIndex(rc_alias_e alias) to reduce coupling.
        dynP8[axis] = (uint16_t)pidProfile()->P8[axis] * prop1 / 100;
        dynI8[axis] = (uint16_t)pidProfile()->I8[axis] * prop1 / 100;
        dynD8[axis] = (uint16_t)pidProfile()->D8[axis] * prop1 / 100;
#endif

        if (rcData[axis] < rxConfig()->midrc) {
            rcCommand[axis] = -rcCommand[axis];
        }
    }

    int32_t tmp = constrain(rcData[THROTTLE], rxConfig()->mincheck, PWM_RANGE_MAX);
    tmp = (uint32_t)(tmp - rxConfig()->mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - rxConfig()->mincheck);       // [MINCHECK;2000] -> [0;1000]
    rcCommand[THROTTLE] = rcLookupThrottle(tmp);

    if (FLIGHT_MODE(HEADFREE_MODE)) {
        float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        float cosDiff = cos_approx(radDiff);
        float sinDiff = sin_approx(radDiff);
        int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }
}
Beispiel #27
0
void processRx(void)
{
    static bool armedBeeperOn = false;

    calculateRxChannelsAndUpdateFailsafe(currentTime);

    // in 3D mode, we need to be able to disarm by switch at any time
    if (feature(FEATURE_3D)) {
        if (!rcModeIsActive(BOXARM))
            mwDisarm();
    }

    updateRSSI(currentTime);

    if (feature(FEATURE_FAILSAFE)) {

        if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) {
            failsafeStartMonitoring();
        }

        failsafeUpdateState();
    }

    throttleStatus_e throttleStatus = calculateThrottleStatus(rxConfig(), rcControlsConfig()->deadband3d_throttle);
    rollPitchStatus_e rollPitchStatus =  calculateRollPitchCenterStatus(rxConfig());

    /* In airmode Iterm should be prevented to grow when Low thottle and Roll + Pitch Centered.
     This is needed to prevent Iterm winding on the ground, but keep full stabilisation on 0 throttle while in air
     Low Throttle + roll and Pitch centered is assuming the copter is on the ground. Done to prevent complex air/ground detections */
    if (throttleStatus == THROTTLE_LOW) {
        if (rcModeIsActive(BOXAIRMODE) && !failsafeIsActive() && ARMING_FLAG(ARMED)) {
            if (rollPitchStatus == CENTERED) {
                ENABLE_STATE(ANTI_WINDUP);
            } else {
                DISABLE_STATE(ANTI_WINDUP);
            }
        } else {
            pidResetITerm();
        }
    } else {
        DISABLE_STATE(ANTI_WINDUP);
    }

    // When armed and motors aren't spinning, do beeps and then disarm
    // board after delay so users without buzzer won't lose fingers.
    // mixTable constrains motor commands, so checking  throttleStatus is enough
    if (ARMING_FLAG(ARMED)
        && feature(FEATURE_MOTOR_STOP)
        && !STATE(FIXED_WING)
    ) {
        if (isUsingSticksForArming()) {
            if (throttleStatus == THROTTLE_LOW) {
                if (armingConfig()->auto_disarm_delay != 0
                    && (int32_t)(disarmAt - millis()) < 0
                ) {
                    // auto-disarm configured and delay is over
                    mwDisarm();
                    armedBeeperOn = false;
                } else {
                    // still armed; do warning beeps while armed
                    beeper(BEEPER_ARMED);
                    armedBeeperOn = true;
                }
            } else {
                // throttle is not low
                if (armingConfig()->auto_disarm_delay != 0) {
                    // extend disarm time
                    disarmAt = millis() + armingConfig()->auto_disarm_delay * 1000;
                }

                if (armedBeeperOn) {
                    beeperSilence();
                    armedBeeperOn = false;
                }
            }
        } else {
            // arming is via AUX switch; beep while throttle low
            if (throttleStatus == THROTTLE_LOW) {
                beeper(BEEPER_ARMED);
                armedBeeperOn = true;
            } else if (armedBeeperOn) {
                beeperSilence();
                armedBeeperOn = false;
            }
        }
    }

    processRcStickPositions(rxConfig(), throttleStatus, armingConfig()->retarded_arm, armingConfig()->disarm_kill_switch);

    if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
        updateInflightCalibrationState();
    }

    rcModeUpdateActivated(modeActivationProfile()->modeActivationConditions);

    if (!cliMode) {
        updateAdjustmentStates(adjustmentProfile()->adjustmentRanges);
        processRcAdjustments(currentControlRateProfile, rxConfig());
    }

    bool canUseHorizonMode = true;

    if ((rcModeIsActive(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeIsActive())) && (sensors(SENSOR_ACC))) {
        // bumpless transfer to Level mode
        canUseHorizonMode = false;

        if (!FLIGHT_MODE(ANGLE_MODE)) {
            ENABLE_FLIGHT_MODE(ANGLE_MODE);
        }
    } else {
        DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support
    }

    if (rcModeIsActive(BOXHORIZON) && canUseHorizonMode) {

        DISABLE_FLIGHT_MODE(ANGLE_MODE);

        if (!FLIGHT_MODE(HORIZON_MODE)) {
            ENABLE_FLIGHT_MODE(HORIZON_MODE);
        }
    } else {
        DISABLE_FLIGHT_MODE(HORIZON_MODE);
    }

    if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) {
        LED1_ON;
    } else {
        LED1_OFF;
    }

#ifdef  MAG
    if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) {
        if (rcModeIsActive(BOXMAG)) {
            if (!FLIGHT_MODE(MAG_MODE)) {
                ENABLE_FLIGHT_MODE(MAG_MODE);
                magHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw);
            }
        } else {
            DISABLE_FLIGHT_MODE(MAG_MODE);
        }
        if (rcModeIsActive(BOXHEADFREE)) {
            if (!FLIGHT_MODE(HEADFREE_MODE)) {
                ENABLE_FLIGHT_MODE(HEADFREE_MODE);
            }
        } else {
            DISABLE_FLIGHT_MODE(HEADFREE_MODE);
        }
        if (rcModeIsActive(BOXHEADADJ)) {
            headFreeModeHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); // acquire new heading
        }
    }
#endif

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        updateGpsWaypointsAndMode();
    }
#endif

    if (rcModeIsActive(BOXPASSTHRU)) {
        ENABLE_FLIGHT_MODE(PASSTHRU_MODE);
    } else {
        DISABLE_FLIGHT_MODE(PASSTHRU_MODE);
    }

    if (mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_AIRPLANE) {
        DISABLE_FLIGHT_MODE(HEADFREE_MODE);
    }

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        if ((!telemetryConfig()->telemetry_switch && ARMING_FLAG(ARMED))
            || (telemetryConfig()->telemetry_switch && rcModeIsActive(BOXTELEMETRY))) {
            releaseSharedTelemetryPorts();
        } else {
            // the telemetry state must be checked immediately so that shared serial ports are released.
            bool telemetryStateChanged = telemetryCheckState();

            if (telemetryStateChanged) {
                mspSerialAllocatePorts();
            }
        }
    }
#endif

#ifdef VTX
    if (canUpdateVTX()) {
        updateVTXState();
    }
#endif
}
Beispiel #28
0
void processRcCommand(void)
{
    if (rxConfig()->rcSmoothing) {
        filterRc();
    }
}
Beispiel #29
0
void processRcStickPositions(throttleStatus_e throttleStatus)
{
    static uint8_t rcDelayCommand;      // this indicates the number of time (multiple of RC measurement at 50Hz) the sticks must be maintained to run or switch off motors
    static uint8_t rcSticks;            // this hold sticks position for command combos
    static uint8_t rcDisarmTicks;       // this is an extra guard for disarming through switch to prevent that one frame can disarm it
    uint8_t stTmp = 0;
    int i;

    // ------------------ STICKS COMMAND HANDLER --------------------
    // checking sticks positions
    for (i = 0; i < 4; i++) {
        stTmp >>= 2;
        if (rcData[i] > rxConfig()->mincheck)
            stTmp |= 0x80;  // check for MIN
        if (rcData[i] < rxConfig()->maxcheck)
            stTmp |= 0x40;  // check for MAX
    }
    if (stTmp == rcSticks) {
        if (rcDelayCommand < 250)
            rcDelayCommand++;
    } else
        rcDelayCommand = 0;
    rcSticks = stTmp;

    // perform actions
    if (!isUsingSticksToArm) {

        if (IS_RC_MODE_ACTIVE(BOXARM)) {
            rcDisarmTicks = 0;
            // Arming via ARM BOX
            tryArm();
        } else {
            // Disarming via ARM BOX
            resetArmingDisabled();

            if (ARMING_FLAG(ARMED) && rxIsReceivingSignal() && !failsafeIsActive()  ) {
                rcDisarmTicks++;
                if (rcDisarmTicks > 3) {
                    if (armingConfig()->disarm_kill_switch) {
                        disarm();
                    } else if (throttleStatus == THROTTLE_LOW) {
                        disarm();
                    }
                }
            }
        }
    }

    if (rcDelayCommand != 20) {
        return;
    }

    if (isUsingSticksToArm) {
        // Disarm on throttle down + yaw
        if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_CE) {
            if (ARMING_FLAG(ARMED))
                disarm();
            else {
                beeper(BEEPER_DISARM_REPEAT);    // sound tone while stick held
                rcDelayCommand = 0;              // reset so disarm tone will repeat
            }
        }
    }

    if (ARMING_FLAG(ARMED)) {
        // actions during armed
        return;
    }

    // actions during not armed
    i = 0;

    if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_CE) {
        // GYRO calibration
        gyroStartCalibration(false);

#ifdef GPS
        if (feature(FEATURE_GPS)) {
            GPS_reset_home_position();
        }
#endif

#ifdef BARO
        if (sensors(SENSOR_BARO))
            baroSetCalibrationCycles(10); // calibrate baro to new ground level (10 * 25 ms = ~250 ms non blocking)
#endif

        return;
    }

    if (feature(FEATURE_INFLIGHT_ACC_CAL) && (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_HI)) {
        // Inflight ACC Calibration
        handleInflightCalibrationStickPosition();
        return;
    }

    // Multiple configuration profiles
    if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_LO)          // ROLL left  -> Profile 1
        i = 1;
    else if (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_CE)     // PITCH up   -> Profile 2
        i = 2;
    else if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_HI)     // ROLL right -> Profile 3
        i = 3;
    if (i) {
        changePidProfile(i - 1);
        return;
    }

    if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_HI) {
        saveConfigAndNotify();
    }

    if (isUsingSticksToArm) {

        if (rcSticks == THR_LO + YAW_HI + PIT_CE + ROL_CE) {
            // Arm via YAW
            tryArm();

            return;
        } else {
            resetArmingDisabled();
        }
    }

    if (rcSticks == THR_HI + YAW_LO + PIT_LO + ROL_CE) {
        // Calibrating Acc
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
        return;
    }


    if (rcSticks == THR_HI + YAW_HI + PIT_LO + ROL_CE) {
        // Calibrating Mag
        ENABLE_STATE(CALIBRATE_MAG);
        return;
    }


    // Accelerometer Trim

    rollAndPitchTrims_t accelerometerTrimsDelta;
    memset(&accelerometerTrimsDelta, 0, sizeof(accelerometerTrimsDelta));

    bool shouldApplyRollAndPitchTrimDelta = false;
    if (rcSticks == THR_HI + YAW_CE + PIT_HI + ROL_CE) {
        accelerometerTrimsDelta.values.pitch = 2;
        shouldApplyRollAndPitchTrimDelta = true;
    } else if (rcSticks == THR_HI + YAW_CE + PIT_LO + ROL_CE) {
        accelerometerTrimsDelta.values.pitch = -2;
        shouldApplyRollAndPitchTrimDelta = true;
    } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_HI) {
        accelerometerTrimsDelta.values.roll = 2;
        shouldApplyRollAndPitchTrimDelta = true;
    } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_LO) {
        accelerometerTrimsDelta.values.roll = -2;
        shouldApplyRollAndPitchTrimDelta = true;
    }
    if (shouldApplyRollAndPitchTrimDelta) {
        applyAndSaveAccelerometerTrimsDelta(&accelerometerTrimsDelta);
        rcDelayCommand = 0; // allow autorepetition
        return;
    }

#ifdef USE_DASHBOARD
    if (rcSticks == THR_LO + YAW_CE + PIT_HI + ROL_LO) {
        dashboardDisablePageCycling();
    }

    if (rcSticks == THR_LO + YAW_CE + PIT_HI + ROL_HI) {
        dashboardEnablePageCycling();
    }
#endif

#ifdef VTX_CONTROL
    if (rcSticks ==  THR_HI + YAW_LO + PIT_CE + ROL_HI) {
        vtxIncrementBand();
    }
    if (rcSticks ==  THR_HI + YAW_LO + PIT_CE + ROL_LO) {
        vtxDecrementBand();
    }
    if (rcSticks ==  THR_HI + YAW_HI + PIT_CE + ROL_HI) {
        vtxIncrementChannel();
    }
    if (rcSticks ==  THR_HI + YAW_HI + PIT_CE + ROL_LO) {
        vtxDecrementChannel();
    }
#endif

}
Beispiel #30
0
void subTaskMainSubprocesses(void)
{
    const uint32_t startTime = micros();

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature) {
        gyro.temperature(&telemTemperature1);
    }

#ifdef GTUNE
        updateGtuneState();
#endif

#if defined(BARO) || defined(SONAR)
        // FIXME outdated comments?
        // updateRcCommands sets rcCommand, which is needed by updateAltHoldState and updateSonarAltHoldState
        // this must be called here since applyAltHold directly manipulates rcCommands[]
        updateRcCommands();

        if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
            if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
                applyAltHold();
            }
        }
#endif

#ifdef MAG
        if (sensors(SENSOR_MAG)) {
            updateMagHold();
        }
#endif


    // If we're armed, at minimum throttle, and we do arming via the
    // sticks, do not process yaw input from the rx.  We do this so the
    // motors do not spin up while we are trying to arm or disarm.
    // Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
    if (isUsingSticksForArming() && rcData[THROTTLE] <= rxConfig()->mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
                && !((mixerConfig()->mixerMode == MIXER_TRI || mixerConfig()->mixerMode == MIXER_CUSTOM_TRI) && mixerConfig()->tri_unarmed_servo)
#endif
                && mixerConfig()->mixerMode != MIXER_AIRPLANE
                && mixerConfig()->mixerMode != MIXER_FLYING_WING
#endif
    ) {
        rcCommand[YAW] = 0;
    }

    if (throttleCorrectionConfig()->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
        rcCommand[THROTTLE] += calculateThrottleAngleCorrection(throttleCorrectionConfig()->throttle_correction_value);
    }

    processRcCommand();

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) {
            updateGpsStateForHomeAndHoldMode();
        }
    }
#endif

#ifdef USE_SDCARD
        afatfs_poll();
#endif

#ifdef BLACKBOX
    if (!cliMode && feature(FEATURE_BLACKBOX)) {
        handleBlackbox();
    }
#endif
    if (debugMode == DEBUG_PIDLOOP) {debug[1] = micros() - startTime;}
}