TEST_P(Test_Torch_nets, OpenFace_accuracy) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE < 2018030000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException("Test is enabled starts from OpenVINO 2018R3"); #endif checkBackend(); if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) throw SkipTestException(""); const string model = findDataFile("dnn/openface_nn4.small2.v1.t7", false); Net net = readNetFromTorch(model); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat sample = imread(findDataFile("cv/shared/lena.png", false)); Mat sampleF32(sample.size(), CV_32FC3); sample.convertTo(sampleF32, sampleF32.type()); sampleF32 /= 255; resize(sampleF32, sampleF32, Size(96, 96), 0, 0, INTER_NEAREST); Mat inputBlob = blobFromImage(sampleF32, 1.0, Size(), Scalar(), /*swapRB*/true); net.setInput(inputBlob); Mat out = net.forward(); Mat outRef = readTorchBlob(_tf("net_openface_output.dat"), true); normAssert(out, outRef, "", default_l1, default_lInf); }
TEST_P(Test_Torch_nets, OpenFace_accuracy) { const string model = findDataFile("dnn/openface_nn4.small2.v1.t7", false); Net net = readNetFromTorch(model); net.setPreferableTarget(GetParam()); Mat sample = imread(findDataFile("cv/shared/lena.png", false)); Mat sampleF32(sample.size(), CV_32FC3); sample.convertTo(sampleF32, sampleF32.type()); sampleF32 /= 255; resize(sampleF32, sampleF32, Size(96, 96), 0, 0, INTER_NEAREST); Mat inputBlob = blobFromImage(sampleF32); net.setInput(inputBlob); Mat out = net.forward(); Mat outRef = readTorchBlob(_tf("net_openface_output.dat"), true); normAssert(out, outRef); }