static int checkentry_lsm(struct xt_secmark_target_info *info)
{
	int err;

	info->secctx[SECMARK_SECCTX_MAX - 1] = '\0';
	info->secid = 0;

	err = security_secctx_to_secid(info->secctx, strlen(info->secctx),
				       &info->secid);
	if (err) {
		if (err == -EINVAL)
			pr_info("invalid security context \'%s\'\n", info->secctx);
		return err;
	}

	if (!info->secid) {
		pr_info("unable to map security context \'%s\'\n", info->secctx);
		return -ENOENT;
	}

	err = security_secmark_relabel_packet(info->secid);
	if (err) {
		pr_info("unable to obtain relabeling permission\n");
		return err;
	}

	security_secmark_refcount_inc();
	return 0;
}
Beispiel #2
0
/*
 * our custom d_alloc_root work-alike
 *
 * we can't use d_alloc_root if we want to use our own interpose function
 * unchanged, so we simply call our own "fake" d_alloc_root
 */
static struct dentry *sdcardfs_d_alloc_root(struct super_block *sb)
{
	struct dentry *ret = NULL;

	if (sb) {
		static const struct qstr name = {
			.name = "/",
			.len = 1
		};

		ret = __d_alloc(sb, &name);
		if (ret) {
			d_set_d_op(ret, &sdcardfs_ci_dops);
			ret->d_parent = ret;
		}
	}
	return ret;
}

/*
 * There is no need to lock the sdcardfs_super_info's rwsem as there is no
 * way anyone can have a reference to the superblock at this point in time.
 */
static int sdcardfs_read_super(struct super_block *sb, const char *dev_name, 
						void *raw_data, int silent)
{
	int err = 0;
	int debug;
	struct super_block *lower_sb;
	struct path lower_path;
	struct sdcardfs_sb_info *sb_info;
	void *pkgl_id;

	printk(KERN_INFO "sdcardfs: version %s\n", SDCARDFS_VERSION);

	if (!dev_name) {
		printk(KERN_ERR
		       "sdcardfs: read_super: missing dev_name argument\n");
		err = -EINVAL;
		goto out;
	}

	printk(KERN_INFO "sdcardfs: dev_name -> %s\n", dev_name);
	printk(KERN_INFO "sdcardfs: options -> %s\n", (char *)raw_data);

	/* parse lower path */
	err = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
			&lower_path);
	if (err) {
		printk(KERN_ERR	"sdcardfs: error accessing "
		       "lower directory '%s'\n", dev_name);
		goto out;
	}

	/* allocate superblock private data */
	sb->s_fs_info = kzalloc(sizeof(struct sdcardfs_sb_info), GFP_KERNEL);
	if (!SDCARDFS_SB(sb)) {
		printk(KERN_CRIT "sdcardfs: read_super: out of memory\n");
		err = -ENOMEM;
		goto out_free;
	}

	sb_info = sb->s_fs_info;

	/* parse options */
	err = parse_options(sb, raw_data, silent, &debug, &sb_info->options);
	if (err) {
		printk(KERN_ERR	"sdcardfs: invalid options\n");
		goto out_freesbi;
	}

	if (sb_info->options.derive != DERIVE_NONE) {
		pkgl_id = packagelist_create(sb_info->options.write_gid);
		if(IS_ERR(pkgl_id))
			goto out_freesbi;
		else
			sb_info->pkgl_id = pkgl_id;
	}

	/* set the lower superblock field of upper superblock */
	lower_sb = lower_path.dentry->d_sb;
	atomic_inc(&lower_sb->s_active);
	sdcardfs_set_lower_super(sb, lower_sb);

	/* inherit maxbytes from lower file system */
	sb->s_maxbytes = lower_sb->s_maxbytes;

	/*
	 * Our c/m/atime granularity is 1 ns because we may stack on file
	 * systems whose granularity is as good.
	 */
	sb->s_time_gran = 1;

	sb->s_magic = SDCARDFS_SUPER_MAGIC;
	sb->s_op = &sdcardfs_sops;

	/* see comment next to the definition of sdcardfs_d_alloc_root */
	sb->s_root = sdcardfs_d_alloc_root(sb);
	if (!sb->s_root) {
		err = -ENOMEM;
		goto out_sput;
	}

	/* link the upper and lower dentries */
	sb->s_root->d_fsdata = NULL;
	err = new_dentry_private_data(sb->s_root);
	if (err)
		goto out_freeroot;

	/* set the lower dentries for s_root */
	sdcardfs_set_lower_path(sb->s_root, &lower_path);

	/*lenovo-sw jixj 2015.11.29 add begin for selinux merge from moto*/
	#ifdef CONFIG_SECURITY_SELINUX
	security_secctx_to_secid(SDCARDFS_LOWER_SECCTX,
				 strlen(SDCARDFS_LOWER_SECCTX),
				 &sb_info->lower_secid);
	#endif
	/*lenovo-sw jixj 2015.11.29 add end*/

	/* call interpose to create the upper level inode */
	err = sdcardfs_interpose(sb->s_root, sb, &lower_path);
	if (!err) {
		/* setup permission policy */
		switch(sb_info->options.derive) {
			case DERIVE_NONE:
				setup_derived_state(sb->s_root->d_inode, 
					PERM_ROOT, 0, AID_ROOT, AID_SDCARD_RW, 00775);
				sb_info->obbpath_s = NULL;
				break;
			case DERIVE_LEGACY:
				/* Legacy behavior used to support internal multiuser layout which
				 * places user_id at the top directory level, with the actual roots
				 * just below that. Shared OBB path is also at top level. */
				setup_derived_state(sb->s_root->d_inode, 
				        PERM_LEGACY_PRE_ROOT, 0, AID_ROOT, AID_SDCARD_R, 00771);
				/* initialize the obbpath string and lookup the path 
				 * sb_info->obb_path will be deactivated by path_put 
				 * on sdcardfs_put_super */
				sb_info->obbpath_s = kzalloc(PATH_MAX, GFP_KERNEL);
				snprintf(sb_info->obbpath_s, PATH_MAX, "%s/obb", dev_name);
				//printk(KERN_INFO "sdcardfs: legacy oobpath -> %s\n", sb_info->obbpath_s);
				err =  prepare_dir(sb_info->obbpath_s, 
							sb_info->options.fs_low_uid,
							sb_info->options.fs_low_gid, 00755);
				if(err)
					printk(KERN_ERR "sdcardfs: %s: %d, error on creating %s\n", 
							__func__,__LINE__, sb_info->obbpath_s);
				break;
			case DERIVE_UNIFIED:
				/* Unified multiuser layout which places secondary user_id under
				 * /Android/user and shared OBB path under /Android/obb. */
				setup_derived_state(sb->s_root->d_inode, 
						PERM_ROOT, 0, AID_ROOT, AID_SDCARD_R, 00771);
				
				sb_info->obbpath_s = kzalloc(PATH_MAX, GFP_KERNEL);
				snprintf(sb_info->obbpath_s, PATH_MAX, "%s/Android/obb", dev_name);
				//printk(KERN_INFO "sdcardfs: unified oobpath -> %s\n", sb_info->obbpath_s);
				break;
			case DERIVE_PUBLIC:
				setup_derived_state(sb->s_root->d_inode,
				        PERM_ROOT, 0,
				        sb_info->options.upper_perms.uid,
				        sb_info->options.upper_perms.gid,
				        00711);
				/* initialize the obbpath string and lookup the path
				 * sb_info->obb_path will be deactivated by path_put
				 * on sdcardfs_put_super */
				sb_info->obbpath_s = kzalloc(PATH_MAX, GFP_KERNEL);
				snprintf(sb_info->obbpath_s, PATH_MAX, "%s/Android/obb", dev_name);
				//printk(KERN_INFO "sdcardfs: legacy oobpath -> %s\n", sb_info->obbpath_s);
				err =  prepare_dir(sb_info->obbpath_s,
							sb_info->options.fs_low_uid,
							sb_info->options.fs_low_gid, 00775);
				if(err)
					printk(KERN_ERR "sdcardfs: %s: %d, error on creating %s\n",
							__func__,__LINE__, sb_info->obbpath_s);
				break;
			case DERIVE_MULTI:
				setup_derived_state(sb->s_root->d_inode,
				        PERM_LEGACY_PRE_ROOT, 0,
				        sb_info->options.upper_perms.uid,
				        sb_info->options.upper_perms.gid,
				        00711);
				/* initialize the obbpath string and lookup the path
				 * sb_info->obb_path will be deactivated by path_put
				 * on sdcardfs_put_super */
				sb_info->obbpath_s = kzalloc(PATH_MAX, GFP_KERNEL);
				snprintf(sb_info->obbpath_s, PATH_MAX, "%s/obb", dev_name);
				//printk(KERN_INFO "sdcardfs: legacy oobpath -> %s\n", sb_info->obbpath_s);
				err =  prepare_dir(sb_info->obbpath_s,
							sb_info->options.fs_low_uid,
							sb_info->options.fs_low_gid, 00775);
				if(err)
					printk(KERN_ERR "sdcardfs: %s: %d, error on creating %s\n",
							__func__,__LINE__, sb_info->obbpath_s);
				break;
		}
		fix_derived_permission(sb->s_root->d_inode);
//2015.01.04  merge from Nxx50
		sb_info->devpath = kzalloc(PATH_MAX, GFP_KERNEL);
		if(sb_info->devpath && dev_name)
			memcpy(sb_info->devpath, dev_name, PATH_MAX);
//end for devpath		
		if (!silent && !err)
			printk(KERN_INFO "sdcardfs: mounted on top of %s type %s\n",
						dev_name, lower_sb->s_type->name);
		goto out;
	}
	/* else error: fall through */

	SDFS_ERR("sdcardfs: mount error !!! \n");

	free_dentry_private_data(sb->s_root);
out_freeroot:
	dput(sb->s_root);
out_sput:
	/* drop refs we took earlier */
	atomic_dec(&lower_sb->s_active);
	packagelist_destroy(sb_info->pkgl_id);
out_freesbi:
	kfree(SDCARDFS_SB(sb));
	sb->s_fs_info = NULL;
out_free:
	path_put(&lower_path);

out:
	return err;
}
Beispiel #3
0
/*
 * There is no need to lock the esdfs_super_info's rwsem as there is no
 * way anyone can have a reference to the superblock at this point in time.
 */
static int esdfs_read_super(struct super_block *sb, const char *dev_name,
		void *raw_data, int silent)
{
	int err = 0;
	struct super_block *lower_sb;
	struct path lower_path;
	struct esdfs_sb_info *sbi;
	struct inode *inode;

	if (!dev_name) {
		esdfs_msg(sb, KERN_ERR, "missing dev_name argument\n");
		err = -EINVAL;
		goto out;
	}

	/* parse lower path */
	err = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
			&lower_path);
	if (err) {
		esdfs_msg(sb, KERN_ERR, "error accessing lower directory '%s'\n",
			dev_name);
		goto out;
	}

	/* allocate superblock private data */
	sb->s_fs_info = kzalloc(sizeof(struct esdfs_sb_info), GFP_KERNEL);
	sbi = ESDFS_SB(sb);
	if (!sbi) {
		esdfs_msg(sb, KERN_CRIT, "read_super: out of memory\n");
		err = -ENOMEM;
		goto out_pput;
	}

	/* set defaults and then parse the mount options */
	memcpy(&sbi->lower_perms,
	       &esdfs_perms_table[ESDFS_PERMS_LOWER_DEFAULT],
	       sizeof(struct esdfs_perms));
	memcpy(&sbi->upper_perms,
	       &esdfs_perms_table[ESDFS_PERMS_UPPER_LEGACY],
	       sizeof(struct esdfs_perms));
	err = parse_options(sb, (char *)raw_data);
	if (err)
		goto out_free;

	/* set the lower superblock field of upper superblock */
	lower_sb = lower_path.dentry->d_sb;
	atomic_inc(&lower_sb->s_active);
	esdfs_set_lower_super(sb, lower_sb);

	/* inherit maxbytes from lower file system */
	sb->s_maxbytes = lower_sb->s_maxbytes;

	/*
	 * Our c/m/atime granularity is 1 ns because we may stack on file
	 * systems whose granularity is as good.
	 */
	sb->s_time_gran = 1;

	sb->s_op = &esdfs_sops;

	/* get a new inode and allocate our root dentry */
	inode = esdfs_iget(sb, lower_path.dentry->d_inode);
	if (IS_ERR(inode)) {
		err = PTR_ERR(inode);
		goto out_sput;
	}
	sb->s_root = d_make_root(inode);
	if (!sb->s_root) {
		err = -ENOMEM;
		goto out_iput;
	}
	d_set_d_op(sb->s_root, &esdfs_dops);

	/* link the upper and lower dentries */
	sb->s_root->d_fsdata = NULL;
	err = new_dentry_private_data(sb->s_root);
	if (err)
		goto out_freeroot;

	/* if get here: cannot have error */

	/* set the lower dentries for s_root */
	esdfs_set_lower_path(sb->s_root, &lower_path);
#ifdef CONFIG_SECURITY_SELINUX
	security_secctx_to_secid(ESDFS_LOWER_SECCTX,
				 strlen(ESDFS_LOWER_SECCTX),
				 &sbi->lower_secid);
#endif
	/*
	 * No need to call interpose because we already have a positive
	 * dentry, which was instantiated by d_make_root.  Just need to
	 * d_rehash it.
	 */
	d_rehash(sb->s_root);
	if (!silent)
		esdfs_msg(sb, KERN_INFO, "mounted on top of %s type %s\n",
			dev_name, lower_sb->s_type->name);

	if (!ESDFS_DERIVE_PERMS(sbi))
		goto out;

	/* let user know that we ignore this option in derived mode */
	if (memcmp(&sbi->upper_perms,
		   &esdfs_perms_table[ESDFS_PERMS_UPPER_LEGACY],
		   sizeof(struct esdfs_perms)))
		esdfs_msg(sb, KERN_WARNING, "'upper' mount option ignored in derived mode\n");

	/* all derived modes start with the same, basic root */
	memcpy(&sbi->upper_perms,
	       &esdfs_perms_table[ESDFS_PERMS_UPPER_DERIVED],
	       sizeof(struct esdfs_perms));

	/*
	 * In Android 3.0 all user conent in the emulated storage tree was
	 * stored in /data/media.  Android 4.2 introduced multi-user support,
	 * which required that the primary user's content be migrated from
	 * /data/media to /data/media/0.  The framework then uses bind mounts
	 * to create per-process namespaces to isolate each user's tree at
	 * /data/media/N.  This approach of having each user in a common root
	 * is now considered "legacy" by the sdcard service.
	 */
	if (test_opt(sbi, DERIVE_LEGACY)) {
		ESDFS_I(inode)->tree = ESDFS_TREE_ROOT_LEGACY;
		sbi->obb_parent = dget(sb->s_root);
	/*
	 * Android 4.4 reorganized this sturcture yet again, so that the
	 * primary user's content was again at the root.  Secondary users'
	 * content is found in Android/user/N.  Emulated internal storage still
	 * seems to use the legacy tree, but secondary external storage uses
	 * this method.
	 */
	} else if (test_opt(sbi, DERIVE_UNIFIED))
		ESDFS_I(inode)->tree = ESDFS_TREE_ROOT;
	/*
	 * Later versions of Android organize user content using quantum
	 * entanglement, which has a low probability of being supported by
	 * this driver.
	 */
	else
		esdfs_msg(sb, KERN_WARNING, "unsupported derived permissions mode\n");

	/* initialize root inode */
	esdfs_derive_perms(sb->s_root);

	goto out;

out_freeroot:
	dput(sb->s_root);
out_iput:
	iput(inode);
out_sput:
	/* drop refs we took earlier */
	atomic_dec(&lower_sb->s_active);
out_free:
	kfree(ESDFS_SB(sb));
	sb->s_fs_info = NULL;
out_pput:
	path_put(&lower_path);

out:
	return err;
}