OfflineDownload::OfflineDownload(int64_t id_,
                                 OfflineRegionDefinition&& definition_,
                                 OfflineDatabase& offlineDatabase_,
                                 FileSource& onlineFileSource_)
    : id(id_),
      definition(definition_),
      offlineDatabase(offlineDatabase_),
      onlineFileSource(onlineFileSource_) {
    setObserver(nullptr);
}
Beispiel #2
0
void GlyphStore::requestGlyphRange(const std::string& fontStackName, const GlyphRange& range) {
    assert(util::ThreadContext::currentlyOn(util::ThreadType::Map));

    std::lock_guard<std::mutex> lock(rangesMutex);
    auto& rangeSets = ranges[fontStackName];

    const auto& rangeSetsIt = rangeSets.find(range);
    if (rangeSetsIt != rangeSets.end()) {
        return;
    }

    auto glyphPBF = std::make_unique<GlyphPBF>(this, fontStackName, range);
    glyphPBF->setObserver(this);

    rangeSets.emplace(range, std::move(glyphPBF));
}
status_t BnHDCP::onTransact(
        uint32_t code, const Parcel &data, Parcel *reply, uint32_t flags) {
    switch (code) {
        case HDCP_SET_OBSERVER:
        {
            CHECK_INTERFACE(IHDCP, data, reply);

            sp<IHDCPObserver> observer =
                interface_cast<IHDCPObserver>(data.readStrongBinder());

            reply->writeInt32(setObserver(observer));
            return OK;
        }

        case HDCP_INIT_ASYNC:
        {
            CHECK_INTERFACE(IHDCP, data, reply);

            const char *host = data.readCString();
            unsigned port = data.readInt32();

            reply->writeInt32(initAsync(host, port));
            return OK;
        }

        case HDCP_SHUTDOWN_ASYNC:
        {
            CHECK_INTERFACE(IHDCP, data, reply);

            reply->writeInt32(shutdownAsync());
            return OK;
        }

        case HDCP_GET_CAPS:
        {
            CHECK_INTERFACE(IHDCP, data, reply);

            reply->writeInt32(getCaps());
            return OK;
        }

        case HDCP_ENCRYPT:
        {
            size_t size = data.readInt32();
            size_t bufSize = 2 * size;

            // watch out for overflow
            void *inData = NULL;
            if (bufSize > size) {
                inData = malloc(bufSize);
            }

            if (inData == NULL) {
                reply->writeInt32(ERROR_OUT_OF_RANGE);
                return OK;
            }

            void *outData = (uint8_t *)inData + size;

            data.read(inData, size);

            uint32_t streamCTR = data.readInt32();
            uint64_t inputCTR;
            status_t err = encrypt(inData, size, streamCTR, &inputCTR, outData);

            reply->writeInt32(err);

            if (err == OK) {
                reply->writeInt64(inputCTR);
                reply->write(outData, size);
            }

            free(inData);
            inData = outData = NULL;

            return OK;
        }

        case HDCP_ENCRYPT_NATIVE:
        {
            CHECK_INTERFACE(IHDCP, data, reply);

            sp<GraphicBuffer> graphicBuffer = new GraphicBuffer();
            data.read(*graphicBuffer);
            size_t offset = data.readInt32();
            size_t size = data.readInt32();
            uint32_t streamCTR = data.readInt32();
            void *outData = NULL;
            uint64_t inputCTR;

            status_t err = ERROR_OUT_OF_RANGE;

            outData = malloc(size);

            if (outData != NULL) {
                err = encryptNative(graphicBuffer, offset, size,
                                             streamCTR, &inputCTR, outData);
            }

            reply->writeInt32(err);

            if (err == OK) {
                reply->writeInt64(inputCTR);
                reply->write(outData, size);
            }

            free(outData);
            outData = NULL;

            return OK;
        }

        case HDCP_DECRYPT:
        {
            size_t size = data.readInt32();
            size_t bufSize = 2 * size;

            // watch out for overflow
            void *inData = NULL;
            if (bufSize > size) {
                inData = malloc(bufSize);
            }

            if (inData == NULL) {
                reply->writeInt32(ERROR_OUT_OF_RANGE);
                return OK;
            }

            void *outData = (uint8_t *)inData + size;

            data.read(inData, size);

            uint32_t streamCTR = data.readInt32();
            uint64_t inputCTR = data.readInt64();
            status_t err = decrypt(inData, size, streamCTR, inputCTR, outData);

            reply->writeInt32(err);

            if (err == OK) {
                reply->write(outData, size);
            }

            free(inData);
            inData = outData = NULL;

            return OK;
        }

        default:
            return BBinder::onTransact(code, data, reply, flags);
    }
}
Beispiel #4
0
void ThriftServer::setup() {
  DCHECK_NOTNULL(getProcessorFactory().get());
  auto nWorkers = getNumIOWorkerThreads();
  DCHECK_GT(nWorkers, 0);

  uint32_t threadsStarted = 0;

  // Initialize event base for this thread, ensure event_init() is called
  serveEventBase_ = eventBaseManager_->getEventBase();
  if (idleServerTimeout_.count() > 0) {
    idleServer_.emplace(
        *this, serveEventBase_.load()->timer(), idleServerTimeout_);
  }
  // Print some libevent stats
  VLOG(1) << "libevent " << folly::EventBase::getLibeventVersion() << " method "
          << folly::EventBase::getLibeventMethod();

  try {
#ifndef _WIN32
    // OpenSSL might try to write to a closed socket if the peer disconnects
    // abruptly, raising a SIGPIPE signal. By default this will terminate the
    // process, which we don't want. Hence we need to handle SIGPIPE specially.
    //
    // We don't use SIG_IGN here as child processes will inherit that handler.
    // Instead, we swallow the signal to enable SIGPIPE in children to behave
    // normally.
    // Furthermore, setting flags to 0 and using sigaction prevents SA_RESTART
    // from restarting syscalls after the handler completed. This is important
    // for code using SIGPIPE to interrupt syscalls in other threads.
    struct sigaction sa = {};
    sa.sa_handler = [](int) {};
    sa.sa_flags = 0;
    sigemptyset(&sa.sa_mask);
    sigaction(SIGPIPE, &sa, nullptr);
#endif

    if (!getObserver() && server::observerFactory_) {
      setObserver(server::observerFactory_->getObserver());
    }

    // We always need a threadmanager for cpp2.
    setupThreadManager();
    threadManager_->setExpireCallback([&](std::shared_ptr<Runnable> r) {
      EventTask* task = dynamic_cast<EventTask*>(r.get());
      if (task) {
        task->expired();
      }
    });
    threadManager_->setCodelCallback([&](std::shared_ptr<Runnable>) {
      auto observer = getObserver();
      if (observer) {
        if (getEnableCodel()) {
          observer->queueTimeout();
        } else {
          observer->shadowQueueTimeout();
        }
      }
    });
    if (thriftProcessor_) {
      thriftProcessor_->setThreadManager(threadManager_.get());
      thriftProcessor_->setCpp2Processor(getCpp2Processor());
    }

    if (!serverChannel_) {
      ServerBootstrap::socketConfig.acceptBacklog = getListenBacklog();
      ServerBootstrap::socketConfig.maxNumPendingConnectionsPerWorker =
          getMaxNumPendingConnectionsPerWorker();
      if (reusePort_) {
        ServerBootstrap::setReusePort(true);
      }
      if (enableTFO_) {
        ServerBootstrap::socketConfig.enableTCPFastOpen = *enableTFO_;
        ServerBootstrap::socketConfig.fastOpenQueueSize = fastOpenQueueSize_;
      }

      // Resize the IO pool
      ioThreadPool_->setNumThreads(nWorkers);
      if (!acceptPool_) {
        acceptPool_ = std::make_shared<folly::IOThreadPoolExecutor>(
            nAcceptors_,
            std::make_shared<folly::NamedThreadFactory>("Acceptor Thread"));
      }

      // Resize the SSL handshake pool
      size_t nSSLHandshakeWorkers = getNumSSLHandshakeWorkerThreads();
      VLOG(1) << "Using " << nSSLHandshakeWorkers << " SSL handshake threads";
      sslHandshakePool_->setNumThreads(nSSLHandshakeWorkers);

      ServerBootstrap::childHandler(
          acceptorFactory_ ? acceptorFactory_
                           : std::make_shared<ThriftAcceptorFactory>(this));

      {
        std::lock_guard<std::mutex> lock(ioGroupMutex_);
        ServerBootstrap::group(acceptPool_, ioThreadPool_);
      }
      if (socket_) {
        ServerBootstrap::bind(std::move(socket_));
      } else if (port_ != -1) {
        ServerBootstrap::bind(port_);
      } else {
        ServerBootstrap::bind(address_);
      }
      // Update address_ with the address that we are actually bound to.
      // (This is needed if we were supplied a pre-bound socket, or if
      // address_'s port was set to 0, so an ephemeral port was chosen by
      // the kernel.)
      ServerBootstrap::getSockets()[0]->getAddress(&address_);

      for (auto& socket : getSockets()) {
        socket->setShutdownSocketSet(wShutdownSocketSet_);
        socket->setAcceptRateAdjustSpeed(acceptRateAdjustSpeed_);
        try {
          socket->setTosReflect(tosReflect_);
        } catch (std::exception const& ex) {
          LOG(ERROR) << "Got exception setting up TOS reflect: "
                     << folly::exceptionStr(ex);
        }
      }

      // Notify handler of the preServe event
      if (eventHandler_ != nullptr) {
        eventHandler_->preServe(&address_);
      }

    } else {
      startDuplex();
    }

    // Do not allow setters to be called past this point until the IO worker
    // threads have been joined in stopWorkers().
    configMutable_ = false;
  } catch (std::exception& ex) {
    // This block allows us to investigate the exception using gdb
    LOG(ERROR) << "Got an exception while setting up the server: " << ex.what();
    handleSetupFailure();
    throw;
  } catch (...) {
    handleSetupFailure();
    throw;
  }
}
status_t BnHDCP::onTransact(
        uint32_t code, const Parcel &data, Parcel *reply, uint32_t flags) {
    switch (code) {
        case HDCP_SET_OBSERVER:
        {
            CHECK_INTERFACE(IHDCP, data, reply);

            sp<IHDCPObserver> observer =
                interface_cast<IHDCPObserver>(data.readStrongBinder());

            reply->writeInt32(setObserver(observer));
            return OK;
        }

        case HDCP_INIT_ASYNC:
        {
            CHECK_INTERFACE(IHDCP, data, reply);

            const char *host = data.readCString();
            unsigned port = data.readInt32();

            reply->writeInt32(initAsync(host, port));
            return OK;
        }

        case HDCP_SHUTDOWN_ASYNC:
        {
            CHECK_INTERFACE(IHDCP, data, reply);

            reply->writeInt32(shutdownAsync());
            return OK;
        }

        case HDCP_ENCRYPT:
        {
            size_t size = data.readInt32();

            void *inData = malloc(2 * size);
            void *outData = (uint8_t *)inData + size;

            data.read(inData, size);

            uint32_t streamCTR = data.readInt32();
            uint64_t inputCTR;
            status_t err = encrypt(inData, size, streamCTR, &inputCTR, outData);

            reply->writeInt32(err);

            if (err == OK) {
                reply->writeInt64(inputCTR);
                reply->write(outData, size);
            }

            free(inData);
            inData = outData = NULL;

            return OK;
        }

        default:
            return BBinder::onTransact(code, data, reply, flags);
    }
}
Beispiel #6
0
WinMaker::WinMaker(WndProcObserver	*pObserver)
{
	setObserver(pObserver);
}