Beispiel #1
0
static void
p6est_profile_compress (p6est_profile_t * profile)
{
  p4est_locidx_t      nidx, il, old_off, nln =
    profile->lnodes->num_local_nodes;
  p4est_locidx_t (*lr)[2] = (p4est_locidx_t (*)[2]) profile->lnode_ranges;
  sc_array_t         *lc = profile->lnode_columns;
  size_t              old_count = lc->elem_count;
  size_t              new_count;
  sc_array_t         *perm;
  size_t             *newindex;
  size_t              zz, offset;

  if (!old_count) {
    return;
  }
  perm = sc_array_new_size (sizeof (size_t), old_count);
  newindex = (size_t *) sc_array_index (perm, 0);

  for (zz = 0; zz < old_count; zz++) {
    newindex[zz] = old_count;
  }

  offset = 0;

  for (nidx = 0; nidx < nln; nidx++) {
    old_off = lr[nidx][0];
    if (lr[nidx][1]) {
      lr[nidx][0] = offset;
    }
    else {
      P4EST_ASSERT (!lr[nidx][0]);
    }
    for (il = 0; il < lr[nidx][1]; il++) {
      newindex[il + old_off] = offset++;
    }
  }
  new_count = offset;

  for (zz = 0; zz < old_count; zz++) {
    if (newindex[zz] == old_count) {
      newindex[zz] = offset++;
    }
  }

  sc_array_permute (lc, perm, 0);
  sc_array_destroy (perm);
  sc_array_resize (lc, new_count);
}
Beispiel #2
0
void
p8est_find_edge_transform (p4est_connectivity_t * conn,
                           p4est_topidx_t itree, int iedge,
                           p8est_edge_info_t * ei)
{
  int                 distinct;
  p4est_topidx_t      edge_trees, aedge, ettae;
  sc_array_t         *ta = &ei->edge_transforms;

  P4EST_ASSERT (0 <= itree && itree < conn->num_trees);
  P4EST_ASSERT (0 <= iedge && iedge < P8EST_EDGES);
  P4EST_ASSERT (ta->elem_size == sizeof (p8est_edge_transform_t));

  /* check if this edge exists at all */
  ei->iedge = (int8_t) iedge;
  sc_array_resize (ta, 0);
  if (conn->num_edges == 0) {
    return;
  }
  aedge = conn->tree_to_edge[P8EST_EDGES * itree + iedge];
  if (aedge == -1) {
    return;
  }
  P4EST_ASSERT (0 <= aedge && aedge < conn->num_edges);

  /* retrieve connectivity information for this edge */
  ettae = conn->ett_offset[aedge];
  edge_trees = conn->ett_offset[aedge + 1] - ettae;
  P4EST_ASSERT (0 <= ettae && 1 <= edge_trees);

  /* loop through all edge neighbors and find edge connections */
  distinct = p8est_find_edge_transform_internal (conn, itree, iedge, ei,
                                                 conn->edge_to_tree + ettae,
                                                 conn->edge_to_edge + ettae,
                                                 edge_trees);
  P4EST_ASSERT (edge_trees == (p4est_topidx_t) ta->elem_count + distinct);
}
Beispiel #3
0
int
main (int argc, char **argv)
{
  sc_MPI_Comm         mpicomm;
  int                 mpiret;
  int                 mpisize, mpirank;
  unsigned            crc;
#ifndef P4_TO_P8
  size_t              kz;
  int8_t              l;
  p4est_quadrant_t   *q;
  p4est_tree_t        stree, *tree = &stree;
#endif
  p4est_t            *p4est;
  p4est_connectivity_t *connectivity;

  /* initialize MPI */
  mpiret = sc_MPI_Init (&argc, &argv);
  SC_CHECK_MPI (mpiret);
  mpicomm = sc_MPI_COMM_WORLD;
  mpiret = sc_MPI_Comm_size (mpicomm, &mpisize);
  SC_CHECK_MPI (mpiret);
  mpiret = sc_MPI_Comm_rank (mpicomm, &mpirank);
  SC_CHECK_MPI (mpiret);

  sc_init (mpicomm, 1, 1, NULL, SC_LP_DEFAULT);
  p4est_init (NULL, SC_LP_DEFAULT);

#ifndef P4_TO_P8
  connectivity = p4est_connectivity_new_star ();
#else
  connectivity = p8est_connectivity_new_rotcubes ();
#endif
  p4est = p4est_new_ext (mpicomm, connectivity, 0, 0, 0, 4, NULL, NULL);

#ifndef P4_TO_P8
  /* build empty tree */
  sc_array_init (&tree->quadrants, sizeof (p4est_quadrant_t));
  for (l = 0; l <= P4EST_MAXLEVEL; ++l) {
    tree->quadrants_per_level[l] = 0;
  }
  tree->maxlevel = 0;

  /* insert two quadrants */
  sc_array_resize (&tree->quadrants, 4);
  q = p4est_quadrant_array_index (&tree->quadrants, 0);
  p4est_quadrant_set_morton (q, 3, 13);
  q = p4est_quadrant_array_index (&tree->quadrants, 1);
  p4est_quadrant_set_morton (q, 1, 1);
  q = p4est_quadrant_array_index (&tree->quadrants, 2);
  p4est_quadrant_set_morton (q, 1, 2);
  q = p4est_quadrant_array_index (&tree->quadrants, 3);
  p4est_quadrant_set_morton (q, 1, 3);
  for (kz = 0; kz < tree->quadrants.elem_count; ++kz) {
    q = p4est_quadrant_array_index (&tree->quadrants, kz);
    q->p.user_data = sc_mempool_alloc (p4est->user_data_pool);
    ++tree->quadrants_per_level[q->level];
    tree->maxlevel = (int8_t) SC_MAX (tree->maxlevel, q->level);
  }

  /* balance the tree, print and destroy */
#if 0
  p4est_balance_subtree (p4est, P4EST_CONNECT_FULL, 0, NULL);
  p4est_tree_print (SC_LP_INFO, tree);
#endif
  for (kz = 0; kz < tree->quadrants.elem_count; ++kz) {
    q = p4est_quadrant_array_index (&tree->quadrants, kz);
    sc_mempool_free (p4est->user_data_pool, q->p.user_data);
  }
  sc_array_reset (&tree->quadrants);
#endif /* !P4_TO_P8 */

  /* check reset data function */
  p4est_reset_data (p4est, 0, init_fn, NULL);
  p4est_reset_data (p4est, 0, NULL, NULL);

  /* refine and balance the forest */
  SC_CHECK_ABORT (p4est_is_balanced (p4est, P4EST_CONNECT_FULL), "Balance 1");
  p4est_refine (p4est, 1, refine_fn, NULL);
  SC_CHECK_ABORT (!p4est_is_balanced (p4est, P4EST_CONNECT_FULL),
                  "Balance 2");
  p4est_balance (p4est, P4EST_CONNECT_FULL, NULL);
  SC_CHECK_ABORT (p4est_is_balanced (p4est, P4EST_CONNECT_FULL), "Balance 3");

  /* check reset data function */
  p4est_reset_data (p4est, 17, NULL, NULL);
  p4est_reset_data (p4est, 8, init_fn, NULL);

  /* checksum and partition */
  crc = p4est_checksum (p4est);
  p4est_partition (p4est, 0, NULL);
  SC_CHECK_ABORT (p4est_checksum (p4est) == crc, "Partition");
  SC_CHECK_ABORT (p4est_is_balanced (p4est, P4EST_CONNECT_FULL), "Balance 4");

  /* check reset data function */
  p4est_reset_data (p4est, 3, NULL, NULL);
  p4est_reset_data (p4est, 3, NULL, NULL);

  /* checksum and rebalance */
  crc = p4est_checksum (p4est);
  p4est_balance (p4est, P4EST_CONNECT_FULL, NULL);
  SC_CHECK_ABORT (p4est_checksum (p4est) == crc, "Rebalance");

  /* clean up and exit */
  P4EST_ASSERT (p4est->user_data_pool->elem_count ==
                (size_t) p4est->local_num_quadrants);
  p4est_destroy (p4est);
  p4est_connectivity_destroy (connectivity);

  sc_finalize ();

  mpiret = sc_MPI_Finalize ();
  SC_CHECK_MPI (mpiret);

  return 0;
}
Beispiel #4
0
static void
p4est_coarsen_old (p4est_t * p4est, int coarsen_recursive,
                   p4est_coarsen_t coarsen_fn, p4est_init_t init_fn)
{
#ifdef P4EST_ENABLE_DEBUG
  size_t              data_pool_size;
#endif
  int                 i, maxlevel;
  int                 couldbegood;
  size_t              zz;
  size_t              incount, removed;
  size_t              cidz, first, last, rest, before;
  p4est_locidx_t      num_quadrants, prev_offset;
  p4est_topidx_t      jt;
  p4est_tree_t       *tree;
  p4est_quadrant_t   *c[P4EST_CHILDREN];
  p4est_quadrant_t   *cfirst, *clast;
  sc_array_t         *tquadrants;

  P4EST_GLOBAL_PRODUCTIONF ("Into " P4EST_STRING
                            "_coarsen_old with %lld total quadrants\n",
                            (long long) p4est->global_num_quadrants);
  p4est_log_indent_push ();
  P4EST_ASSERT (p4est_is_valid (p4est));

  /* loop over all local trees */
  prev_offset = 0;
  for (jt = p4est->first_local_tree; jt <= p4est->last_local_tree; ++jt) {
    tree = p4est_tree_array_index (p4est->trees, jt);
    tquadrants = &tree->quadrants;
#ifdef P4EST_ENABLE_DEBUG
    data_pool_size = 0;
    if (p4est->user_data_pool != NULL) {
      data_pool_size = p4est->user_data_pool->elem_count;
    }
#endif
    removed = 0;

    /* initial log message for this tree */
    P4EST_VERBOSEF ("Into coarsen tree %lld with %llu\n", (long long) jt,
                    (unsigned long long) tquadrants->elem_count);

    /* Initialize array indices.
       If children are coarsened, the array will have an empty window.
       first   index of the first child to be considered
       last    index of the last child before the hole in the array
       before  number of children before the hole in the array
       rest    index of the first child after the hole in the array
     */
    first = last = 0;
    before = rest = 1;

    /* run through the array and coarsen recursively */
    incount = tquadrants->elem_count;
    while (rest + P4EST_CHILDREN - 1 - before < incount) {
      couldbegood = 1;
      for (zz = 0; zz < P4EST_CHILDREN; ++zz) {
        if (zz < before) {
          c[zz] = p4est_quadrant_array_index (tquadrants, first + zz);
          if (zz != (size_t) p4est_quadrant_child_id (c[zz])) {
            couldbegood = 0;
            break;
          }
        }
        else {
          c[zz] = p4est_quadrant_array_index (tquadrants, rest + zz - before);
        }
      }
      if (couldbegood && p4est_quadrant_is_familypv (c) &&
          coarsen_fn (p4est, jt, c)) {
        /* coarsen now */
        for (zz = 0; zz < P4EST_CHILDREN; ++zz) {
          p4est_quadrant_free_data (p4est, c[zz]);
        }
        tree->quadrants_per_level[c[0]->level] -= P4EST_CHILDREN;
        cfirst = c[0];
        p4est_quadrant_parent (c[0], cfirst);
        p4est_quadrant_init_data (p4est, jt, cfirst, init_fn);
        tree->quadrants_per_level[cfirst->level] += 1;
        p4est->local_num_quadrants -= P4EST_CHILDREN - 1;
        removed += P4EST_CHILDREN - 1;

        rest += P4EST_CHILDREN - before;
        if (coarsen_recursive) {
          last = first;
          cidz = (size_t) p4est_quadrant_child_id (cfirst);
          if (cidz > first)
            first = 0;
          else
            first -= cidz;
        }
        else {
          /* don't coarsen again, move the counters and the hole */
          P4EST_ASSERT (first == last && before == 1);
          if (rest < incount) {
            ++first;
            cfirst = p4est_quadrant_array_index (tquadrants, first);
            clast = p4est_quadrant_array_index (tquadrants, rest);
            *cfirst = *clast;
            last = first;
            ++rest;
          }
        }
      }
      else {
        /* do nothing, just move the counters and the hole */
        ++first;
        if (first > last) {
          if (first != rest) {
            cfirst = p4est_quadrant_array_index (tquadrants, first);
            clast = p4est_quadrant_array_index (tquadrants, rest);
            *cfirst = *clast;
          }
          last = first;
          ++rest;
        }
      }
      before = last - first + 1;
    }

    /* adjust final array size */
    first = last;
    if (first + 1 < rest) {
      while (rest < incount) {
        ++first;
        cfirst = p4est_quadrant_array_index (tquadrants, first);
        clast = p4est_quadrant_array_index (tquadrants, rest);
        *cfirst = *clast;
        ++rest;
      }
      sc_array_resize (tquadrants, first + 1);
    }

    /* compute maximum level */
    maxlevel = 0;
    num_quadrants = 0;
    for (i = 0; i <= P4EST_QMAXLEVEL; ++i) {
      P4EST_ASSERT (tree->quadrants_per_level[i] >= 0);
      num_quadrants += tree->quadrants_per_level[i];    /* same type */
      if (tree->quadrants_per_level[i] > 0) {
        maxlevel = i;
      }
    }
    tree->maxlevel = (int8_t) maxlevel;
    tree->quadrants_offset = prev_offset;
    prev_offset += num_quadrants;

    /* do some sanity checks */
    P4EST_ASSERT (num_quadrants == (p4est_locidx_t) tquadrants->elem_count);
    P4EST_ASSERT (tquadrants->elem_count == incount - removed);
    if (p4est->user_data_pool != NULL) {
      P4EST_ASSERT (data_pool_size - removed ==
                    p4est->user_data_pool->elem_count);
    }
    P4EST_ASSERT (p4est_tree_is_sorted (tree));
    P4EST_ASSERT (p4est_tree_is_complete (tree));

    /* final log message for this tree */
    P4EST_VERBOSEF ("Done coarsen tree %lld now %llu\n", (long long) jt,
                    (unsigned long long) tquadrants->elem_count);
  }
  if (p4est->last_local_tree >= 0) {
    for (; jt < p4est->connectivity->num_trees; ++jt) {
      tree = p4est_tree_array_index (p4est->trees, jt);
      tree->quadrants_offset = p4est->local_num_quadrants;
    }
  }

  /* compute global number of quadrants */
  p4est_comm_count_quadrants (p4est);

  P4EST_ASSERT (p4est_is_valid (p4est));
  p4est_log_indent_pop ();
  P4EST_GLOBAL_PRODUCTIONF ("Done " P4EST_STRING
                            "_coarsen_old with %lld total quadrants\n",
                            (long long) p4est->global_num_quadrants);
}
Beispiel #5
0
p4est_t            *
p4est_new_points (sc_MPI_Comm mpicomm, p4est_connectivity_t * connectivity,
                  int maxlevel, p4est_quadrant_t * points,
                  p4est_locidx_t num_points, p4est_locidx_t max_points,
                  size_t data_size, p4est_init_t init_fn, void *user_pointer)
{
  int                 mpiret;
  int                 num_procs, rank;
  int                 i, isizet;
  size_t              lcount;
  size_t             *nmemb;
#ifdef P4EST_ENABLE_DEBUG
  size_t              zz;
#endif
  p4est_topidx_t      jt, num_trees;
  p4est_topidx_t      first_tree, last_tree, next_tree;
  p4est_quadrant_t   *first_quad, *next_quad, *quad;
  p4est_quadrant_t    a, b, c, f, l, n;
  p4est_tree_t       *tree;
  p4est_t            *p4est;
  p4est_points_state_t ppstate;

  P4EST_GLOBAL_PRODUCTIONF ("Into " P4EST_STRING
                            "_new_points with max level %d max points %lld\n",
                            maxlevel, (long long) max_points);
  p4est_log_indent_push ();
  P4EST_ASSERT (p4est_connectivity_is_valid (connectivity));
  P4EST_ASSERT (max_points >= -1);

  /* retrieve MPI information */
  mpiret = sc_MPI_Comm_size (mpicomm, &num_procs);
  SC_CHECK_MPI (mpiret);
  mpiret = sc_MPI_Comm_rank (mpicomm, &rank);
  SC_CHECK_MPI (mpiret);

  /* This implementation runs in O(P/p * maxlevel)
   * with P the total number of points, p the number of processors.
   * Two optimizations are possible:
   * 1. At startup remove points that lead to duplicate quadrants.
   * 2. Use complete_region between successive points instead of
   *    the call to refine. This should give O(N/p) * maxlevel
   *    with N the total number of quadrants.
   */

  /* parallel sort the incoming points */
  lcount = (size_t) num_points;
  nmemb = P4EST_ALLOC_ZERO (size_t, num_procs);
  isizet = (int) sizeof (size_t);
  mpiret = sc_MPI_Allgather (&lcount, isizet, sc_MPI_BYTE,
                             nmemb, isizet, sc_MPI_BYTE, mpicomm);
  SC_CHECK_MPI (mpiret);
  sc_psort (mpicomm, points, nmemb, sizeof (p4est_quadrant_t),
            p4est_quadrant_compare_piggy);
  P4EST_FREE (nmemb);
#ifdef P4EST_ENABLE_DEBUG
  first_quad = points;
  for (zz = 1; zz < lcount; ++zz) {
    next_quad = points + zz;
    P4EST_ASSERT (p4est_quadrant_compare_piggy (first_quad, next_quad) <= 0);
    first_quad = next_quad;
  }
#endif

  /* create the p4est */
  p4est = P4EST_ALLOC_ZERO (p4est_t, 1);
  ppstate.points = points;
  ppstate.num_points = num_points;
  ppstate.max_points = max_points;
  ppstate.current = 0;
  ppstate.maxlevel = maxlevel;

  /* assign some data members */
  p4est->data_size = 2 * sizeof (p4est_locidx_t);       /* temporary */
  p4est->user_pointer = &ppstate;
  p4est->connectivity = connectivity;
  num_trees = connectivity->num_trees;

  /* create parallel environment */
  p4est_comm_parallel_env_create (p4est, mpicomm);

  /* allocate memory pools */
  p4est->user_data_pool = sc_mempool_new (p4est->data_size);
  p4est->quadrant_pool = sc_mempool_new (sizeof (p4est_quadrant_t));

  P4EST_GLOBAL_PRODUCTIONF ("New " P4EST_STRING
                            " with %lld trees on %d processors\n",
                            (long long) num_trees, num_procs);

  /* allocate trees */
  p4est->trees = sc_array_new (sizeof (p4est_tree_t));
  sc_array_resize (p4est->trees, num_trees);
  for (jt = 0; jt < num_trees; ++jt) {
    tree = p4est_tree_array_index (p4est->trees, jt);
    sc_array_init (&tree->quadrants, sizeof (p4est_quadrant_t));
    P4EST_QUADRANT_INIT (&tree->first_desc);
    P4EST_QUADRANT_INIT (&tree->last_desc);
    tree->quadrants_offset = 0;
    for (i = 0; i <= P4EST_QMAXLEVEL; ++i) {
      tree->quadrants_per_level[i] = 0;
    }
    for (; i <= P4EST_MAXLEVEL; ++i) {
      tree->quadrants_per_level[i] = -1;
    }
    tree->maxlevel = 0;
  }
  p4est->local_num_quadrants = 0;
  p4est->global_num_quadrants = 0;

  /* create point based partition */
  P4EST_QUADRANT_INIT (&f);
  p4est->global_first_position =
    P4EST_ALLOC_ZERO (p4est_quadrant_t, num_procs + 1);
  if (num_points == 0) {
    P4EST_VERBOSE ("Empty processor");
    first_tree = p4est->first_local_tree = -1;
    first_quad = NULL;
  }
  else {
    /* we are probably not empty */
    if (rank == 0) {
      first_tree = p4est->first_local_tree = 0;
      p4est_quadrant_set_morton (&f, maxlevel, 0);
    }
    else {
      first_tree = p4est->first_local_tree = points->p.which_tree;
      p4est_node_to_quadrant (points, maxlevel, &f);
    }
    first_quad = &f;
  }
  last_tree = p4est->last_local_tree = -2;
  p4est_comm_global_partition (p4est, first_quad);
  first_quad = p4est->global_first_position + rank;
  next_quad = p4est->global_first_position + (rank + 1);
  next_tree = next_quad->p.which_tree;
  if (first_tree >= 0 &&
      p4est_quadrant_is_equal (first_quad, next_quad) &&
      first_quad->p.which_tree == next_quad->p.which_tree) {
    /* if all our points are consumed by the next processor we are empty */
    first_tree = p4est->first_local_tree = -1;
  }
  if (first_tree >= 0) {
    /* we are definitely not empty */
    if (next_quad->x == 0 && next_quad->y == 0
#ifdef P4_TO_P8
        && next_quad->z == 0
#endif
      ) {
      last_tree = p4est->last_local_tree = next_tree - 1;
    }
    else {
      last_tree = p4est->last_local_tree = next_tree;
    }
    P4EST_ASSERT (first_tree <= last_tree);
  }

  /* fill the local trees */
  P4EST_QUADRANT_INIT (&a);
  P4EST_QUADRANT_INIT (&b);
  P4EST_QUADRANT_INIT (&c);
  P4EST_QUADRANT_INIT (&l);
  n = *next_quad;
  n.level = (int8_t) maxlevel;
  for (jt = first_tree; jt <= last_tree; ++jt) {
    int                 onlyone = 0;
    int                 includeb = 0;

    tree = p4est_tree_array_index (p4est->trees, jt);

    /* determine first local quadrant of this tree */
    if (jt == first_tree) {
      a = *first_quad;
      a.level = (int8_t) maxlevel;
      first_quad = next_quad = NULL;    /* free to use further down */
      P4EST_ASSERT (p4est_quadrant_is_valid (&a));
    }
    else {
      p4est_quadrant_set_morton (&a, maxlevel, 0);
      P4EST_ASSERT (jt < next_tree || p4est_quadrant_compare (&a, &n) < 0);
    }

    /* enlarge first local quadrant if possible */
    if (jt < next_tree) {
      while (p4est_quadrant_child_id (&a) == 0 && a.level > 0) {
        p4est_quadrant_parent (&a, &a);
      }
      P4EST_ASSERT (jt == first_tree || a.level == 0);
    }
    else {
      for (c = a; p4est_quadrant_child_id (&c) == 0; a = c) {
        p4est_quadrant_parent (&c, &c);
        p4est_quadrant_last_descendant (&c, &l, maxlevel);
        if (p4est_quadrant_compare (&l, &n) >= 0) {
          break;
        }
      }
      P4EST_ASSERT (a.level > 0);
      P4EST_ASSERT ((p4est_quadrant_last_descendant (&a, &l, maxlevel),
                     p4est_quadrant_compare (&l, &n) < 0));
    }
    p4est_quadrant_first_descendant (&a, &tree->first_desc, P4EST_QMAXLEVEL);

    /* determine largest possible last quadrant of this tree */
    if (jt < next_tree) {
      p4est_quadrant_last_descendant (&a, &l, maxlevel);
      p4est_quadrant_set_morton (&b, 0, 0);
      p4est_quadrant_last_descendant (&b, &b, maxlevel);
      if (p4est_quadrant_is_equal (&l, &b)) {
        onlyone = 1;
      }
      else {
        includeb = 1;
        for (c = b; p4est_quadrant_child_id (&c) == P4EST_CHILDREN - 1; b = c) {
          p4est_quadrant_parent (&c, &c);
          p4est_quadrant_first_descendant (&c, &f, maxlevel);
          if (p4est_quadrant_compare (&l, &f) >= 0) {
            break;
          }
        }
      }
    }
    else {
      b = n;
    }

    /* create a complete tree */
    if (onlyone) {
      quad = p4est_quadrant_array_push (&tree->quadrants);
      *quad = a;
      p4est_quadrant_init_data (p4est, jt, quad, p4est_points_init);
      tree->maxlevel = a.level;
      ++tree->quadrants_per_level[a.level];
    }
    else {
      p4est_complete_region (p4est, &a, 1, &b, includeb,
                             tree, jt, p4est_points_init);
      quad = p4est_quadrant_array_index (&tree->quadrants,
                                         tree->quadrants.elem_count - 1);
    }
    tree->quadrants_offset = p4est->local_num_quadrants;
    p4est->local_num_quadrants += tree->quadrants.elem_count;
    p4est_quadrant_last_descendant (quad, &tree->last_desc, P4EST_QMAXLEVEL);

    /* verification */
#ifdef P4EST_ENABLE_DEBUG
    first_quad = p4est_quadrant_array_index (&tree->quadrants, 0);
    for (zz = 1; zz < tree->quadrants.elem_count; ++zz) {
      next_quad = p4est_quadrant_array_index (&tree->quadrants, zz);
      P4EST_ASSERT (((p4est_locidx_t *) first_quad->p.user_data)[1] ==
                    ((p4est_locidx_t *) next_quad->p.user_data)[0]);
      first_quad = next_quad;
    }
#endif
  }
  if (last_tree >= 0) {
    for (; jt < num_trees; ++jt) {
      tree = p4est_tree_array_index (p4est->trees, jt);
      tree->quadrants_offset = p4est->local_num_quadrants;
    }
  }

  /* compute some member variables */
  p4est->global_first_quadrant = P4EST_ALLOC (p4est_gloidx_t, num_procs + 1);
  p4est_comm_count_quadrants (p4est);

  /* print more statistics */
  P4EST_VERBOSEF ("total local quadrants %lld\n",
                  (long long) p4est->local_num_quadrants);

  P4EST_ASSERT (p4est_is_valid (p4est));
  p4est_log_indent_pop ();
  P4EST_GLOBAL_PRODUCTIONF ("Done " P4EST_STRING
                            "_new_points with %lld total quadrants\n",
                            (long long) p4est->global_num_quadrants);

  /* refine to have one point per quadrant */
  if (max_points >= 0) {
    p4est_refine_ext (p4est, 1, maxlevel, p4est_points_refine,
                      p4est_points_init, NULL);
#ifdef P4EST_ENABLE_DEBUG
    for (jt = first_tree; jt <= last_tree; ++jt) {
      tree = p4est_tree_array_index (p4est->trees, jt);
      first_quad = p4est_quadrant_array_index (&tree->quadrants, 0);
      for (zz = 1; zz < tree->quadrants.elem_count; ++zz) {
        next_quad = p4est_quadrant_array_index (&tree->quadrants, zz);
        P4EST_ASSERT (((p4est_locidx_t *) first_quad->p.user_data)[1] ==
                      ((p4est_locidx_t *) next_quad->p.user_data)[0]);
        first_quad = next_quad;
      }
    }
#endif
  }

  /* initialize user pointer and data size */
  p4est_reset_data (p4est, data_size, init_fn, user_pointer);

  return p4est;
}
Beispiel #6
0
int
main (int argc, char **argv)
{
  const p4est_qcoord_t qone = 1;
  int                 mpiret;
  int                 k;
  int                 level, mid, cid;
  int                 id0, id1, id2, id3;
  int64_t             index1, index2;
  size_t              iz, jz, incount;
  p4est_qcoord_t      mh = P4EST_QUADRANT_LEN (P4EST_QMAXLEVEL);
  p4est_connectivity_t *connectivity;
  p4est_t            *p4est1;
  p4est_t            *p4est2;
  p4est_tree_t       *t1, *t2, tree;
  p4est_quadrant_t   *p, *q1, *q2;
  p4est_quadrant_t    r, s;
  p4est_quadrant_t    c0, c1, c2, c3;
  p4est_quadrant_t    cv[P4EST_CHILDREN], *cp[P4EST_CHILDREN];
  p4est_quadrant_t    A, B, C, D, E, F, G, H, I, P, Q;
  p4est_quadrant_t    a, f, g, h;
  uint64_t            Aid, Fid;

  /* initialize MPI */
  mpiret = sc_MPI_Init (&argc, &argv);
  SC_CHECK_MPI (mpiret);

  /* create connectivity and forest structures */
  connectivity = p4est_connectivity_new_unitsquare ();
  p4est1 = p4est_new_ext (sc_MPI_COMM_SELF, connectivity, 15, 0, 0,
                          0, NULL, NULL);
  p4est2 = p4est_new_ext (sc_MPI_COMM_SELF, connectivity, 15, 0, 0,
                          8, NULL, NULL);

  /* refine the second tree to a uniform level */
  p4est_refine (p4est1, 1, refine_none, NULL);
  p4est_refine (p4est2, 1, refine_some, NULL);
  t1 = p4est_tree_array_index (p4est1->trees, 0);
  t2 = p4est_tree_array_index (p4est2->trees, 0);
  SC_CHECK_ABORT (p4est_tree_is_sorted (t1), "is_sorted");
  SC_CHECK_ABORT (p4est_tree_is_sorted (t2), "is_sorted");

  /* run a bunch of cross-tests */
  p = NULL;
  for (iz = 0; iz < t1->quadrants.elem_count; ++iz) {
    q1 = p4est_quadrant_array_index (&t1->quadrants, iz);

    /* test the index conversion */
    index1 = p4est_quadrant_linear_id (q1, (int) q1->level);
    p4est_quadrant_set_morton (&r, (int) q1->level, index1);
    index2 = p4est_quadrant_linear_id (&r, (int) r.level);
    SC_CHECK_ABORT (index1 == index2, "index conversion");
    level = (int) q1->level - 1;
    if (level >= 0) {
      index1 = p4est_quadrant_linear_id (q1, level);
      p4est_quadrant_set_morton (&r, level, index1);
      index2 = p4est_quadrant_linear_id (&r, level);
      SC_CHECK_ABORT (index1 == index2, "index conversion");
    }

    /* test the is_next function */
    if (p != NULL) {
      SC_CHECK_ABORT (p4est_quadrant_is_next (p, q1), "is_next");
    }
    p = q1;

    /* test the is_family function */
    p4est_quadrant_children (q1, &c0, &c1, &c2, &c3);
    SC_CHECK_ABORT (p4est_quadrant_is_family (&c0, &c1, &c2, &c3),
                    "is_family");
    SC_CHECK_ABORT (!p4est_quadrant_is_family (&c1, &c0, &c2, &c3),
                    "is_family");
    SC_CHECK_ABORT (!p4est_quadrant_is_family (&c0, &c0, &c1, &c2),
                    "is_family");
    p4est_quadrant_childrenv (q1, cv);
    SC_CHECK_ABORT (p4est_quadrant_is_equal (&c0, &cv[0]), "is_family");
    SC_CHECK_ABORT (p4est_quadrant_is_equal (&c1, &cv[1]), "is_family");
    SC_CHECK_ABORT (p4est_quadrant_is_equal (&c2, &cv[2]), "is_family");
    SC_CHECK_ABORT (p4est_quadrant_is_equal (&c3, &cv[3]), "is_family");
    SC_CHECK_ABORT (p4est_quadrant_is_family (&cv[0], &cv[1], &cv[2], &cv[3]),
                    "is_family");
    cp[0] = &cv[0];
    cp[1] = &cv[1];
    cp[2] = &cv[2];
    cp[3] = &cv[3];
    SC_CHECK_ABORT (p4est_quadrant_is_familypv (cp), "is_family");
    cv[1] = cv[0];
    SC_CHECK_ABORT (!p4est_quadrant_is_familyv (cv), "is_family");
    cp[1] = &c1;
    SC_CHECK_ABORT (p4est_quadrant_is_familypv (cp), "is_family");
    cp[2] = &c3;
    SC_CHECK_ABORT (!p4est_quadrant_is_familypv (cp), "is_family");

    /* test the sibling function */
    mid = p4est_quadrant_child_id (q1);
    for (cid = 0; cid < 4; ++cid) {
      p4est_quadrant_sibling (q1, &r, cid);
      if (cid != mid) {
        SC_CHECK_ABORT (p4est_quadrant_is_sibling (q1, &r), "sibling");
      }
      else {
        SC_CHECK_ABORT (p4est_quadrant_is_equal (q1, &r), "sibling");
      }
    }

    /* test t1 against itself */
    for (jz = 0; jz < t1->quadrants.elem_count; ++jz) {
      q2 = p4est_quadrant_array_index (&t1->quadrants, jz);

      /* test the comparison function */
      SC_CHECK_ABORT (p4est_quadrant_compare (q1, q2) ==
                      -p4est_quadrant_compare (q2, q1), "compare");
      SC_CHECK_ABORT ((p4est_quadrant_compare (q1, q2) == 0) ==
                      p4est_quadrant_is_equal (q1, q2), "is_equal");

      /* test the descriptive versions of functions */
      SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (q1, q2) ==
                      p4est_quadrant_is_sibling (q1, q2), "is_sibling");
      SC_CHECK_ABORT (p4est_quadrant_is_parent_D (q1, q2) ==
                      p4est_quadrant_is_parent (q1, q2), "is_parent");
      SC_CHECK_ABORT (p4est_quadrant_is_parent_D (q2, q1) ==
                      p4est_quadrant_is_parent (q2, q1), "is_parent");
      SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (q1, q2) ==
                      p4est_quadrant_is_ancestor (q1, q2), "is_ancestor");
      SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (q2, q1) ==
                      p4est_quadrant_is_ancestor (q2, q1), "is_ancestor");
      SC_CHECK_ABORT (p4est_quadrant_is_next_D (q1, q2) ==
                      p4est_quadrant_is_next (q1, q2), "is_next");
      SC_CHECK_ABORT (p4est_quadrant_is_next_D (q2, q1) ==
                      p4est_quadrant_is_next (q2, q1), "is_next");
      p4est_nearest_common_ancestor_D (q1, q2, &r);
      p4est_nearest_common_ancestor (q1, q2, &s);
      SC_CHECK_ABORT (p4est_quadrant_is_equal (&r, &s), "common_ancestor");
      p4est_nearest_common_ancestor_D (q2, q1, &r);
      p4est_nearest_common_ancestor (q2, q1, &s);
      SC_CHECK_ABORT (p4est_quadrant_is_equal (&r, &s), "common_ancestor");
    }

    /* test t1 against t2 */
    for (jz = 0; jz < t2->quadrants.elem_count; ++jz) {
      q2 = p4est_quadrant_array_index (&t2->quadrants, jz);

      /* test the comparison function */
      SC_CHECK_ABORT (p4est_quadrant_compare (q1, q2) ==
                      -p4est_quadrant_compare (q2, q1), "compare");
      SC_CHECK_ABORT ((p4est_quadrant_compare (q1, q2) == 0) ==
                      p4est_quadrant_is_equal (q1, q2), "is_equal");

      /* test the descriptive versions of functions */
      SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (q1, q2) ==
                      p4est_quadrant_is_sibling (q1, q2), "is_sibling");
      SC_CHECK_ABORT (p4est_quadrant_is_parent_D (q1, q2) ==
                      p4est_quadrant_is_parent (q1, q2), "is_parent");
      SC_CHECK_ABORT (p4est_quadrant_is_parent_D (q2, q1) ==
                      p4est_quadrant_is_parent (q2, q1), "is_parent");
      SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (q1, q2) ==
                      p4est_quadrant_is_ancestor (q1, q2), "is_ancestor");
      SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (q2, q1) ==
                      p4est_quadrant_is_ancestor (q2, q1), "is_ancestor");
      SC_CHECK_ABORT (p4est_quadrant_is_next_D (q1, q2) ==
                      p4est_quadrant_is_next (q1, q2), "is_next");
      SC_CHECK_ABORT (p4est_quadrant_is_next_D (q2, q1) ==
                      p4est_quadrant_is_next (q2, q1), "is_next");
      p4est_nearest_common_ancestor_D (q1, q2, &r);
      p4est_nearest_common_ancestor (q1, q2, &s);
      SC_CHECK_ABORT (p4est_quadrant_is_equal (&r, &s), "common_ancestor");
      p4est_nearest_common_ancestor_D (q2, q1, &r);
      p4est_nearest_common_ancestor (q2, q1, &s);
      SC_CHECK_ABORT (p4est_quadrant_is_equal (&r, &s), "common_ancestor");
    }
  }

  p = NULL;
  for (iz = 0; iz < t2->quadrants.elem_count; ++iz) {
    q1 = p4est_quadrant_array_index (&t2->quadrants, iz);

    /* test the is_next function */
    if (p != NULL) {
      SC_CHECK_ABORT (p4est_quadrant_is_next (p, q1), "is_next");
    }
    p = q1;
  }

  /* test the coarsen function */
  p4est_coarsen (p4est1, 1, coarsen_none, NULL);
  p4est_coarsen (p4est1, 1, coarsen_all, NULL);
  p4est_coarsen (p4est2, 1, coarsen_some, NULL);

  /* test the linearize algorithm */
  incount = t2->quadrants.elem_count;
  (void) p4est_linearize_tree (p4est2, t2);
  SC_CHECK_ABORT (incount == t2->quadrants.elem_count, "linearize");

  /* this is user_data neutral only when p4est1->data_size == 0 */
  sc_array_init (&tree.quadrants, sizeof (p4est_quadrant_t));
  sc_array_resize (&tree.quadrants, 18);
  q1 = p4est_quadrant_array_index (&tree.quadrants, 0);
  q2 = p4est_quadrant_array_index (&t2->quadrants, 0);
  *q1 = *q2;
  q2 = p4est_quadrant_array_index (&t2->quadrants, 1);
  for (k = 0; k < 3; ++k) {
    q1 = p4est_quadrant_array_index (&tree.quadrants, (size_t) (k + 1));
    *q1 = *q2;
    q1->level = (int8_t) (q1->level + k);
  }
  for (k = 0; k < 10; ++k) {
    q1 = p4est_quadrant_array_index (&tree.quadrants, (size_t) (k + 4));
    q2 = p4est_quadrant_array_index (&t2->quadrants, (size_t) (k + 3));
    *q1 = *q2;
    q1->level = (int8_t) (q1->level + k);
  }
  for (k = 0; k < 4; ++k) {
    q1 = p4est_quadrant_array_index (&tree.quadrants, (size_t) (k + 14));
    q2 = p4est_quadrant_array_index (&t2->quadrants, (size_t) (k + 12));
    *q1 = *q2;
    q1->level = (int8_t) (q1->level + 10 + k);
  }
  tree.maxlevel = 0;
  for (k = 0; k <= P4EST_QMAXLEVEL; ++k) {
    tree.quadrants_per_level[k] = 0;
  }
  for (; k <= P4EST_MAXLEVEL; ++k) {
    tree.quadrants_per_level[k] = -1;
  }
  incount = tree.quadrants.elem_count;
  for (iz = 0; iz < incount; ++iz) {
    q1 = p4est_quadrant_array_index (&tree.quadrants, iz);
    ++tree.quadrants_per_level[q1->level];
    tree.maxlevel = (int8_t) SC_MAX (tree.maxlevel, q1->level);
  }
  SC_CHECK_ABORT (!p4est_tree_is_linear (&tree), "is_linear");
  (void) p4est_linearize_tree (p4est1, &tree);
  SC_CHECK_ABORT (incount - 3 == tree.quadrants.elem_count, "linearize");
  sc_array_reset (&tree.quadrants);

  /* create a partial tree and check overlap */
  sc_array_resize (&tree.quadrants, 3);
  q1 = p4est_quadrant_array_index (&tree.quadrants, 0);
  p4est_quadrant_set_morton (q1, 1, 1);
  q1 = p4est_quadrant_array_index (&tree.quadrants, 1);
  p4est_quadrant_set_morton (q1, 2, 8);
  q1 = p4est_quadrant_array_index (&tree.quadrants, 2);
  p4est_quadrant_set_morton (q1, 2, 9);
  for (k = 0; k <= P4EST_QMAXLEVEL; ++k) {
    tree.quadrants_per_level[k] = 0;
  }
  for (; k <= P4EST_MAXLEVEL; ++k) {
    tree.quadrants_per_level[k] = -1;
  }
  tree.quadrants_per_level[1] = 1;
  tree.quadrants_per_level[2] = 2;
  tree.maxlevel = 2;
  p4est_quadrant_first_descendant (p4est_quadrant_array_index
                                   (&tree.quadrants, 0), &tree.first_desc,
                                   P4EST_QMAXLEVEL);
  p4est_quadrant_last_descendant (p4est_quadrant_array_index
                                  (&tree.quadrants,
                                   tree.quadrants.elem_count - 1),
                                  &tree.last_desc, P4EST_QMAXLEVEL);
  SC_CHECK_ABORT (p4est_tree_is_complete (&tree), "is_complete");

  p4est_quadrant_set_morton (&D, 0, 0);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &D), "overlaps 0");

  p4est_quadrant_set_morton (&A, 1, 0);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &A), "overlaps 1");
  p4est_quadrant_set_morton (&A, 1, 1);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &A), "overlaps 2");
  p4est_quadrant_set_morton (&A, 1, 2);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &A), "overlaps 3");
  p4est_quadrant_set_morton (&A, 1, 3);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &A), "overlaps 4");

  p4est_quadrant_set_morton (&B, 3, 13);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &B), "overlaps 5");
  p4est_quadrant_set_morton (&B, 3, 25);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &B), "overlaps 6");
  p4est_quadrant_set_morton (&B, 3, 39);
  SC_CHECK_ABORT (p4est_quadrant_overlaps_tree (&tree, &B), "overlaps 7");
  p4est_quadrant_set_morton (&B, 3, 40);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &B), "overlaps 8");

  p4est_quadrant_set_morton (&C, 4, 219);
  SC_CHECK_ABORT (!p4est_quadrant_overlaps_tree (&tree, &C), "overlaps 9");

  sc_array_reset (&tree.quadrants);

  /* destroy the p4est and its connectivity structure */
  p4est_destroy (p4est1);
  p4est_destroy (p4est2);
  p4est_connectivity_destroy (connectivity);

  /* This will test the ability to address negative quadrants */
  P4EST_QUADRANT_INIT (&A);
  P4EST_QUADRANT_INIT (&B);
  P4EST_QUADRANT_INIT (&C);
  P4EST_QUADRANT_INIT (&D);
  P4EST_QUADRANT_INIT (&E);
  P4EST_QUADRANT_INIT (&F);
  P4EST_QUADRANT_INIT (&G);
  P4EST_QUADRANT_INIT (&H);
  P4EST_QUADRANT_INIT (&I);
  P4EST_QUADRANT_INIT (&P);
  P4EST_QUADRANT_INIT (&Q);

  A.x = -qone << P4EST_MAXLEVEL;
  A.y = -qone << P4EST_MAXLEVEL;
  A.level = 0;

  B.x = qone << P4EST_MAXLEVEL;
  B.y = -qone << P4EST_MAXLEVEL;
  B.level = 0;

  C.x = -qone << P4EST_MAXLEVEL;
  C.y = qone << P4EST_MAXLEVEL;
  C.level = 0;

  D.x = qone << P4EST_MAXLEVEL;
  D.y = qone << P4EST_MAXLEVEL;
  D.level = 0;

  /* this one is outside the 3x3 box */
  E.x = -qone << (P4EST_MAXLEVEL + 1);
  E.y = -qone;
  E.level = 0;

  F.x = P4EST_ROOT_LEN + (P4EST_ROOT_LEN - mh);
  F.y = P4EST_ROOT_LEN + (P4EST_ROOT_LEN - mh);
  F.level = P4EST_QMAXLEVEL;

  G.x = -mh;
  G.y = -mh;
  G.level = P4EST_QMAXLEVEL;

  H.x = -qone << (P4EST_MAXLEVEL - 1);
  H.y = -qone << (P4EST_MAXLEVEL - 1);
  H.level = 1;

  I.x = -qone << P4EST_MAXLEVEL;
  I.y = -qone << (P4EST_MAXLEVEL - 1);
  I.level = 1;

  check_linear_id (&A, &A);
  check_linear_id (&A, &B);
  check_linear_id (&A, &C);
  check_linear_id (&A, &D);
  /* check_linear_id (&A, &E); */
  check_linear_id (&A, &F);
  check_linear_id (&A, &G);
  check_linear_id (&A, &H);
  check_linear_id (&A, &I);

  check_linear_id (&B, &A);
  check_linear_id (&B, &B);
  check_linear_id (&B, &C);
  check_linear_id (&B, &D);
  /* check_linear_id (&B, &E); */
  check_linear_id (&B, &F);
  check_linear_id (&B, &G);
  check_linear_id (&B, &H);
  check_linear_id (&B, &I);

  check_linear_id (&D, &A);
  check_linear_id (&D, &B);
  check_linear_id (&D, &C);
  check_linear_id (&D, &D);
  /* check_linear_id (&D, &E); */
  check_linear_id (&D, &F);
  check_linear_id (&D, &G);
  check_linear_id (&D, &H);
  check_linear_id (&D, &I);

  check_linear_id (&G, &A);
  check_linear_id (&G, &B);
  check_linear_id (&G, &C);
  check_linear_id (&G, &D);
  /* check_linear_id (&G, &E); */
  check_linear_id (&G, &F);
  check_linear_id (&G, &G);
  check_linear_id (&G, &H);
  check_linear_id (&G, &I);

  check_linear_id (&I, &A);
  check_linear_id (&I, &B);
  check_linear_id (&I, &C);
  check_linear_id (&I, &D);
  /* check_linear_id (&I, &E); */
  check_linear_id (&I, &F);
  check_linear_id (&I, &G);
  check_linear_id (&I, &H);
  check_linear_id (&I, &I);

  SC_CHECK_ABORT (p4est_quadrant_is_extended (&A) == 1, "is_extended A");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&B) == 1, "is_extended B");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&C) == 1, "is_extended C");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&D) == 1, "is_extended D");
  SC_CHECK_ABORT (!p4est_quadrant_is_extended (&E) == 1, "!is_extended E");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&F) == 1, "is_extended F");
  SC_CHECK_ABORT (p4est_quadrant_is_extended (&G) == 1, "is_extended G");

  SC_CHECK_ABORT (p4est_quadrant_compare (&A, &A) == 0, "compare");
  SC_CHECK_ABORT (p4est_quadrant_compare (&A, &B) > 0, "compare");
  SC_CHECK_ABORT (p4est_quadrant_compare (&B, &A) < 0, "compare");

  SC_CHECK_ABORT (p4est_quadrant_compare (&F, &F) == 0, "compare");
  SC_CHECK_ABORT (p4est_quadrant_compare (&G, &F) > 0, "compare");
  SC_CHECK_ABORT (p4est_quadrant_compare (&F, &G) < 0, "compare");

  A.p.which_tree = 0;
  B.p.piggy1.which_tree = 0;
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&A, &A) == 0,
                  "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&A, &B) > 0, "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&B, &A) < 0, "compare_piggy");

  F.p.piggy2.which_tree = 0;
  G.p.which_tree = 0;
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&F, &F) == 0,
                  "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&G, &F) > 0, "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&F, &G) < 0, "compare_piggy");

  F.p.piggy1.which_tree = (p4est_topidx_t) P4EST_TOPIDX_MAX - 3;
  G.p.piggy2.which_tree = (p4est_topidx_t) P4EST_TOPIDX_MAX / 2;
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&F, &F) == 0,
                  "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&G, &F) < 0, "compare_piggy");
  SC_CHECK_ABORT (p4est_quadrant_compare_piggy (&F, &G) > 0, "compare_piggy");

  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &A) == 1, "is_equal");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&F, &F) == 1, "is_equal");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&G, &G) == 1, "is_equal");

  /* Not sure if these make sense because D, O and A are all level 0 */
#if 0
  SC_CHECK_ABORT (p4est_quadrant_is_sibling (&D, &O) == 1, "is_sibling");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling (&D, &A) == 0, "is_sibling");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (&D, &O) == 1, "is_sibling_D");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (&D, &A) == 0, "is_sibling_D");
#endif

  SC_CHECK_ABORT (p4est_quadrant_is_sibling (&I, &H) == 1, "is_sibling");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling (&I, &G) == 0, "is_sibling");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (&I, &H) == 1, "is_sibling_D");
  SC_CHECK_ABORT (p4est_quadrant_is_sibling_D (&I, &G) == 0, "is_sibling_D");

  SC_CHECK_ABORT (p4est_quadrant_is_parent (&A, &H) == 1, "is_parent");
  SC_CHECK_ABORT (p4est_quadrant_is_parent (&H, &A) == 0, "is_parent");
  SC_CHECK_ABORT (p4est_quadrant_is_parent (&A, &D) == 0, "is_parent");
  SC_CHECK_ABORT (p4est_quadrant_is_parent_D (&A, &H) == 1, "is_parent_D");

  SC_CHECK_ABORT (p4est_quadrant_is_ancestor (&A, &G) == 1, "is_ancestor");
  SC_CHECK_ABORT (p4est_quadrant_is_ancestor (&G, &A) == 0, "is_ancestor");

  SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (&A, &G) == 1,
                  "is_ancestor_D");
  SC_CHECK_ABORT (p4est_quadrant_is_ancestor_D (&G, &A) == 0,
                  "is_ancestor_D");

  /* SC_CHECK_ABORT (p4est_quadrant_is_next (&F, &E) == 1, "is_next"); */
  SC_CHECK_ABORT (p4est_quadrant_is_next (&A, &H) == 0, "is_next");
  /* SC_CHECK_ABORT (p4est_quadrant_is_next_D (&F, &E) == 1, "is_next_D"); */
  SC_CHECK_ABORT (p4est_quadrant_is_next_D (&A, &H) == 0, "is_next_D");

  p4est_quadrant_parent (&H, &a);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &a) == 1, "parent");

  p4est_quadrant_sibling (&I, &h, 3);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&H, &h) == 1, "sibling");

  p4est_quadrant_children (&A, &c0, &c1, &c2, &c3);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&c2, &I) == 1, "children");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&c3, &H) == 1, "children");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&c3, &G) == 0, "children");

  SC_CHECK_ABORT (p4est_quadrant_is_family (&c0, &c1, &c2, &c3) == 1,
                  "is_family");
  id0 = p4est_quadrant_child_id (&c0);
  id1 = p4est_quadrant_child_id (&c1);
  id2 = p4est_quadrant_child_id (&c2);
  id3 = p4est_quadrant_child_id (&c3);
  SC_CHECK_ABORT (id0 == 0 && id1 == 1 && id2 == 2 && id3 == 3, "child_id");
  SC_CHECK_ABORT (p4est_quadrant_child_id (&G) == 3, "child_id");

  p4est_quadrant_first_descendant (&A, &c1, 1);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&c0, &c1) == 1,
                  "first_descendant");

  p4est_quadrant_last_descendant (&A, &g, P4EST_QMAXLEVEL);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&G, &g) == 1, "last_descendant");

  Fid = p4est_quadrant_linear_id (&F, P4EST_QMAXLEVEL);
  p4est_quadrant_set_morton (&f, P4EST_QMAXLEVEL, Fid);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&F, &f) == 1,
                  "set_morton/linear_id");

  Aid = p4est_quadrant_linear_id (&A, 0);
  p4est_quadrant_set_morton (&a, 0, Aid);
  SC_CHECK_ABORT (Aid == 15, "linear_id");
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &a) == 1,
                  "set_morton/linear_id");

  p4est_nearest_common_ancestor (&I, &H, &a);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &a) == 1, "ancestor");

  p4est_nearest_common_ancestor_D (&I, &H, &a);
  SC_CHECK_ABORT (p4est_quadrant_is_equal (&A, &a) == 1, "ancestor_D");

  for (k = 0; k < 16; ++k) {
    if (k != 4 && k != 6 && k != 8 && k != 9 && k != 12 && k != 13 && k != 14) {
      p4est_quadrant_set_morton (&E, 0, (uint64_t) k);
    }
  }
  p4est_quadrant_set_morton (&P, 0, 10);
  p4est_quadrant_set_morton (&Q, 0, 11);
  SC_CHECK_ABORT (p4est_quadrant_is_next (&P, &Q), "is_next");
  SC_CHECK_ABORT (!p4est_quadrant_is_next (&A, &Q), "is_next");

  sc_finalize ();

  mpiret = sc_MPI_Finalize ();
  SC_CHECK_MPI (mpiret);

  return 0;
}
Beispiel #7
0
int
check_balance_seeds (p4est_quadrant_t * q, p4est_quadrant_t * p,
                     p4est_connect_type_t b, sc_array_t * seeds)
{
  int                 ib;
  int                 level = q->level;
  p4est_quadrant_t   *s, *t;
  sc_array_t         *thislevel = sc_array_new (sizeof (p4est_quadrant_t));
  sc_array_t         *nextlevel = sc_array_new (sizeof (p4est_quadrant_t));
  sc_array_t         *temparray;
  p4est_quadrant_t    temp1, temp2;
  int                 f, c;
#ifdef P4_TO_P8
  int                 e;
#endif
  int                 stop = 0;

  sc_array_resize (seeds, 0);

  s = (p4est_quadrant_t *) sc_array_push (thislevel);
  p4est_quadrant_sibling (q, s, 0);

#ifndef P4_TO_P8
  if (b == P4EST_CONNECT_FACE) {
    ib = 0;
  }
  else {
    ib = 1;
  }
#else
  if (b == P8EST_CONNECT_FACE) {
    ib = 0;
  }
  else if (b == P8EST_CONNECT_EDGE) {
    ib = 1;
  }
  else {
    ib = 2;
  }
#endif

  while (level > p->level + 1) {
    size_t              nlast = thislevel->elem_count;
    size_t              zz;

    stop = 0;

    for (zz = 0; zz < nlast; zz++) {
      s = p4est_quadrant_array_index (thislevel, zz);
      P4EST_ASSERT (p4est_quadrant_child_id (s) == 0);
      p4est_quadrant_parent (s, &temp1);
      for (f = 0; f < P4EST_FACES; f++) {
        p4est_quadrant_face_neighbor (&temp1, f, &temp2);
        if (is_farther (&temp1, p, &temp2)) {
          continue;
        }
        if (p4est_quadrant_is_ancestor (p, &temp2)) {
          stop = 1;
          sc_array_resize (seeds, seeds->elem_count + 1);
          t = p4est_quadrant_array_index (seeds, seeds->elem_count - 1);
          p4est_quadrant_sibling (&temp2, t, 0);
        }
        else if (p4est_quadrant_is_inside_root (&temp2)) {
          t = (p4est_quadrant_t *) sc_array_push (nextlevel);
          p4est_quadrant_sibling (&temp2, t, 0);
        }
      }

      if (ib == 0) {
        continue;
      }

#ifdef P4_TO_P8
      for (e = 0; e < P8EST_EDGES; e++) {
        p8est_quadrant_edge_neighbor (&temp1, e, &temp2);
        if (is_farther (&temp1, p, &temp2)) {
          continue;
        }
        if (p4est_quadrant_is_ancestor (p, &temp2)) {
          stop = 1;
          sc_array_resize (seeds, seeds->elem_count + 1);
          t = p4est_quadrant_array_index (seeds, seeds->elem_count - 1);
          p4est_quadrant_sibling (&temp2, t, 0);
        }
        else if (p4est_quadrant_is_inside_root (&temp2)) {
          t = (p4est_quadrant_t *) sc_array_push (nextlevel);
          p4est_quadrant_sibling (&temp2, t, 0);
        }
      }

      if (ib == 1) {
        continue;
      }
#endif

      for (c = 0; c < P4EST_CHILDREN; c++) {
        p4est_quadrant_corner_neighbor (&temp1, c, &temp2);
        if (is_farther (&temp1, p, &temp2)) {
          continue;
        }
        if (p4est_quadrant_is_ancestor (p, &temp2)) {
          stop = 1;
          sc_array_resize (seeds, seeds->elem_count + 1);
          t = p4est_quadrant_array_index (seeds, seeds->elem_count - 1);
          p4est_quadrant_sibling (&temp2, t, 0);
        }
        else if (p4est_quadrant_is_inside_root (&temp2)) {
          t = (p4est_quadrant_t *) sc_array_push (nextlevel);
          p4est_quadrant_sibling (&temp2, t, 0);
        }
      }
    }

    if (stop) {
      sc_array_sort (seeds, p4est_quadrant_compare);
      sc_array_uniq (seeds, p4est_quadrant_compare);

#ifdef P4_TO_P8
      if (!ib && seeds->elem_count == 1) {
        sc_array_sort (nextlevel, p4est_quadrant_compare);
        sc_array_uniq (nextlevel, p4est_quadrant_compare);
        temparray = thislevel;
        thislevel = nextlevel;
        nextlevel = temparray;
        sc_array_reset (nextlevel);
        level--;

        nlast = thislevel->elem_count;
        for (zz = 0; zz < nlast; zz++) {
          s = p4est_quadrant_array_index (thislevel, zz);
          P4EST_ASSERT (p4est_quadrant_child_id (s) == 0);
          p4est_quadrant_parent (s, &temp1);
          for (f = 0; f < P4EST_FACES; f++) {
            p4est_quadrant_face_neighbor (&temp1, f, &temp2);
            if (p4est_quadrant_is_ancestor (p, &temp2)) {
              int                 f2;
              p4est_quadrant_t    a;
              p4est_quadrant_t    u;

              t = p4est_quadrant_array_index (seeds, 0);

              p8est_quadrant_parent (t, &a);

              for (f2 = 0; f2 < P8EST_FACES; f2++) {
                if (f2 / 2 == f / 2) {
                  continue;
                }
                p8est_quadrant_face_neighbor (&a, f2, &u);

                if (p8est_quadrant_is_equal (&temp2, &u) ||
                    p8est_quadrant_is_sibling (&temp2, &u)) {
                  break;
                }
              }

              if (f2 == P8EST_FACES) {
                sc_array_resize (seeds, seeds->elem_count + 1);
                t = p4est_quadrant_array_index (seeds, seeds->elem_count - 1);
                p4est_quadrant_sibling (&temp2, t, 0);
              }
            }
          }
        }
      }
#endif
      sc_array_sort (seeds, p4est_quadrant_compare);
      sc_array_uniq (seeds, p4est_quadrant_compare);

      break;
    }
    sc_array_sort (nextlevel, p4est_quadrant_compare);
    sc_array_uniq (nextlevel, p4est_quadrant_compare);
    temparray = thislevel;
    thislevel = nextlevel;
    nextlevel = temparray;
    sc_array_reset (nextlevel);
    level--;
  }

  sc_array_destroy (thislevel);
  sc_array_destroy (nextlevel);

  return stop;
}
Beispiel #8
0
p6est_lnodes_t     *
p6est_lnodes_new (p6est_t * p6est, p6est_ghost_t * ghost, int degree)
{
  p6est_lnodes_t     *lnodes;
  p6est_profile_t    *profile;
  p4est_lnodes_t     *clnodes;
  int                 nperelem = (degree + 1) * (degree + 1) * (degree + 1);
  /* int nperface = (degree - 1) * (degree - 1); */
  /* int nperedge = (degree - 1); */
  p4est_locidx_t      ncid, cid, enid, *en;
  p4est_locidx_t      nnodecols;
  p4est_locidx_t      nelemcols;
  p4est_locidx_t      nll;
  p4est_locidx_t      nlayers;
  p4est_locidx_t     *layernodecount;
  p4est_locidx_t     *layernodeoffsets;
  p4est_locidx_t (*lr)[2];
  p4est_locidx_t      ncolnodes;
  p4est_locidx_t     *global_owned_count;
  p4est_locidx_t      num_owned, num_local;
  p4est_gloidx_t      gnum_owned, offset;
  p4est_gloidx_t     *owned_offsets;
  int                 i, j, k;
  int                 mpisize = p6est->mpisize;
  int                 mpiret;
  sc_array_t          lnoview;
  size_t              zz, nsharers;
  int                 Nrp = degree + 1;

  if (degree == 1) {
    p4est_locidx_t      eid, nid, enid2, nid2;
    p4est_locidx_t     *newnum, newlocal, newowned;

    P4EST_GLOBAL_PRODUCTION ("Into adapt p6est_lnodes_new for degree = 1\n");
    p4est_log_indent_push ();
    /* adapt 2 to 1 */

    lnodes = p6est_lnodes_new (p6est, ghost, 2);
    nll = p6est->layers->elem_count;
    num_local = lnodes->num_local_nodes;
    num_owned = lnodes->owned_count;

    en = lnodes->element_nodes;

    newnum = P4EST_ALLOC (p4est_locidx_t, P8EST_INSUL * nll);
    memset (newnum, -1, P8EST_INSUL * nll * sizeof (p4est_locidx_t));

    for (enid = 0, eid = 0; eid < nll; eid++) {
      for (k = 0; k < 3; k++) {
        for (j = 0; j < 3; j++) {
          for (i = 0; i < 3; i++, enid++) {
            if (k != 1 && j != 1 && i != 1) {
              newnum[en[enid]] = 0;
            }
          }
        }
      }
    }

    newlocal = 0;
    newowned = 0;
    for (nid = 0; nid < num_local; nid++) {
      if (newnum[nid] >= 0) {
        newnum[nid] = newlocal++;
        if (nid < num_owned) {
          newowned++;
        }
      }
    }

    /* compress en */
    enid2 = 0;
    for (enid = 0, eid = 0; eid < nll; eid++) {
      for (k = 0; k < 3; k++) {
        for (j = 0; j < 3; j++) {
          for (i = 0; i < 3; i++, enid++) {
            if (k != 1 && j != 1 && i != 1) {
              en[enid2++] = newnum[en[enid]];
            }
          }
        }
      }
    }
    P4EST_ASSERT (enid2 == P8EST_CHILDREN * nll);
    lnodes->element_nodes =
      P4EST_REALLOC (en, p4est_locidx_t, P8EST_CHILDREN * nll);

    owned_offsets = P4EST_ALLOC (p4est_gloidx_t, mpisize + 1);

    mpiret = sc_MPI_Allgather (&newowned, 1, P4EST_MPI_LOCIDX,
                               lnodes->global_owned_count, 1,
                               P4EST_MPI_LOCIDX, p6est->mpicomm);

    owned_offsets[0] = 0;
    for (i = 0; i < mpisize; i++) {
      owned_offsets[i + 1] = owned_offsets[i] + lnodes->global_owned_count[i];
    }
    lnodes->global_offset = owned_offsets[p6est->mpirank];
    lnodes->num_local_nodes = newlocal;
    lnodes->owned_count = newowned;
    lnodes->degree = 1;
    lnodes->vnodes = P8EST_CHILDREN;

    lnodes->nonlocal_nodes =
      P4EST_REALLOC (lnodes->nonlocal_nodes, p4est_gloidx_t,
                     newlocal - newowned);

    nsharers = lnodes->sharers->elem_count;
    for (zz = 0; zz < nsharers; zz++) {
      size_t              nshared, zy, zw;
      p6est_lnodes_rank_t *rank = p6est_lnodes_rank_array_index
        (lnodes->sharers, zz);

      if (rank->owned_count) {
        if (rank->rank != p6est->mpirank) {
          p4est_locidx_t      newrankowned = 0;
          p4est_locidx_t      newrankoffset = -1;

          for (nid = rank->owned_offset; nid < rank->owned_offset +
               rank->owned_count; nid++) {
            if (newnum[nid] >= 0) {
              lnodes->nonlocal_nodes[newnum[nid] - newowned] =
                owned_offsets[rank->rank];
              newrankowned++;
              if (newrankoffset < 0) {
                newrankoffset = newnum[nid];
              }
            }
          }
          rank->owned_offset = newrankoffset;
          rank->owned_count = newrankowned;
        }
        else {
          rank->owned_offset = 0;
          rank->owned_count = newowned;
        }
      }
      rank->shared_mine_count = 0;
      rank->shared_mine_offset = -1;
      zw = 0;
      nshared = rank->shared_nodes.elem_count;
      for (zy = 0; zy < nshared; zy++) {

        nid = *((p4est_locidx_t *) sc_array_index (&rank->shared_nodes, zy));
        if (newnum[nid] >= 0) {
          p4est_locidx_t     *lp;

          lp = (p4est_locidx_t *) sc_array_index (&rank->shared_nodes, zw++);
          *lp = newnum[nid];
          if (newnum[nid] < newowned) {
            rank->shared_mine_count++;
            if (rank->shared_mine_offset == -1) {
              rank->shared_mine_offset = zw - 1;
            }
          }
        }
      }
      sc_array_resize (&rank->shared_nodes, zw);
    }

    /* send local numbers to others */
    {
      sc_array_t          view;

      sc_array_init_data (&view, newnum, sizeof (p4est_locidx_t), newlocal);

      p6est_lnodes_share_owned (&view, lnodes);
    }

    nid2 = 0;
    for (nid = num_owned; nid < num_local; nid++) {
      if (newnum[nid] >= 0) {
        lnodes->nonlocal_nodes[nid2++] += (p4est_gloidx_t) newnum[nid];
      }
    }
    P4EST_ASSERT (nid2 == newlocal - newowned);

    P4EST_FREE (owned_offsets);
    P4EST_FREE (newnum);

    p4est_log_indent_pop ();
    P4EST_GLOBAL_PRODUCTION ("Done adapt p6est_lnodes_new for degree = 1\n");

    return lnodes;
  }

  P4EST_GLOBAL_PRODUCTION ("Into p6est_lnodes_new\n");
  p4est_log_indent_push ();

  P4EST_ASSERT (degree >= 1);

  lnodes = P4EST_ALLOC (p6est_lnodes_t, 1);

  /* first get the profile */
  profile = p6est_profile_new_local (p6est, ghost, P6EST_PROFILE_INTERSECTION,
                                     P8EST_CONNECT_FULL, degree);
  p6est_profile_sync (profile);

  lr = (p4est_locidx_t (*)[2]) profile->lnode_ranges;

  clnodes = profile->lnodes;

  nnodecols = clnodes->num_local_nodes;
  nelemcols = clnodes->num_local_elements;
  en = clnodes->element_nodes;
  layernodecount = P4EST_ALLOC_ZERO (p4est_locidx_t, nnodecols);
  layernodeoffsets = P4EST_ALLOC_ZERO (p4est_locidx_t, nnodecols + 1);
  for (cid = 0, enid = 0; cid < nelemcols; cid++) {
    for (j = 0; j < Nrp; j++) {
      for (i = 0; i < Nrp; i++, enid++) {
        ncid = en[enid];
        nlayers = lr[ncid][1];
        P4EST_ASSERT (nlayers);
        ncolnodes = nlayers * degree + 1;
        layernodecount[ncid] = ncolnodes;
      }
    }
  }

  num_owned = 0;
  num_local = 0;
  for (ncid = 0; ncid < nnodecols; ncid++) {
    num_local += layernodecount[ncid];
    if (ncid < clnodes->owned_count) {
      num_owned += layernodecount[ncid];
    }
  }

  P4EST_VERBOSEF ("p6est_lnodes: %d owned %d local\n", num_owned, num_local);

  if (nnodecols) {
    layernodeoffsets[0] = 0;
    for (ncid = 0; ncid < nnodecols; ncid++) {
      layernodeoffsets[ncid + 1] = layernodeoffsets[ncid] +
        layernodecount[ncid];
    }
  }

  gnum_owned = num_owned;

  owned_offsets = P4EST_ALLOC (p4est_gloidx_t, mpisize + 1);
  global_owned_count = P4EST_ALLOC (p4est_locidx_t, mpisize);

  mpiret = sc_MPI_Allgather (&gnum_owned, 1, P4EST_MPI_GLOIDX,
                             owned_offsets, 1, P4EST_MPI_GLOIDX,
                             p6est->mpicomm);
  SC_CHECK_MPI (mpiret);

  offset = 0;
  for (i = 0; i < mpisize; i++) {
    global_owned_count[i] = (p4est_locidx_t) owned_offsets[i];
    gnum_owned = owned_offsets[i];
    owned_offsets[i] = offset;
    offset += gnum_owned;
  }
  owned_offsets[mpisize] = offset;

  nll = p6est->layers->elem_count;
  nsharers = clnodes->sharers->elem_count;

  lnodes->mpicomm = p6est->mpicomm;
  lnodes->num_local_nodes = num_local;
  lnodes->owned_count = num_owned;
  lnodes->global_offset = owned_offsets[p6est->mpirank];
  lnodes->nonlocal_nodes =
    P4EST_ALLOC (p4est_gloidx_t, num_local - num_owned);
  lnodes->sharers =
    sc_array_new_size (sizeof (p6est_lnodes_rank_t), nsharers);
  lnodes->global_owned_count = global_owned_count;

  lnodes->degree = degree;
  lnodes->vnodes = nperelem;
  lnodes->num_local_elements = nll;
  lnodes->face_code = P4EST_ALLOC (p6est_lnodes_code_t, nll);
  lnodes->element_nodes = P4EST_ALLOC (p4est_locidx_t, nperelem * nll);

  p6est_profile_element_to_node (p6est, profile, layernodeoffsets,
                                 lnodes->element_nodes, lnodes->face_code);

  for (zz = 0; zz < nsharers; zz++) {
    p4est_lnodes_rank_t *crank = p4est_lnodes_rank_array_index
      (clnodes->sharers, zz);
    p6est_lnodes_rank_t *rank = p6est_lnodes_rank_array_index
      (lnodes->sharers, zz);
    size_t              zy;
    size_t              nshared;

    rank->rank = crank->rank;
    sc_array_init (&rank->shared_nodes, sizeof (p4est_locidx_t));
    nshared = crank->shared_nodes.elem_count;

    rank->owned_offset = -1;
    rank->owned_count = 0;
    rank->shared_mine_count = 0;
    rank->shared_mine_offset = -1;
    for (zy = 0; zy < nshared; zy++) {
      p4est_locidx_t      cnid =
        *((p4est_locidx_t *) sc_array_index (&crank->shared_nodes, zy));
      p4est_locidx_t     *lp;
      p4est_locidx_t      nthis, il;
      p4est_locidx_t      old_count = rank->shared_nodes.elem_count;

      nthis = layernodecount[cnid];
      lp =
        (p4est_locidx_t *) sc_array_push_count (&rank->shared_nodes, nthis);

      for (il = 0; il < nthis; il++) {
        lp[il] = layernodeoffsets[cnid] + il;
        if (zy >= (size_t) crank->shared_mine_offset
            && (p4est_locidx_t) zy - crank->shared_mine_offset <
            crank->shared_mine_count) {
          rank->shared_mine_count++;
          if (rank->shared_mine_offset == -1) {
            rank->shared_mine_offset = old_count + il;
          }
        }
        if (cnid >= crank->owned_offset
            && cnid - crank->owned_offset < crank->owned_count) {
          rank->owned_count++;
          if (rank->owned_offset == -1) {
            rank->owned_offset = lp[il];
          }
        }
      }
    }
    if (rank->rank == p6est->mpirank) {
      rank->owned_offset = 0;
      rank->owned_count = num_owned;
    }
  }

  memcpy (layernodecount, layernodeoffsets,
          nnodecols * sizeof (p4est_locidx_t));
  sc_array_init_data (&lnoview, layernodecount, sizeof (p4est_locidx_t),
                      (size_t) nnodecols);

  p4est_lnodes_share_owned (&lnoview, clnodes);

  for (zz = 0; zz < nsharers; zz++) {
    p4est_lnodes_rank_t *crank = p4est_lnodes_rank_array_index
      (clnodes->sharers, zz);

    if (crank->rank == p6est->mpirank) {
      continue;
    }

    for (ncid = crank->owned_offset;
         ncid < crank->owned_offset + crank->owned_count; ncid++) {
      p4est_gloidx_t      owners_offset;
      p4est_locidx_t      nid;

      P4EST_ASSERT (ncid >= clnodes->owned_count);
      owners_offset = owned_offsets[crank->rank] + layernodecount[ncid];
      for (nid = layernodeoffsets[ncid]; nid < layernodeoffsets[ncid + 1];
           nid++) {
        P4EST_ASSERT (nid >= num_owned);
        P4EST_ASSERT (nid < num_local);
        lnodes->nonlocal_nodes[nid - num_owned] = owners_offset++;
      }
    }
  }

  p6est_profile_destroy (profile);

  P4EST_FREE (owned_offsets);
  P4EST_FREE (layernodecount);
  P4EST_FREE (layernodeoffsets);

  p4est_log_indent_pop ();
  P4EST_GLOBAL_PRODUCTION ("Done p6est_lnodes_new\n");

  return lnodes;
}
Beispiel #9
0
int
p4est_balance_seeds (p4est_quadrant_t * q, p4est_quadrant_t * p,
                     p4est_connect_type_t balance, sc_array_t * seeds)
{
  int                 outside[P4EST_DIM];
  int                 i;
  int                 type = 0;
  p4est_qcoord_t      diff;
  p4est_qcoord_t      qc, pc;
  p4est_qcoord_t      pdist = P4EST_QUADRANT_LEN (p->level);
  p4est_qcoord_t      qdist = P4EST_QUADRANT_LEN (q->level);
  p4est_quadrant_t   *s;
  int                 f, c;
#ifdef P4_TO_P8
  int                 e;
#endif

  if (seeds != NULL) {
    sc_array_resize (seeds, 0);
  }

  /* basic level comparison */
  if (q->level <= p->level + 1) {
    return 0;
  }

  for (i = 0; i < P4EST_DIM; i++) {
    switch (i) {
    case 0:
      qc = q->x;
      pc = p->x;
      break;
    case 1:
      qc = q->y;
      pc = p->y;
      break;
#ifdef P4_TO_P8
    case 2:
      qc = q->z;
      pc = p->z;
      break;
#endif
    default:
      SC_ABORT_NOT_REACHED ();
      break;
    }
    outside[i] = 0;
    if (qc < pc) {
      diff = pc - qc;
      /* insulation layer comparison */
      if (diff > pdist) {
        return 0;
      }
      outside[i] = -1;
    }
    else {
      diff = (qc + qdist) - (pc + pdist);
      /* insulation layer comparison */
      if (diff > pdist) {
        return 0;
      }
      if (diff > 0) {
        outside[i] = 1;
      }
    }
    type += (outside[i] ? 1 : 0);
  }

  switch (type) {
  case 0:
    /* q is inside p, so it is its own seed */
    sc_array_resize (seeds, seeds->elem_count + 1);
    s = p4est_quadrant_array_index (seeds, seeds->elem_count - 1);
    *s = *q;
    return 1;
  case 1:
    for (i = 0; i < P4EST_DIM; i++) {
      if (outside[i]) {
        f = 2 * i + (outside[i] > 0 ? 1 : 0);
        return p4est_balance_seeds_face (q, p, f, balance, seeds);
      }
    }
    SC_ABORT_NOT_REACHED ();
    return -1;
  case P4EST_DIM:
    c = 0;
    for (i = 0; i < P4EST_DIM; i++) {
      c += (outside[i] > 0 ? (1 << i) : 0);
    }
    return p4est_balance_seeds_corner (q, p, c, balance, seeds);
#ifdef P4_TO_P8
  case 2:
    e = 0;
    c = 0;
    for (i = 2; i >= 0; i--) {
      if (outside[i]) {
        c <<= 1;
        c |= (outside[i] > 0 ? 1 : 0);
      }
      else {
        e |= (i << 2);
      }
    }
    e |= c;
    return p8est_balance_seeds_edge (q, p, e, balance, seeds);
#endif
  default:
    SC_ABORT_NOT_REACHED ();
    return -1;
  }
}
Beispiel #10
0
void
p8est_quadrant_edge_neighbor_extra (const p4est_quadrant_t * q, p4est_topidx_t
                                    t, int edge, sc_array_t * quads,
                                    sc_array_t * treeids,
                                    p4est_connectivity_t * conn)
{
  p4est_quadrant_t    temp;
  p4est_quadrant_t   *qp;
  p4est_topidx_t     *tp;
  int                 face;
  p8est_edge_info_t   ei;
  p8est_edge_transform_t *et;
  sc_array_t         *eta;
  size_t              etree;

  eta = &ei.edge_transforms;

  P4EST_ASSERT (SC_ARRAY_IS_OWNER (quads));
  P4EST_ASSERT (quads->elem_count == 0);
  P4EST_ASSERT (quads->elem_size == sizeof (p4est_quadrant_t));
  P4EST_ASSERT (SC_ARRAY_IS_OWNER (treeids));
  P4EST_ASSERT (treeids->elem_count == 0);
  P4EST_ASSERT (treeids->elem_size == sizeof (p4est_topidx_t));

  p8est_quadrant_edge_neighbor (q, edge, &temp);
  if (p4est_quadrant_is_inside_root (&temp)) {
    qp = p4est_quadrant_array_push (quads);
    *qp = temp;
    tp = (p4est_topidx_t *) sc_array_push (treeids);
    *tp = t;
    return;
  }

  if (!p8est_quadrant_is_outside_edge (&temp)) {
    qp = p4est_quadrant_array_push (quads);
    tp = (p4est_topidx_t *) sc_array_push (treeids);

    face = p8est_edge_faces[edge][0];
    p4est_quadrant_face_neighbor (q, face, &temp);
    if (p4est_quadrant_is_inside_root (&temp)) {
      face = p8est_edge_faces[edge][1];
      *tp = p8est_quadrant_face_neighbor_extra (&temp, t, face, qp, conn);
      if (*tp == -1) {
        qp = (p4est_quadrant_t *) sc_array_pop (quads);
        tp = (p4est_topidx_t *) sc_array_pop (treeids);
      }
      return;
    }
    face = p8est_edge_faces[edge][1];
    p4est_quadrant_face_neighbor (q, face, &temp);
    P4EST_ASSERT (p4est_quadrant_is_inside_root (&temp));
    face = p8est_edge_faces[edge][0];
    *tp = p8est_quadrant_face_neighbor_extra (&temp, t, face, qp, conn);
    if (*tp == -1) {
      qp = (p4est_quadrant_t *) sc_array_pop (quads);
      tp = (p4est_topidx_t *) sc_array_pop (treeids);
    }
    return;
  }
  sc_array_init (eta, sizeof (p8est_edge_transform_t));
  p8est_find_edge_transform (conn, t, edge, &ei);
  sc_array_resize (quads, eta->elem_count);
  sc_array_resize (treeids, eta->elem_count);
  for (etree = 0; etree < eta->elem_count; etree++) {
    qp = p4est_quadrant_array_index (quads, etree);
    tp = (p4est_topidx_t *) sc_array_index (treeids, etree);
    et = p8est_edge_array_index (eta, etree);
    p8est_quadrant_transform_edge (&temp, qp, &ei, et, 1);
    *tp = et->ntree;
  }
  sc_array_reset (eta);
}
Beispiel #11
0
int
main (int argc, char **argv)
{
  int                 i, i1, i2, i3, i3last, i4, i4last, temp, count;
  size_t              s, swaps1, swaps2, swaps3, total1, total2, total3;
  ssize_t             searched;
  int                *pi;
  sc_array_t         *a1, *a2, *a3, *a4;
  int                 mpiret;
  double              start, elapsed_pqueue, elapsed_qsort;

  mpiret = sc_MPI_Init (&argc, &argv);
  SC_CHECK_MPI (mpiret);

  sc_init (sc_MPI_COMM_WORLD, 1, 1, NULL, SC_LP_DEFAULT);

  a1 = sc_array_new (sizeof (int));
  a2 = sc_array_new (sizeof (int));
  a3 = sc_array_new (sizeof (int));
  a4 = sc_array_new (sizeof (int));

#ifdef THEBIGTEST
  count = 325323;
#else
  count = 3251;
#endif
  SC_INFOF ("Test pqueue with count %d\n", count);

  start = -sc_MPI_Wtime ();

  swaps1 = swaps2 = swaps3 = 0;
  total1 = total2 = total3 = 0;
  for (i = 0; i < count; ++i) {
    *(int *) sc_array_push (a1) = i;
    s = sc_array_pqueue_add (a1, &temp, compar);
    swaps1 += ((s > 0) ? 1 : 0);
    total1 += s;

    *(int *) sc_array_push (a2) = count - i - 1;
    s = sc_array_pqueue_add (a2, &temp, compar);
    swaps2 += ((s > 0) ? 1 : 0);
    total2 += s;

    *(int *) sc_array_push (a3) = (15 * i) % 172;
    s = sc_array_pqueue_add (a3, &temp, compar);
    swaps3 += ((s > 0) ? 1 : 0);
    total3 += s;
  }
  SC_CHECK_ABORT (swaps1 == 0 && total1 == 0, "pqueue_add");
  SC_VERBOSEF ("   Swaps %lld %lld %lld Total %lld %lld %lld\n",
               (long long) swaps1, (long long) swaps2, (long long) swaps3,
               (long long) total1, (long long) total2, (long long) total3);

  temp = 52;
  searched = sc_array_bsearch (a1, &temp, compar);
  SC_CHECK_ABORT (searched != -1, "array_bsearch_index");
  pi = (int *) sc_array_index_ssize_t (a1, searched);
  SC_CHECK_ABORT (*pi == temp, "array_bsearch");

  i3last = -1;
  swaps1 = swaps2 = swaps3 = 0;
  total1 = total2 = total3 = 0;
  for (i = 0; i < count; ++i) {
    s = sc_array_pqueue_pop (a1, &i1, compar);
    swaps1 += ((s > 0) ? 1 : 0);
    total1 += s;

    s = sc_array_pqueue_pop (a2, &i2, compar);
    swaps2 += ((s > 0) ? 1 : 0);
    total2 += s;

    s = sc_array_pqueue_pop (a3, &i3, compar);
    swaps3 += ((s > 0) ? 1 : 0);
    total3 += s;

    SC_CHECK_ABORT (i == i1 && i == i2, "pqueue_pop");
    SC_CHECK_ABORT (i3 >= i3last, "pqueue_pop");
    i3last = i3;
  }
  SC_VERBOSEF ("   Swaps %lld %lld %lld Total %lld %lld %lld\n",
               (long long) swaps1, (long long) swaps2, (long long) swaps3,
               (long long) total1, (long long) total2, (long long) total3);

  elapsed_pqueue = start + sc_MPI_Wtime ();

  sc_array_destroy (a1);
  sc_array_destroy (a2);
  sc_array_destroy (a3);

  SC_INFOF ("Test array sort with count %d\n", count);

  start = -sc_MPI_Wtime ();

  /* the resize is done to be comparable with the above procedure */
  for (i = 0; i < count; ++i) {
    *(int *) sc_array_push (a4) = (15 * i) % 172;
  }
  sc_array_sort (a4, compar);

  i4last = -1;
  for (i = 0; i < count; ++i) {
    i4 = *(int *) sc_array_index_int (a4, i);

    SC_CHECK_ABORT (i4 >= i4last, "array_sort");
    i4last = i4;
  }
  sc_array_resize (a4, 0);

  elapsed_qsort = start + sc_MPI_Wtime ();
  SC_STATISTICSF ("Test timings pqueue %g qsort %g\n",
                  elapsed_pqueue, 3. * elapsed_qsort);

  sc_array_destroy (a4);
  sc_finalize ();

  mpiret = sc_MPI_Finalize ();
  SC_CHECK_MPI (mpiret);

  return 0;
}
Beispiel #12
0
int
main (int argc, char *argv[])
{
  MPI_Comm comm = MPI_COMM_WORLD;
  p4est_t *p4est;
  p4est_connectivity_t *conn;
  p4est_ghost_t *ghost_layer;
  p4est_lnodes_t *lnodes;
  int rank;
  const int degree = 1;

  BFAM_MPI_CHECK(MPI_Init(&argc,&argv));
  BFAM_MPI_CHECK(MPI_Comm_rank(comm, &rank));

  bfam_log_init(rank, stdout, BFAM_LL_DEFAULT);
  bfam_signal_handler_set();

  sc_init(comm, 0, 0, NULL, SC_LP_DEFAULT);
  p4est_init(NULL, SC_LP_DEFAULT);

  conn = p4est_connectivity_new_corner();
  p4est = p4est_new_ext(comm, conn, 0, 0, 0, 0, NULL, NULL);

  refine_level = 1;
  p4est_refine(p4est, 1, refine_fn, NULL);
  p4est_balance(p4est, P4EST_CONNECT_FACE, NULL);
  p4est_partition(p4est, 1, NULL);

  p4est_vtk_write_file(p4est, NULL, "mesh");

  ghost_layer = p4est_ghost_new(p4est, P4EST_CONNECT_FULL);
  lnodes = p4est_lnodes_new(p4est, ghost_layer, degree);


  /*
   * Output the mesh.  It can be read using something like following command:
   *
   * mpirun -np 3 ./bfam_exam_p4est | grep MESH | sort -n -k 2 | sort -n -k 5 | gvim -
   */
  fflush(stdout);
  BFAM_MPI_CHECK(MPI_Barrier(comm));
  BFAM_ROOT_INFO("MESH 0 ------------ Mesh Begin ------------");
  BFAM_ROOT_INFO("MESH 1 degree  = %d", lnodes->degree);
  BFAM_ROOT_INFO("MESH 2 vnodes = %d", lnodes->vnodes);
  BFAM_INFO("MESH 3 num_local_elements  = %jd", (intmax_t)lnodes->num_local_elements);
  BFAM_INFO("MESH 4 num_local_nodes = %jd", (intmax_t)lnodes->num_local_nodes);
  BFAM_INFO("MESH 5 owned_count = %jd", (intmax_t)lnodes->owned_count);
  BFAM_INFO("MESH 6 global_offset = %jd", (intmax_t)lnodes->global_offset);


  sc_array_t *global_nodes = sc_array_new(sizeof (p4est_gloidx_t));
  sc_array_resize(global_nodes, lnodes->num_local_nodes);
  for(size_t zz = 0; zz < global_nodes->elem_count; ++zz)
  {
    *((p4est_gloidx_t *) sc_array_index(global_nodes, zz)) =
      p4est_lnodes_global_index(lnodes, zz);
  }

  p4est_lnodes_share_owned(global_nodes, lnodes);

  for(size_t zz = 0; zz < global_nodes->elem_count; ++zz)
  {
    const p4est_gloidx_t gn =
      *((p4est_gloidx_t *)sc_array_index(global_nodes, zz));
    SC_CHECK_ABORT (gn == p4est_lnodes_global_index(lnodes, zz),
        "Lnodes: bad global index across procesors");
    BFAM_INFO("MESH 7 global_nodes[%zu] = %jd", zz, (intmax_t)gn);
  }

  sc_array_destroy(global_nodes);

  p4est_topidx_t  flt = p4est->first_local_tree;
  p4est_topidx_t  llt = p4est->last_local_tree;

  p4est_locidx_t elid, elnid;
  p4est_topidx_t t;
  const double *v = conn->vertices;
  const p4est_topidx_t *tree_to_vertex = conn->tree_to_vertex;
  for(elid = 0, elnid = 0, t = flt; t <= llt; ++t)
  {
    p4est_tree_t *tree = p4est_tree_array_index(p4est->trees, t);
    const size_t count = tree->quadrants.elem_count;
    p4est_topidx_t vt[P4EST_CHILDREN];

    for (int c = 0; c < P4EST_CHILDREN; ++c)
    {
      vt[c] = tree_to_vertex[t * P4EST_CHILDREN + c];
    }

    for (size_t zz = 0; zz < count; ++zz, ++elid)
    {
      p4est_quadrant_t *q = p4est_quadrant_array_index(&tree->quadrants, zz);

      for(int jind = 0; jind < degree + 1; ++jind)
      {
        for(int iind = 0; iind < degree + 1; ++iind, ++elnid)
        {
          double xyz[3];
          for (int j = 0; j < 3; ++j)
          {

            const p4est_qcoord_t len  = P4EST_QUADRANT_LEN(q->level);
            const double         rlen = (double) P4EST_ROOT_LEN;
            const double         deg  = (double) degree;
            const double         qlen = ((double) len) / rlen;

            const double eta_x =
              ((double) q->x) / rlen + (((double) iind) / deg) * qlen;
            const double eta_y =
              ((double) q->y) / rlen + (((double) jind) / deg) * qlen;

            xyz[j] = ((1. - eta_y) * ((1. - eta_x) * v[3 * vt[0] + j] +
                                            eta_x  * v[3 * vt[1] + j]) +
                            eta_y  * ((1. - eta_x) * v[3 * vt[2] + j] +
                                            eta_x  * v[3 * vt[3] + j]));
          }

          const p4est_locidx_t nid = lnodes->element_nodes[elnid];

          BFAM_INFO(
              "MESH 8 local_node[%03jd] = %03jd ( %25.16e %25.16e %25.16e )",
              (intmax_t)elnid, (intmax_t)nid, xyz[0], xyz[1], xyz[2]);
        }
      }
    }
  }


  BFAM_ROOT_INFO("MESH 9 ------------ Mesh End ------------");




  p4est_lnodes_destroy(lnodes);
  p4est_ghost_destroy(ghost_layer);
  p4est_destroy(p4est);
  p4est_connectivity_destroy(conn);

  sc_finalize();
  BFAM_MPI_CHECK(MPI_Finalize());

  return EXIT_SUCCESS;
}