/*===========================================================================* * main * *===========================================================================*/ PUBLIC int main(void) { /* Start the ball rolling. */ struct boot_image *ip; /* boot image pointer */ register struct proc *rp; /* process pointer */ register int i, j; size_t argsz; /* size of arguments passed to crtso on stack */ BKL_LOCK(); /* Global value to test segment sanity. */ magictest = MAGICTEST; DEBUGEXTRA(("main()\n")); proc_init(); /* Set up proc table entries for processes in boot image. The stacks * of the servers have been added to the data segment by the monitor, so * the stack pointer is set to the end of the data segment. */ for (i=0; i < NR_BOOT_PROCS; ++i) { int schedulable_proc; proc_nr_t proc_nr; int ipc_to_m, kcalls; sys_map_t map; ip = &image[i]; /* process' attributes */ DEBUGEXTRA(("initializing %s... ", ip->proc_name)); rp = proc_addr(ip->proc_nr); /* get process pointer */ ip->endpoint = rp->p_endpoint; /* ipc endpoint */ make_zero64(rp->p_cpu_time_left); strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */ reset_proc_accounting(rp); /* See if this process is immediately schedulable. * In that case, set its privileges now and allow it to run. * Only kernel tasks and the root system process get to run immediately. * All the other system processes are inhibited from running by the * RTS_NO_PRIV flag. They can only be scheduled once the root system * process has set their privileges. */ proc_nr = proc_nr(rp); schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr)); if(schedulable_proc) { /* Assign privilege structure. Force a static privilege id. */ (void) get_priv(rp, static_priv_id(proc_nr)); /* Priviliges for kernel tasks. */ if(iskerneln(proc_nr)) { /* Privilege flags. */ priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F); /* Allowed traps. */ priv(rp)->s_trap_mask = (proc_nr == CLOCK || proc_nr == SYSTEM ? CSK_T : TSK_T); ipc_to_m = TSK_M; /* allowed targets */ kcalls = TSK_KC; /* allowed kernel calls */ } /* Priviliges for the root system process. */ else if(isrootsysn(proc_nr)) { priv(rp)->s_flags= RSYS_F; /* privilege flags */ priv(rp)->s_trap_mask= SRV_T; /* allowed traps */ ipc_to_m = SRV_M; /* allowed targets */ kcalls = SRV_KC; /* allowed kernel calls */ priv(rp)->s_sig_mgr = SRV_SM; /* signal manager */ rp->p_priority = SRV_Q; /* priority queue */ rp->p_quantum_size_ms = SRV_QT; /* quantum size */ } /* Priviliges for ordinary process. */ else { NOT_REACHABLE; } /* Fill in target mask. */ memset(&map, 0, sizeof(map)); if (ipc_to_m == ALL_M) { for(j = 0; j < NR_SYS_PROCS; j++) set_sys_bit(map, j); } fill_sendto_mask(rp, &map); /* Fill in kernel call mask. */ for(j = 0; j < SYS_CALL_MASK_SIZE; j++) { priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0)); } } else { /* Don't let the process run for now. */ RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM); } rp->p_memmap[T].mem_vir = ABS2CLICK(ip->memmap.text_vaddr); rp->p_memmap[T].mem_phys = ABS2CLICK(ip->memmap.text_paddr); rp->p_memmap[T].mem_len = ABS2CLICK(ip->memmap.text_bytes); rp->p_memmap[D].mem_vir = ABS2CLICK(ip->memmap.data_vaddr); rp->p_memmap[D].mem_phys = ABS2CLICK(ip->memmap.data_paddr); rp->p_memmap[D].mem_len = ABS2CLICK(ip->memmap.data_bytes); rp->p_memmap[S].mem_phys = ABS2CLICK(ip->memmap.data_paddr + ip->memmap.data_bytes + ip->memmap.stack_bytes); rp->p_memmap[S].mem_vir = ABS2CLICK(ip->memmap.data_vaddr + ip->memmap.data_bytes + ip->memmap.stack_bytes); rp->p_memmap[S].mem_len = 0; /* Set initial register values. The processor status word for tasks * is different from that of other processes because tasks can * access I/O; this is not allowed to less-privileged processes */ rp->p_reg.pc = ip->memmap.entry; rp->p_reg.psw = (iskerneln(proc_nr)) ? INIT_TASK_PSW : INIT_PSW; /* Initialize the server stack pointer. Take it down three words * to give crtso.s something to use as "argc", "argv" and "envp". */ if (isusern(proc_nr)) { /* user-space process? */ rp->p_reg.sp = (rp->p_memmap[S].mem_vir + rp->p_memmap[S].mem_len) << CLICK_SHIFT; argsz = 3 * sizeof(reg_t); rp->p_reg.sp -= argsz; phys_memset(rp->p_reg.sp - (rp->p_memmap[S].mem_vir << CLICK_SHIFT) + (rp->p_memmap[S].mem_phys << CLICK_SHIFT), 0, argsz); } /* scheduling functions depend on proc_ptr pointing somewhere. */ if(!get_cpulocal_var(proc_ptr)) get_cpulocal_var(proc_ptr) = rp; /* If this process has its own page table, VM will set the * PT up and manage it. VM will signal the kernel when it has * done this; until then, don't let it run. */ if(ip->flags & PROC_FULLVM) rp->p_rts_flags |= RTS_VMINHIBIT; rp->p_rts_flags |= RTS_PROC_STOP; rp->p_rts_flags &= ~RTS_SLOT_FREE; alloc_segments(rp); DEBUGEXTRA(("done\n")); } #define IPCNAME(n) { \ assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \ assert(!ipc_call_names[n]); \ ipc_call_names[n] = #n; \ } IPCNAME(SEND); IPCNAME(RECEIVE); IPCNAME(SENDREC); IPCNAME(NOTIFY); IPCNAME(SENDNB); IPCNAME(SENDA); /* Architecture-dependent initialization. */ DEBUGEXTRA(("arch_init()... ")); arch_init(); DEBUGEXTRA(("done\n")); /* System and processes initialization */ DEBUGEXTRA(("system_init()... ")); system_init(); DEBUGEXTRA(("done\n")); #ifdef CONFIG_SMP if (config_no_apic) { BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n")); smp_single_cpu_fallback(); } else if (config_no_smp) { BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n")); smp_single_cpu_fallback(); } else { smp_init(); /* * if smp_init() returns it means that it failed and we try to finish * single CPU booting */ bsp_finish_booting(); } #else /* * if configured for a single CPU, we are already on the kernel stack which we * are going to use everytime we execute kernel code. We finish booting and we * never return here */ bsp_finish_booting(); #endif NOT_REACHABLE; return 1; }
/*===========================================================================* * kmain * *===========================================================================*/ void kmain(kinfo_t *local_cbi) { /* Start the ball rolling. */ struct boot_image *ip; /* boot image pointer */ register struct proc *rp; /* process pointer */ register int i, j; /* save a global copy of the boot parameters */ memcpy(&kinfo, local_cbi, sizeof(kinfo)); memcpy(&kmess, kinfo.kmess, sizeof(kmess)); #ifdef __arm__ /* We want to initialize serial before we do any output */ omap3_ser_init(); #endif /* We can talk now */ printf("MINIX booting\n"); /* Kernel may use bits of main memory before VM is started */ kernel_may_alloc = 1; assert(sizeof(kinfo.boot_procs) == sizeof(image)); memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs)); cstart(); BKL_LOCK(); DEBUGEXTRA(("main()\n")); proc_init(); if(NR_BOOT_MODULES != kinfo.mbi.mods_count) panic("expecting %d boot processes/modules, found %d", NR_BOOT_MODULES, kinfo.mbi.mods_count); /* Set up proc table entries for processes in boot image. */ for (i=0; i < NR_BOOT_PROCS; ++i) { int schedulable_proc; proc_nr_t proc_nr; int ipc_to_m, kcalls; sys_map_t map; ip = &image[i]; /* process' attributes */ DEBUGEXTRA(("initializing %s... ", ip->proc_name)); rp = proc_addr(ip->proc_nr); /* get process pointer */ ip->endpoint = rp->p_endpoint; /* ipc endpoint */ make_zero64(rp->p_cpu_time_left); if(i < NR_TASKS) /* name (tasks only) */ strlcpy(rp->p_name, ip->proc_name, sizeof(rp->p_name)); if(i >= NR_TASKS) { /* Remember this so it can be passed to VM */ multiboot_module_t *mb_mod = &kinfo.module_list[i - NR_TASKS]; ip->start_addr = mb_mod->mod_start; ip->len = mb_mod->mod_end - mb_mod->mod_start; } reset_proc_accounting(rp); /* See if this process is immediately schedulable. * In that case, set its privileges now and allow it to run. * Only kernel tasks and the root system process get to run immediately. * All the other system processes are inhibited from running by the * RTS_NO_PRIV flag. They can only be scheduled once the root system * process has set their privileges. */ proc_nr = proc_nr(rp); schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr) || proc_nr == VM_PROC_NR); if(schedulable_proc) { /* Assign privilege structure. Force a static privilege id. */ (void) get_priv(rp, static_priv_id(proc_nr)); /* Priviliges for kernel tasks. */ if(proc_nr == VM_PROC_NR) { priv(rp)->s_flags = VM_F; priv(rp)->s_trap_mask = SRV_T; ipc_to_m = SRV_M; kcalls = SRV_KC; priv(rp)->s_sig_mgr = SELF; rp->p_priority = SRV_Q; rp->p_quantum_size_ms = SRV_QT; } else if(iskerneln(proc_nr)) { /* Privilege flags. */ priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F); /* Allowed traps. */ priv(rp)->s_trap_mask = (proc_nr == CLOCK || proc_nr == SYSTEM ? CSK_T : TSK_T); ipc_to_m = TSK_M; /* allowed targets */ kcalls = TSK_KC; /* allowed kernel calls */ } /* Priviliges for the root system process. */ else { assert(isrootsysn(proc_nr)); priv(rp)->s_flags= RSYS_F; /* privilege flags */ priv(rp)->s_trap_mask= SRV_T; /* allowed traps */ ipc_to_m = SRV_M; /* allowed targets */ kcalls = SRV_KC; /* allowed kernel calls */ priv(rp)->s_sig_mgr = SRV_SM; /* signal manager */ rp->p_priority = SRV_Q; /* priority queue */ rp->p_quantum_size_ms = SRV_QT; /* quantum size */ } /* Fill in target mask. */ memset(&map, 0, sizeof(map)); if (ipc_to_m == ALL_M) { for(j = 0; j < NR_SYS_PROCS; j++) set_sys_bit(map, j); } fill_sendto_mask(rp, &map); /* Fill in kernel call mask. */ for(j = 0; j < SYS_CALL_MASK_SIZE; j++) { priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0)); } } else { /* Don't let the process run for now. */ RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM); } /* Arch-specific state initialization. */ arch_boot_proc(ip, rp); /* scheduling functions depend on proc_ptr pointing somewhere. */ if(!get_cpulocal_var(proc_ptr)) get_cpulocal_var(proc_ptr) = rp; /* Process isn't scheduled until VM has set up a pagetable for it. */ if(rp->p_nr != VM_PROC_NR && rp->p_nr >= 0) { rp->p_rts_flags |= RTS_VMINHIBIT; rp->p_rts_flags |= RTS_BOOTINHIBIT; } rp->p_rts_flags |= RTS_PROC_STOP; rp->p_rts_flags &= ~RTS_SLOT_FREE; DEBUGEXTRA(("done\n")); } /* update boot procs info for VM */ memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs)); #define IPCNAME(n) { \ assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \ assert(!ipc_call_names[n]); \ ipc_call_names[n] = #n; \ } arch_post_init(); IPCNAME(SEND); IPCNAME(RECEIVE); IPCNAME(SENDREC); IPCNAME(NOTIFY); IPCNAME(SENDNB); IPCNAME(SENDA); /* System and processes initialization */ memory_init(); DEBUGEXTRA(("system_init()... ")); system_init(); DEBUGEXTRA(("done\n")); /* The bootstrap phase is over, so we can add the physical * memory used for it to the free list. */ add_memmap(&kinfo, kinfo.bootstrap_start, kinfo.bootstrap_len); #ifdef CONFIG_SMP if (config_no_apic) { BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n")); smp_single_cpu_fallback(); } else if (config_no_smp) { BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n")); smp_single_cpu_fallback(); } else { smp_init(); /* * if smp_init() returns it means that it failed and we try to finish * single CPU booting */ bsp_finish_booting(); } #else /* * if configured for a single CPU, we are already on the kernel stack which we * are going to use everytime we execute kernel code. We finish booting and we * never return here */ bsp_finish_booting(); #endif NOT_REACHABLE; }
/*===========================================================================* * do_privctl * *===========================================================================*/ int do_privctl(struct proc * caller, message * m_ptr) { /* Handle sys_privctl(). Update a process' privileges. If the process is not * yet a system process, make sure it gets its own privilege structure. */ struct proc *rp; proc_nr_t proc_nr; sys_id_t priv_id; sys_map_t map; int ipc_to_m, kcalls; int i, r; struct io_range io_range; struct mem_range mem_range; struct priv priv; int irq; /* Check whether caller is allowed to make this call. Privileged proceses * can only update the privileges of processes that are inhibited from * running by the RTS_NO_PRIV flag. This flag is set when a privileged process * forks. */ if (! (priv(caller)->s_flags & SYS_PROC)) return(EPERM); if(m_ptr->CTL_ENDPT == SELF) proc_nr = _ENDPOINT_P(caller->p_endpoint); else if(!isokendpt(m_ptr->CTL_ENDPT, &proc_nr)) return(EINVAL); rp = proc_addr(proc_nr); switch(m_ptr->CTL_REQUEST) { case SYS_PRIV_ALLOW: /* Allow process to run. Make sure its privilege structure has already * been set. */ if (!RTS_ISSET(rp, RTS_NO_PRIV) || priv(rp)->s_proc_nr == NONE) { return(EPERM); } RTS_UNSET(rp, RTS_NO_PRIV); return(OK); case SYS_PRIV_YIELD: /* Allow process to run and suspend the caller. */ if (!RTS_ISSET(rp, RTS_NO_PRIV) || priv(rp)->s_proc_nr == NONE) { return(EPERM); } RTS_SET(caller, RTS_NO_PRIV); RTS_UNSET(rp, RTS_NO_PRIV); return(OK); case SYS_PRIV_DISALLOW: /* Disallow process from running. */ if (RTS_ISSET(rp, RTS_NO_PRIV)) return(EPERM); RTS_SET(rp, RTS_NO_PRIV); return(OK); case SYS_PRIV_SET_SYS: /* Set a privilege structure of a blocked system process. */ if (! RTS_ISSET(rp, RTS_NO_PRIV)) return(EPERM); /* Check whether a static or dynamic privilege id must be allocated. */ priv_id = NULL_PRIV_ID; if (m_ptr->CTL_ARG_PTR) { /* Copy privilege structure from caller */ if((r=data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR, KERNEL, (vir_bytes) &priv, sizeof(priv))) != OK) return r; /* See if the caller wants to assign a static privilege id. */ if(!(priv.s_flags & DYN_PRIV_ID)) { priv_id = priv.s_id; } } /* Make sure this process has its own privileges structure. This may * fail, since there are only a limited number of system processes. * Then copy privileges from the caller and restore some defaults. */ if ((i=get_priv(rp, priv_id)) != OK) { printf("do_privctl: unable to allocate priv_id %d: %d\n", priv_id, i); return(i); } priv_id = priv(rp)->s_id; /* backup privilege id */ *priv(rp) = *priv(caller); /* copy from caller */ priv(rp)->s_id = priv_id; /* restore privilege id */ priv(rp)->s_proc_nr = proc_nr; /* reassociate process nr */ for (i=0; i< NR_SYS_CHUNKS; i++) /* remove pending: */ priv(rp)->s_notify_pending.chunk[i] = 0; /* - notifications */ priv(rp)->s_int_pending = 0; /* - interrupts */ (void) sigemptyset(&priv(rp)->s_sig_pending); /* - signals */ reset_timer(&priv(rp)->s_alarm_timer); /* - alarm */ priv(rp)->s_asyntab= -1; /* - asynsends */ priv(rp)->s_asynsize= 0; /* Set defaults for privilege bitmaps. */ priv(rp)->s_flags= DSRV_F; /* privilege flags */ priv(rp)->s_trap_mask= DSRV_T; /* allowed traps */ memset(&map, 0, sizeof(map)); ipc_to_m = DSRV_M; /* allowed targets */ if (ipc_to_m == ALL_M) { for (i = 0; i < NR_SYS_PROCS; i++) set_sys_bit(map, i); } fill_sendto_mask(rp, &map); kcalls = DSRV_KC; /* allowed kernel calls */ for(i = 0; i < SYS_CALL_MASK_SIZE; i++) { priv(rp)->s_k_call_mask[i] = (kcalls == NO_C ? 0 : (~0)); } /* Set the default signal managers. */ priv(rp)->s_sig_mgr = DSRV_SM; priv(rp)->s_bak_sig_mgr = NONE; /* Set defaults for resources: no I/O resources, no memory resources, * no IRQs, no grant table */ priv(rp)->s_nr_io_range= 0; priv(rp)->s_nr_mem_range= 0; priv(rp)->s_nr_irq= 0; priv(rp)->s_grant_table= 0; priv(rp)->s_grant_entries= 0; /* Override defaults if the caller has supplied a privilege structure. */ if (m_ptr->CTL_ARG_PTR) { if((r = update_priv(rp, &priv)) != OK) { return r; } } return(OK); case SYS_PRIV_SET_USER: /* Set a privilege structure of a blocked user process. */ if (!RTS_ISSET(rp, RTS_NO_PRIV)) return(EPERM); /* Link the process to the privilege structure of the root user * process all the user processes share. */ priv(rp) = priv_addr(USER_PRIV_ID); return(OK); case SYS_PRIV_ADD_IO: if (RTS_ISSET(rp, RTS_NO_PRIV)) return(EPERM); /* Only system processes get I/O resources? */ if (!(priv(rp)->s_flags & SYS_PROC)) return EPERM; #if 0 /* XXX -- do we need a call for this? */ if (strcmp(rp->p_name, "fxp") == 0 || strcmp(rp->p_name, "rtl8139") == 0) { printf("setting ipc_stats_target to %d\n", rp->p_endpoint); ipc_stats_target= rp->p_endpoint; } #endif /* Get the I/O range */ data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR, KERNEL, (vir_bytes) &io_range, sizeof(io_range)); priv(rp)->s_flags |= CHECK_IO_PORT; /* Check I/O accesses */ for (i = 0; i < priv(rp)->s_nr_io_range; i++) { if (priv(rp)->s_io_tab[i].ior_base == io_range.ior_base && priv(rp)->s_io_tab[i].ior_limit == io_range.ior_limit) return OK; } i= priv(rp)->s_nr_io_range; if (i >= NR_IO_RANGE) { printf("do_privctl: %d already has %d i/o ranges.\n", rp->p_endpoint, i); return ENOMEM; } priv(rp)->s_io_tab[i].ior_base= io_range.ior_base; priv(rp)->s_io_tab[i].ior_limit= io_range.ior_limit; priv(rp)->s_nr_io_range++; return OK; case SYS_PRIV_ADD_MEM: if (RTS_ISSET(rp, RTS_NO_PRIV)) return(EPERM); /* Only system processes get memory resources? */ if (!(priv(rp)->s_flags & SYS_PROC)) return EPERM; /* Get the memory range */ if((r=data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR, KERNEL, (vir_bytes) &mem_range, sizeof(mem_range))) != OK) return r; priv(rp)->s_flags |= CHECK_MEM; /* Check memory mappings */ /* When restarting a driver, check if it already has the premission */ for (i = 0; i < priv(rp)->s_nr_mem_range; i++) { if (priv(rp)->s_mem_tab[i].mr_base == mem_range.mr_base && priv(rp)->s_mem_tab[i].mr_limit == mem_range.mr_limit) return OK; } i= priv(rp)->s_nr_mem_range; if (i >= NR_MEM_RANGE) { printf("do_privctl: %d already has %d mem ranges.\n", rp->p_endpoint, i); return ENOMEM; } priv(rp)->s_mem_tab[i].mr_base= mem_range.mr_base; priv(rp)->s_mem_tab[i].mr_limit= mem_range.mr_limit; priv(rp)->s_nr_mem_range++; return OK; case SYS_PRIV_ADD_IRQ: if (RTS_ISSET(rp, RTS_NO_PRIV)) return(EPERM); /* Only system processes get IRQs? */ if (!(priv(rp)->s_flags & SYS_PROC)) return EPERM; data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR, KERNEL, (vir_bytes) &irq, sizeof(irq)); priv(rp)->s_flags |= CHECK_IRQ; /* Check IRQs */ /* When restarting a driver, check if it already has the premission */ for (i = 0; i < priv(rp)->s_nr_irq; i++) { if (priv(rp)->s_irq_tab[i] == irq) return OK; } i= priv(rp)->s_nr_irq; if (i >= NR_IRQ) { printf("do_privctl: %d already has %d irq's.\n", rp->p_endpoint, i); return ENOMEM; } priv(rp)->s_irq_tab[i]= irq; priv(rp)->s_nr_irq++; return OK; case SYS_PRIV_QUERY_MEM: { phys_bytes addr, limit; struct priv *sp; /* See if a certain process is allowed to map in certain physical * memory. */ addr = (phys_bytes) m_ptr->CTL_PHYSSTART; limit = addr + (phys_bytes) m_ptr->CTL_PHYSLEN - 1; if(limit < addr) return EPERM; if(!(sp = priv(rp))) return EPERM; if (!(sp->s_flags & SYS_PROC)) return EPERM; for(i = 0; i < sp->s_nr_mem_range; i++) { if(addr >= sp->s_mem_tab[i].mr_base && limit <= sp->s_mem_tab[i].mr_limit) return OK; } return EPERM; } case SYS_PRIV_UPDATE_SYS: /* Update the privilege structure of a system process. */ if(!m_ptr->CTL_ARG_PTR) return EINVAL; /* Copy privilege structure from caller */ if((r=data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR, KERNEL, (vir_bytes) &priv, sizeof(priv))) != OK) return r; /* Override settings in existing privilege structure. */ if((r = update_priv(rp, &priv)) != OK) { return r; } return(OK); default: printf("do_privctl: bad request %d\n", m_ptr->CTL_REQUEST); return EINVAL; } }