int main(void) // main function { sd_mount(DO, CLK, DI, CS); // Mount SD card FILE* fp = fopen("test.txt", "w"); // Open a file for writing // Store values as text in test.txt. for(int i = -5; i < 15; i++) // Repeat 20x (-5...14) { memset(s, ' ', 30); // 30 spaces into string s[30] = '\r'; // Newline for Windows Notepad s[31] = '\n'; val = i * 10; // Emulate sensor reading sprint(s, "i = %d , val = %d ", i, val); // Data to s array as characters fwrite(s, 1, 32, fp); // Write line to file } fclose(fp); // Close file // Retrieve values from file and store in // variables for program use. fp = fopen("test.txt", "r"); // Reopen file for reading int idx; for(int i = -5; i < 15; i++) // go back through { memset(s, '\0', 32); // All characters to zero fread(s, 1, 32, fp); // Read the string sscan(s, "i = %d , val = %d ", &idx, &val); // String values -> variables print("idx = %d, val = %d \n", idx, val); // Print variables } fclose(fp); // Close the file }
int composite_archinitialize(void) { /* If examples/composite is built as an NSH command, then SD slot should * already have been initized in nsh_archinitialize() (see up_nsh.c). In * this case, there is nothing further to be done here. * * NOTE: CONFIG_NSH_BUILTIN_APPS is not a fool-proof indication that NSH * was built. */ #ifndef CONFIG_NSH_BUILTIN_APPS return sd_mount(CONFIG_EXAMPLES_COMPOSITE_DEVMINOR1); #else return OK; #endif /* CONFIG_NSH_BUILTIN_APPS */ }
int main() // main function { int DO = 22, CLK = 23, DI = 24, CS = 25; // SD I/O pins sd_mount(DO, CLK, DI, CS); // Mount SD card const char techloop[] = {"techloop.wav"}; // Set up techloop string wav_play(techloop); // Pass to wav player wav_volume(6); // Adjust volume pause(3500); // Play for 3.5 s wav_volume(4); // Repeat twice more pause(2000); wav_volume(8); pause(3500); wav_stop(); // Stop playing }
int main() // Main function { int DO = 22, CLK = 23; // SD I/O pins int DI = 24, CS = 25; sd_mount(DO, CLK, DI, CS); // Mount SD file system fp = fopen("navset.txt", "r"); // Open navset.txt fread(str, 1, 512, fp); // navset.txt -> str int strLength = strlen(str); // Count chars in str int i = 0; // Declare index variable drive_speed(0, 0); // Speed starts at 0 while(1) // Loop through commands { // Parse command while(!isalpha(str[i])) i++; // Find 1st command char sscan(&str[i], "%s", cmdbuf); // Command -> buffer i += strlen(cmdbuf); // Idx up by command char count if(!strcmp(cmdbuf, "end")) break; // If command is end, break // Parse distance argument while(!isdigit(str[i])) i++; // Find 1st digit after command sscan(&str[i], "%s", valbuf); // Value -> buffer i += strlen(valbuf); // Idx up by value char count val = atoi(valbuf); // Convert string to value // Execute command if(strcmp(cmdbuf, "forward") == 0) // If forward drive_goto(val, val); // ...go forward by val else if(strcmp(cmdbuf, "backward") == 0) // If backward drive_goto(-val, -val); // ... go backward by val else if(strcmp(cmdbuf, "left") == 0) // If left drive_goto(-val, val); // ...go left by val else if(strcmp(cmdbuf, "right") == 0) // If right drive_goto(val, -val); // ... go right by val } fclose(fp); // Close SD file }
int main() // main function { int DO = 22,CLK = 23, DI = 24, CS = 25; sd_mount(DO,CLK,DI,CS); wav_volume(10); freqout(4, 2000, 3000); // Speaker tone: P4, 2 s, 3 kHz while(1) // Endless loop { int wL = input(7); // Left whisker -> wL variable int wR = input(8); // Right whisker -> wR variable //print("%c", HOME); // Terminal cursor home (top-left) //print("wL = %d wR = %d", wL, wR); // Display whisker variables drive_speed(128,128); if(input(7)==0 || input(8) == 0) { drive_speed(0,0); pause(500); wav_play("ouch.wav"); drive_goto(-64,64); } } }
int main() { sd_mount(DO, CLK, DI, CS); // Mount SD card FILE* fp = fopen("test.txt", "w"); // Open a file for writing fwrite("Testing 123...\n", 1, 15, fp); // Add contents to the file fclose(fp); // Close the file char s[15]; // Buffer for characters fp = fopen("test.txt", "r"); // Reopen file for reading fread(s, 1, 15, fp); // Read 15 characters fclose(fp); // Close the file print("First 15 chars in test.txt:\n"); // Display heading pause(500); for (int i = 0; i<15; i++) { print("%x\n", s[i]); // Display characters pause(500); } print("\n\n"); //hyperterminal(); while(1) { } return 0; }
void menu_process(void) { int k; // Z80-Bus request // MZ_Brequest(); do { k=menu(0,0,0); // Root menu switch(k){ case 0: if(view_inventory()==999) continue; break; case 3: direct_load(); break; case 7: sd_mount(); tname[0]='\0'; dname[0][0]='\0'; dname[1][0]='\0'; break; case 10: if(tname[0]!='\0'){ // if tape file is not empty tape_unmount(); } tape_mount(); break; case 11: case 12: fd_mount(k); break; case 20: tape_unmount(); break; case 21: case 22: fd_unmount(k); break; case 40: case 41: case 42: case 43: case 44: case 45: case 46: case 47: case 48: set_rom(k); if(view_inventory()==999) continue; fname[0]='\0'; break; case 50: case 51: case 52: case 53: case 54: case 55: case 56: case 57: case 58: clear_rom(k); if(view_inventory()==999) continue; break; case 60: case 61: default: break; } break; }while(1); keybuf_clear(); // Z80-Bus release // MZ_Brelease(); }
void System_Initialize(void) { char SecName[8],buffer[512],data[4096]; unsigned char *cgrom,*keymap; int k; UINT i,r; ROMS_t *romdata=(ROMS_t *)(CFI_BASE+0x100000); // Interrupt regist int_regist(); sd_mount(); tname[0]='\0'; dname[0][0]='\0'; dname[1][0]='\0'; // Clear VRAM for(i=0;i<1000;i++) IOWR_8DIRECT(REG_BASE, MZ_VRAM+i, 0); // Clear GRAM for(i=0;i<65536;i++) MZ80B_GRAM(i)=0; cgrom=romdata->char80b; keymap=romdata->key80b; // CG ROM for(i=0;i<2048;i++){ // (0xc800-0xcfff) IOWR_8DIRECT(REG_BASE, MZ_CGROM+i, cgrom[i]); } // Key Map Data for(i=0;i<256;i++){ // (0xc000-0xc0ff) IOWR_8DIRECT(REG_BASE, MZ_KMAP+i, keymap[i]); } if(IORD_8DIRECT(REG_BASE, MZ_SYS_SW70)&0x20){ // Select Section Name by MZ mode if((IORD_8DIRECT(REG_BASE, MZ_SYS_SW98)&0x2)) strcpy(SecName, "MZ-2000"); else strcpy(SecName, "MZ-80B"); // CG ROM GetPrivateProfileString(SecName, "CGROM", "NULL", buffer, "system.ini"); if(strcmp(buffer,"NULL")==0) GetPrivateProfileString("COMMON", "CGROM", "NULL", buffer, "system.ini"); if(strcmp(buffer,"NULL")!=0){ file_bulk_read(buffer, data, 2048); for(i=0;i<2048;i++){ // (0xc800-0xcfff) IOWR_8DIRECT(REG_BASE, MZ_CGROM+i, data[i]); } } // Key Map Data GetPrivateProfileString(SecName, "KEYMAP", "NULL", buffer, "system.ini"); if(strcmp(buffer,"NULL")==0) GetPrivateProfileString("COMMON", "KEYMAP", "NULL", buffer, "system.ini"); if(strcmp(buffer,"NULL")!=0){ file_bulk_read(buffer, data, 256); for(i=0;i<256;i++){ // (0xc000-0xc0ff) IOWR_8DIRECT(REG_BASE, MZ_KMAP+i, data[i]); } } } }
void process_gcode_command() { uint32_t backup_f; // convert relative to absolute if (next_target.option_all_relative) { next_target.target.axis[X] += startpoint.axis[X]; next_target.target.axis[Y] += startpoint.axis[Y]; next_target.target.axis[Z] += startpoint.axis[Z]; } // E relative movement. // Matches Sprinter's behaviour as of March 2012. if (next_target.option_e_relative) next_target.target.e_relative = 1; else next_target.target.e_relative = 0; if (next_target.option_all_relative && !next_target.option_e_relative) next_target.target.axis[E] += startpoint.axis[E]; // implement axis limits #ifdef X_MIN if (next_target.target.axis[X] < (int32_t)(X_MIN * 1000.)) next_target.target.axis[X] = (int32_t)(X_MIN * 1000.); #endif #ifdef X_MAX if (next_target.target.axis[X] > (int32_t)(X_MAX * 1000.)) next_target.target.axis[X] = (int32_t)(X_MAX * 1000.); #endif #ifdef Y_MIN if (next_target.target.axis[Y] < (int32_t)(Y_MIN * 1000.)) next_target.target.axis[Y] = (int32_t)(Y_MIN * 1000.); #endif #ifdef Y_MAX if (next_target.target.axis[Y] > (int32_t)(Y_MAX * 1000.)) next_target.target.axis[Y] = (int32_t)(Y_MAX * 1000.); #endif #ifdef Z_MIN if (next_target.target.axis[Z] < (int32_t)(Z_MIN * 1000.)) next_target.target.axis[Z] = (int32_t)(Z_MIN * 1000.); #endif #ifdef Z_MAX if (next_target.target.axis[Z] > (int32_t)(Z_MAX * 1000.)) next_target.target.axis[Z] = (int32_t)(Z_MAX * 1000.); #endif // The GCode documentation was taken from http://reprap.org/wiki/Gcode . if (next_target.seen_T) { //? --- T: Select Tool --- //? //? Example: T1 //? //? Select extruder number 1 to build with. Extruder numbering starts at 0. next_tool = next_target.T; } if (next_target.seen_G) { uint8_t axisSelected = 0; switch (next_target.G) { case 0: //? G0: Rapid Linear Motion //? //? Example: G0 X12 //? //? In this case move rapidly to X = 12 mm. In fact, the RepRap firmware uses exactly the same code for rapid as it uses for controlled moves (see G1 below), as - for the RepRap machine - this is just as efficient as not doing so. (The distinction comes from some old machine tools that used to move faster if the axes were not driven in a straight line. For them G0 allowed any movement in space to get to the destination as fast as possible.) //? temp_wait(); backup_f = next_target.target.F; next_target.target.F = MAXIMUM_FEEDRATE_X * 2L; enqueue(&next_target.target); next_target.target.F = backup_f; break; case 1: //? --- G1: Linear Motion at Feed Rate --- //? //? Example: G1 X90.6 Y13.8 E22.4 //? //? Go in a straight line from the current (X, Y) point to the point (90.6, 13.8), extruding material as the move happens from the current extruded length to a length of 22.4 mm. //? temp_wait(); enqueue(&next_target.target); break; // G2 - Arc Clockwise // unimplemented // G3 - Arc Counter-clockwise // unimplemented case 4: //? --- G4: Dwell --- //? //? Example: G4 P200 //? //? In this case sit still doing nothing for 200 milliseconds. During delays the state of the machine (for example the temperatures of its extruders) will still be preserved and controlled. //? queue_wait(); // delay if (next_target.seen_P) { for (;next_target.P > 0;next_target.P--) { clock(); delay_ms(1); } } break; case 20: //? --- G20: Set Units to Inches --- //? //? Example: G20 //? //? Units from now on are in inches. //? next_target.option_inches = 1; break; case 21: //? --- G21: Set Units to Millimeters --- //? //? Example: G21 //? //? Units from now on are in millimeters. (This is the RepRap default.) //? next_target.option_inches = 0; break; case 28: //? --- G28: Home --- //? //? Example: G28 //? //? This causes the RepRap machine to search for its X, Y and Z //? endstops. It does so at high speed, so as to get there fast. When //? it arrives it backs off slowly until the endstop is released again. //? Backing off slowly ensures more accurate positioning. //? //? If you add axis characters, then just the axes specified will be //? seached. Thus //? //? G28 X Y72.3 //? //? will zero the X and Y axes, but not Z. Coordinate values are //? ignored. //? queue_wait(); if (next_target.seen_X) { #if defined X_MIN_PIN home_x_negative(); #elif defined X_MAX_PIN home_x_positive(); #endif axisSelected = 1; } if (next_target.seen_Y) { #if defined Y_MIN_PIN home_y_negative(); #elif defined Y_MAX_PIN home_y_positive(); #endif axisSelected = 1; } if (next_target.seen_Z) { #if defined Z_MIN_PIN home_z_negative(); #elif defined Z_MAX_PIN home_z_positive(); #endif axisSelected = 1; } // there's no point in moving E, as E has no endstops if (!axisSelected) { home(); } break; case 90: //? --- G90: Set to Absolute Positioning --- //? //? Example: G90 //? //? All coordinates from now on are absolute relative to the origin //? of the machine. This is the RepRap default. //? //? If you ever want to switch back and forth between relative and //? absolute movement keep in mind, X, Y and Z follow the machine's //? coordinate system while E doesn't change it's position in the //? coordinate system on relative movements. //? // No wait_queue() needed. next_target.option_all_relative = 0; break; case 91: //? --- G91: Set to Relative Positioning --- //? //? Example: G91 //? //? All coordinates from now on are relative to the last position. //? // No wait_queue() needed. next_target.option_all_relative = 1; break; case 92: //? --- G92: Set Position --- //? //? Example: G92 X10 E90 //? //? Allows programming of absolute zero point, by reseting the current position to the values specified. This would set the machine's X coordinate to 10, and the extrude coordinate to 90. No physical motion will occur. //? queue_wait(); if (next_target.seen_X) { startpoint.axis[X] = next_target.target.axis[X]; axisSelected = 1; } if (next_target.seen_Y) { startpoint.axis[Y] = next_target.target.axis[Y]; axisSelected = 1; } if (next_target.seen_Z) { startpoint.axis[Z] = next_target.target.axis[Z]; axisSelected = 1; } if (next_target.seen_E) { startpoint.axis[E] = next_target.target.axis[E]; axisSelected = 1; } if (axisSelected == 0) { startpoint.axis[X] = next_target.target.axis[X] = startpoint.axis[Y] = next_target.target.axis[Y] = startpoint.axis[Z] = next_target.target.axis[Z] = startpoint.axis[E] = next_target.target.axis[E] = 0; } dda_new_startpoint(); break; case 161: //? --- G161: Home negative --- //? //? Find the minimum limit of the specified axes by searching for the limit switch. //? #if defined X_MIN_PIN if (next_target.seen_X) home_x_negative(); #endif #if defined Y_MIN_PIN if (next_target.seen_Y) home_y_negative(); #endif #if defined Z_MIN_PIN if (next_target.seen_Z) home_z_negative(); #endif break; case 162: //? --- G162: Home positive --- //? //? Find the maximum limit of the specified axes by searching for the limit switch. //? #if defined X_MAX_PIN if (next_target.seen_X) home_x_positive(); #endif #if defined Y_MAX_PIN if (next_target.seen_Y) home_y_positive(); #endif #if defined Z_MAX_PIN if (next_target.seen_Z) home_z_positive(); #endif break; // unknown gcode: spit an error default: sersendf_P(PSTR("E: Bad G-code %d\n"), next_target.G); return; } } else if (next_target.seen_M) { uint8_t i; switch (next_target.M) { case 0: //? --- M0: machine stop --- //? //? Example: M0 //? //? http://linuxcnc.org/handbook/RS274NGC_3/RS274NGC_33a.html#1002379 //? Unimplemented, especially the restart after the stop. Fall trough to M2. //? case 2: case 84: // For compatibility with slic3rs default end G-code. //? --- M2: program end --- //? //? Example: M2 //? //? http://linuxcnc.org/handbook/RS274NGC_3/RS274NGC_33a.html#1002379 //? queue_wait(); for (i = 0; i < NUM_HEATERS; i++) temp_set(i, 0); power_off(); serial_writestr_P(PSTR("\nstop\n")); break; case 6: //? --- M6: tool change --- //? //? Undocumented. tool = next_tool; break; #ifdef SD case 20: //? --- M20: list SD card. --- sd_list("/"); break; case 21: //? --- M21: initialise SD card. --- //? //? Has to be done before doing any other operation, including M20. sd_mount(); break; case 22: //? --- M22: release SD card. --- //? //? Not mandatory. Just removing the card is fine, but results in //? odd behaviour when trying to read from the card anyways. M22 //? makes also sure SD card printing is disabled, even with the card //? inserted. sd_unmount(); break; case 23: //? --- M23: select file. --- //? //? This opens a file for reading. This file is valid up to M22 or up //? to the next M23. sd_open(gcode_str_buf); break; case 24: //? --- M24: start/resume SD print. --- //? //? This makes the SD card available as a G-code source. File is the //? one selected with M23. gcode_sources |= GCODE_SOURCE_SD; break; case 25: //? --- M25: pause SD print. --- //? //? This removes the SD card from the bitfield of available G-code //? sources. The file is kept open. The position inside the file //? is kept as well, to allow resuming. gcode_sources &= ! GCODE_SOURCE_SD; break; #endif /* SD */ case 82: //? --- M82 - Set E codes absolute --- //? //? This is the default and overrides G90/G91. //? M82/M83 is not documented in the RepRap wiki, behaviour //? was taken from Sprinter as of March 2012. //? //? While E does relative movements, it doesn't change its //? position in the coordinate system. See also comment on G90. //? // No wait_queue() needed. next_target.option_e_relative = 0; break; case 83: //? --- M83 - Set E codes relative --- //? //? Counterpart to M82. //? // No wait_queue() needed. next_target.option_e_relative = 1; break; // M3/M101- extruder on case 3: case 101: //? --- M101: extruder on --- //? //? Undocumented. temp_wait(); #ifdef DC_EXTRUDER heater_set(DC_EXTRUDER, DC_EXTRUDER_PWM); #endif break; // M5/M103- extruder off case 5: case 103: //? --- M103: extruder off --- //? //? Undocumented. #ifdef DC_EXTRUDER heater_set(DC_EXTRUDER, 0); #endif break; case 104: //? --- M104: Set Extruder Temperature (Fast) --- //? //? Example: M104 S190 //? //? Set the temperature of the current extruder to 190<sup>o</sup>C //? and return control to the host immediately (''i.e.'' before that //? temperature has been reached by the extruder). For waiting, see M116. //? //? Teacup supports an optional P parameter as a zero-based temperature //? sensor index to address (e.g. M104 P1 S100 will set the temperature //? of the heater connected to the second temperature sensor rather //? than the extruder temperature). //? if ( ! next_target.seen_S) break; if ( ! next_target.seen_P) #ifdef HEATER_EXTRUDER next_target.P = HEATER_EXTRUDER; #else next_target.P = 0; #endif temp_set(next_target.P, next_target.S); break; case 105: //? --- M105: Get Temperature(s) --- //? //? Example: M105 //? //? Request the temperature of the current extruder and the build base //? in degrees Celsius. For example, the line sent to the host in //? response to this command looks like //? //? <tt>ok T:201 B:117</tt> //? //? Teacup supports an optional P parameter as a zero-based temperature //? sensor index to address. //? #ifdef ENFORCE_ORDER queue_wait(); #endif if ( ! next_target.seen_P) next_target.P = TEMP_SENSOR_none; temp_print(next_target.P); break; case 7: case 106: //? --- M106: Set Fan Speed / Set Device Power --- //? //? Example: M106 S120 //? //? Control the cooling fan (if any). //? //? Teacup supports an optional P parameter as a zero-based heater //? index to address. The heater index can differ from the temperature //? sensor index, see config.h. #ifdef ENFORCE_ORDER // wait for all moves to complete queue_wait(); #endif if ( ! next_target.seen_P) #ifdef HEATER_FAN next_target.P = HEATER_FAN; #else next_target.P = 0; #endif if ( ! next_target.seen_S) break; heater_set(next_target.P, next_target.S); break; case 110: //? --- M110: Set Current Line Number --- //? //? Example: N123 M110 //? //? Set the current line number to 123. Thus the expected next line after this command will be 124. //? This is a no-op in Teacup. //? break; #ifdef DEBUG case 111: //? --- M111: Set Debug Level --- //? //? Example: M111 S6 //? //? Set the level of debugging information transmitted back to the host to level 6. The level is the OR of three bits: //? //? <Pre> //? #define DEBUG_PID 1 //? #define DEBUG_DDA 2 //? #define DEBUG_POSITION 4 //? </pre> //? //? This command is only available in DEBUG builds of Teacup. if ( ! next_target.seen_S) break; debug_flags = next_target.S; break; #endif /* DEBUG */ case 112: //? --- M112: Emergency Stop --- //? //? Example: M112 //? //? Any moves in progress are immediately terminated, then the printer //? shuts down. All motors and heaters are turned off. Only way to //? restart is to press the reset button on the master microcontroller. //? See also M0. //? timer_stop(); queue_flush(); power_off(); cli(); for (;;) wd_reset(); break; case 114: //? --- M114: Get Current Position --- //? //? Example: M114 //? //? This causes the RepRap machine to report its current X, Y, Z and E coordinates to the host. //? //? For example, the machine returns a string such as: //? //? <tt>ok C: X:0.00 Y:0.00 Z:0.00 E:0.00</tt> //? #ifdef ENFORCE_ORDER // wait for all moves to complete queue_wait(); #endif update_current_position(); sersendf_P(PSTR("X:%lq,Y:%lq,Z:%lq,E:%lq,F:%lu\n"), current_position.axis[X], current_position.axis[Y], current_position.axis[Z], current_position.axis[E], current_position.F); if (mb_tail_dda != NULL) { if (DEBUG_POSITION && (debug_flags & DEBUG_POSITION)) { sersendf_P(PSTR("Endpoint: X:%ld,Y:%ld,Z:%ld,E:%ld,F:%lu,c:%lu}\n"), mb_tail_dda->endpoint.axis[X], mb_tail_dda->endpoint.axis[Y], mb_tail_dda->endpoint.axis[Z], mb_tail_dda->endpoint.axis[E], mb_tail_dda->endpoint.F, #ifdef ACCELERATION_REPRAP mb_tail_dda->end_c #else mb_tail_dda->c #endif ); } print_queue(); } break; case 115: //? --- M115: Get Firmware Version and Capabilities --- //? //? Example: M115 //? //? Request the Firmware Version and Capabilities of the current microcontroller //? The details are returned to the host computer as key:value pairs separated by spaces and terminated with a linefeed. //? //? sample data from firmware: //? FIRMWARE_NAME:Teacup FIRMWARE_URL:http://github.com/traumflug/Teacup_Firmware/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1 TEMP_SENSOR_COUNT:1 HEATER_COUNT:1 //? sersendf_P(PSTR("FIRMWARE_NAME:Teacup FIRMWARE_URL:http://github.com/traumflug/Teacup_Firmware/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:%d TEMP_SENSOR_COUNT:%d HEATER_COUNT:%d\n"), 1, NUM_TEMP_SENSORS, NUM_HEATERS); break; case 116: //? --- M116: Wait --- //? //? Example: M116 //? //? Wait for temperatures and other slowly-changing variables to arrive at their set values. temp_set_wait(); break; case 119: //? --- M119: report endstop status --- //? Report the current status of the endstops configured in the //? firmware to the host. power_on(); endstops_on(); delay_ms(10); // allow the signal to stabilize { #if ! (defined(X_MIN_PIN) || defined(X_MAX_PIN) || \ defined(Y_MIN_PIN) || defined(Y_MAX_PIN) || \ defined(Z_MIN_PIN) || defined(Z_MAX_PIN)) serial_writestr_P(PSTR("No endstops defined.")); #else const char* const open = PSTR("open "); const char* const triggered = PSTR("triggered "); #endif #if defined(X_MIN_PIN) serial_writestr_P(PSTR("x_min:")); x_min() ? serial_writestr_P(triggered) : serial_writestr_P(open); #endif #if defined(X_MAX_PIN) serial_writestr_P(PSTR("x_max:")); x_max() ? serial_writestr_P(triggered) : serial_writestr_P(open); #endif #if defined(Y_MIN_PIN) serial_writestr_P(PSTR("y_min:")); y_min() ? serial_writestr_P(triggered) : serial_writestr_P(open); #endif #if defined(Y_MAX_PIN) serial_writestr_P(PSTR("y_max:")); y_max() ? serial_writestr_P(triggered) : serial_writestr_P(open); #endif #if defined(Z_MIN_PIN) serial_writestr_P(PSTR("z_min:")); z_min() ? serial_writestr_P(triggered) : serial_writestr_P(open); #endif #if defined(Z_MAX_PIN) serial_writestr_P(PSTR("z_max:")); z_max() ? serial_writestr_P(triggered) : serial_writestr_P(open); #endif } endstops_off(); serial_writechar('\n'); break; #ifdef EECONFIG case 130: //? --- M130: heater P factor --- //? Undocumented. // P factor in counts per degreeC of error if ( ! next_target.seen_P) #ifdef HEATER_EXTRUDER next_target.P = HEATER_EXTRUDER; #else next_target.P = 0; #endif if (next_target.seen_S) pid_set_p(next_target.P, next_target.S); break; case 131: //? --- M131: heater I factor --- //? Undocumented. // I factor in counts per C*s of integrated error if ( ! next_target.seen_P) #ifdef HEATER_EXTRUDER next_target.P = HEATER_EXTRUDER; #else next_target.P = 0; #endif if (next_target.seen_S) pid_set_i(next_target.P, next_target.S); break; case 132: //? --- M132: heater D factor --- //? Undocumented. // D factor in counts per degreesC/second if ( ! next_target.seen_P) #ifdef HEATER_EXTRUDER next_target.P = HEATER_EXTRUDER; #else next_target.P = 0; #endif if (next_target.seen_S) pid_set_d(next_target.P, next_target.S); break; case 133: //? --- M133: heater I limit --- //? Undocumented. if ( ! next_target.seen_P) #ifdef HEATER_EXTRUDER next_target.P = HEATER_EXTRUDER; #else next_target.P = 0; #endif if (next_target.seen_S) pid_set_i_limit(next_target.P, next_target.S); break; case 134: //? --- M134: save PID settings to eeprom --- //? Undocumented. heater_save_settings(); break; #endif /* EECONFIG */ #ifdef DEBUG case 136: //? --- M136: PRINT PID settings to host --- //? Undocumented. //? This comand is only available in DEBUG builds. if ( ! next_target.seen_P) #ifdef HEATER_EXTRUDER next_target.P = HEATER_EXTRUDER; #else next_target.P = 0; #endif heater_print(next_target.P); break; #endif /* DEBUG */ case 140: //? --- M140: Set heated bed temperature --- //? Undocumented. #ifdef HEATER_BED if ( ! next_target.seen_S) break; temp_set(HEATER_BED, next_target.S); #endif break; case 220: //? --- M220: Set speed factor override percentage --- if ( ! next_target.seen_S) break; // Scale 100% = 256 next_target.target.f_multiplier = (next_target.S * 64 + 12) / 25; break; case 221: //? --- M221: Control the extruders flow --- if ( ! next_target.seen_S) break; // Scale 100% = 256 next_target.target.e_multiplier = (next_target.S * 64 + 12) / 25; break; #ifdef DEBUG case 240: //? --- M240: echo off --- //? Disable echo. //? This command is only available in DEBUG builds. debug_flags &= ~DEBUG_ECHO; serial_writestr_P(PSTR("Echo off\n")); break; case 241: //? --- M241: echo on --- //? Enable echo. //? This command is only available in DEBUG builds. debug_flags |= DEBUG_ECHO; serial_writestr_P(PSTR("Echo on\n")); break; #endif /* DEBUG */ // unknown mcode: spit an error default: sersendf_P(PSTR("E: Bad M-code %d\n"), next_target.M); } // switch (next_target.M) } // else if (next_target.seen_M) } // process_gcode_command()
/** * A simple cog for painting the screen */ void LCD_Run(void) { FILE *fp; uint8_t buffer[500]; uint16_t x, y, i, j; int dataOffset; int size; int counter = 0; LCD_Init(); // Initialize the interface to the SD card sd_mount(SD_DO, SD_SCK, SD_DI, SD_SS); while(1) { // paint(0xF800); // pause(100); // paint(0x07E0); // pause(100); // paint(0x001F); // pause(100); // Open the first image if(counter == 0) { fp = fopen("1.bmp", "r"); counter++; } else { fp = fopen("2.bmp", "r"); counter = 0; } // Read in the header fread(buffer, 1, 54, fp); // Get the size of the image // 16 bit numbers, do some bit shifting x = buffer[18] + (buffer[19] << 8); y = buffer[22] + (buffer[23] << 8); //size = buffer[2] | (buffer[3] << 8) | (buffer[4] << 16) | (buffer[5] << 24); dataOffset = buffer[10] | (buffer[11] << 8) | (buffer[12] << 16) | (buffer[13] << 24); // Seek the file pointer to the start of the pixel data fseek(fp, dataOffset, SEEK_SET); LCD_SetWindow(0,0,239,400); for(i = 0; i < y; i++) { // Read a line in fread(buffer, 1, x * 2, fp); for(j = 0; j < x * 2; j += 2) { // Write the pixel data out to the display // Note that the pixel data is the Red, Green, Blue data in the 565 format, ie: // // Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 // Use B1 B2 B3 B4 B5 G0 G1 G2 G3 G4 G5 R1 R2 R3 R4 R5 // // Notice that we only have 5 bits of Blue and Red? The human eye is more sensitive // to the color green, so to make the RGB fit into 16 bits it is given priority LCD_Write_Data((buffer[j]) + (buffer[j+1] << 8)); } } // Close and prepare for the next file fclose(fp); } }