Beispiel #1
0
int main(int argc, char* argv[])
{
    bool verb; /* verbosity flag */
    bool abc;  /* absorbing boundary conditions flag */
    bool free; /* free surface flag*/
    bool snap; /* wavefield snapshots flag */
    int  jsnap;/* save wavefield every *jsnap* time steps */

    /* cube axes */
    sf_axis at,az,ax,as,ar,bt;
    int it,iz,ix,is,ir, iop;
    int nt,nz,nx,ns,nr,nz2,nx2;
    float z0,x0,dt,dx,dz, idx,idz,dt2;

    /* Laplacian */
    int   nop=2;       /* Laplacian operator size */
    float c0, c1, c2;  /* Laplacian operator coefficients */
    float co,c1x,c2x,c1z,c2z;

    int  nbz,nbx; /* boundary size */
    float tz, tx; /* sponge boundary decay coefficients */
    float dp;
    float ws;     /* injected data */

    /* linear interpolation */
    float *fzs,*fxs,    *fzr,*fxr;
    int   *jzs,*jxs,    *jzr,*jxr;

    float *ws00,*ws01,*ws10,*ws11;
    float *wr00,*wr01,*wr10,*wr11;

    /* boundary */
    float  *bzl,*bzh,*bxl,*bxh;

    /* I/O files */
    sf_file Fw,Fs,Fr;
    float  *ww;      /* wavelet */
    pt2d   *ss, *rr; /* source/receiver locations */

    float **tt; /* taper */

    /* background */
    sf_file Bv,Bd,Bu; /* velocity, data, wavefield */
    float **bvv,**bvo;               /* velocity   */
    float  *bdd;                     /* data       */
    float **bum,**buo,**bup,**bud;   /* wavefields */

    /* perturbation */
    sf_file Pv,Pd,Pu;
    float **pvv,**pvo;
    float  *pdd;
    float **pum,**puo,**pup,**pud;

    int ompchunk;  /* OpenMP data chunk size */

/*------------------------------------------------------------*/

    /* init RSF */
    sf_init(argc,argv);

    if(! sf_getint("ompchunk",&ompchunk)) ompchunk=1;

    if(! sf_getbool("verb",&verb)) verb=false;
    if(! sf_getbool( "abc",&abc ))  abc=false;
    if(! sf_getbool("snap",&snap)) snap=false;
    if(! sf_getbool("free",&free)) free=false;

    Fw = sf_input ("in" ); /* wavelet */
    Fs = sf_input ("sou"); /* sources */
    Fr = sf_input ("rec"); /* receivers */

    Bv = sf_input ("vel"); /* velocity */
    Bu = sf_output("wfl"); /* wavefield */
    Bd = sf_output("out"); /* data */

    Pv = sf_input ("ref"); /* velocity */
    Pu = sf_output("liw"); /* linearized wavefield */
    Pd = sf_output("lid"); /* linearized data */

    /* read axes*/
    at=sf_iaxa(Fw,1); sf_setlabel(at,"t"); 
    nt=sf_n(at); dt=sf_d(at); if(verb) sf_raxa(at); /* time */
    as=sf_iaxa(Fs,2); sf_setlabel(as,"s"); 
    ns=sf_n(as); if(verb) sf_raxa(as); /* sources */
    ar=sf_iaxa(Fr,2); sf_setlabel(ar,"r"); 
    nr=sf_n(ar); if(verb) sf_raxa(ar); /* receivers */

    az=sf_iaxa(Bv,1); sf_setlabel(az,"z"); 
    nz=sf_n(az); dz=sf_d(az); if(verb) sf_raxa(az); /* depth */
    ax=sf_iaxa(Bv,2); sf_setlabel(ax,"x"); 
    nx=sf_n(ax); dx=sf_d(ax); if(verb) sf_raxa(ax); /* space */

    /* configure wavefield snapshots */
    if(snap) {
	if(! sf_getint("jsnap",&jsnap)) jsnap=nt;
    }

/*------------------------------------------------------------*/

    /* expand domain for absorbing boundary conditions */
    if(abc) {
	if(! sf_getint("nbz",&nbz)) nbz=nop; if(nbz<nop) nbz=nop;
	if(! sf_getint("nbx",&nbx)) nbx=nop; if(nbx<nop) nbx=nop;
	
	if(! sf_getfloat("tz",&tz)) tz=0.025;
	if(! sf_getfloat("tx",&tx)) tx=0.025;
    } else {
	nbz=nop;
	nbx=nop;
    }
    /* expanded domain ( az+2 nz, ax+2 nx ) */
    nz2=nz+2*nbz; z0=sf_o(az)-nbz*dz; 
    nx2=nx+2*nbx; x0=sf_o(ax)-nbx*dx; 

    sf_setn(az,nz2); sf_seto(az,z0); if(verb) sf_raxa(az);
    sf_setn(ax,nx2); sf_seto(ax,x0); if(verb) sf_raxa(ax);
/*------------------------------------------------------------*/

    /* setup output wavefield header */
    if(snap) {
	bt = sf_maxa(nt/jsnap,sf_o(at),dt*jsnap);
	sf_setlabel(bt,"t");

	sf_oaxa(Bu,az,1);
	sf_oaxa(Bu,ax,2);
	sf_oaxa(Bu,bt,3);

	sf_oaxa(Pu,az,1);
	sf_oaxa(Pu,ax,2);
	sf_oaxa(Pu,bt,3);
    }

    /* setup output data header */
    sf_oaxa(Bd,ar,1);
    sf_oaxa(Bd,at,2);

    sf_oaxa(Pd,ar,1);
    sf_oaxa(Pd,at,2);

    dt2 =    dt*dt;
    idz = 1/(dz*dz);
    idx = 1/(dx*dx);

    /* Laplacian coefficients */
    c0=-30./12.; 
    c1=+16./12.;
    c2=- 1./12.;

    co = c0 * (idx+idz);
    c1x= c1 *  idx;
    c2x= c2 *  idx;
    c1z= c1 *      idz;
    c2z= c2 *      idz;

/*------------------------------------------------------------*/
     
    /* allocate arrays */
    ww=sf_floatalloc (nt);      sf_floatread(ww   ,nt     ,Fw);

    bvv=sf_floatalloc2(nz,nx); sf_floatread(bvv[0],nz*nx,Bv);
    pvv=sf_floatalloc2(nz,nx); sf_floatread(pvv[0],nz*nx,Pv);

    /* allocate source/receiver point arrays */
    ss = (pt2d*) sf_alloc(ns,sizeof(*ss)); 
    rr = (pt2d*) sf_alloc(nr,sizeof(*rr)); 

    pt2dread1(Fs,ss,ns,3); /* read 3 elements (x,z,v) */
    pt2dread1(Fr,rr,nr,2); /* read 2 elements (x,z)   */

    bdd=sf_floatalloc(nr);
    pdd=sf_floatalloc(nr);

    jzs=sf_intalloc(ns); fzs=sf_floatalloc(ns); 
    jzr=sf_intalloc(nr); fzr=sf_floatalloc(nr);
    jxs=sf_intalloc(ns); fxs=sf_floatalloc(ns);
    jxr=sf_intalloc(nr); fxr=sf_floatalloc(nr);

    ws00 = sf_floatalloc(ns); wr00 = sf_floatalloc(nr); 
    ws01 = sf_floatalloc(ns); wr01 = sf_floatalloc(nr);
    ws10 = sf_floatalloc(ns); wr10 = sf_floatalloc(nr);
    ws11 = sf_floatalloc(ns); wr11 = sf_floatalloc(nr);
/*------------------------------------------------------------*/

    for (is=0;is<ns;is++) {

	if(ss[is].z >= z0 && 
	   ss[is].z <  z0 + (nz2-1)*dz &&
	   ss[is].x >= x0 && 
	   ss[is].x <  x0 + (nx2-1)*dx) {
	    
	    jzs[is] = (int)( (ss[is].z-z0)/dz);
	    fzs[is] =        (ss[is].z-z0)/dz - jzs[is];	    
	    jxs[is] = (int)( (ss[is].x-x0)/dx);
	    fxs[is] =        (ss[is].x-x0)/dx - jxs[is];
	} else {
	    jzs[is] = 0; jxs[is] = 0;
	    fzs[is] = 1; fxs[is] = 0;
	    ss[is].v= 0;
	}

	ws00[is] = (1-fzs[is])*(1-fxs[is]);
	ws01[is] = (  fzs[is])*(1-fxs[is]);
	ws10[is] = (1-fzs[is])*(  fxs[is]);
	ws11[is] = (  fzs[is])*(  fxs[is]);

    }

    for (ir=0;ir<nr;ir++) {

	if(rr[ir].z >= z0 && 
	   rr[ir].z < z0 + (nz2-1)*dz &&
	   rr[ir].x >= x0 && 
	   rr[ir].x < x0 + (nx2-1)*dx) {
	    
	    jzr[ir] = (int)( (rr[ir].z-z0)/dz);
	    fzr[ir] =        (rr[ir].z-z0)/dz - jzr[ir];
	    jxr[ir] = (int)( (rr[ir].x-x0)/dx);
	    fxr[ir] =        (rr[ir].x-x0)/dx - jxr[ir];

	    rr[ir].v=1;
	} else {
	    jzr[ir] = 0;
	    fzr[ir] = 1;
	    rr[ir].v= 0;
	}

	wr00[ir] = (1-fzr[ir])*(1-fxr[ir]);
	wr01[ir] = (  fzr[ir])*(1-fxr[ir]);
	wr10[ir] = (1-fzr[ir])*(  fxr[ir]);
	wr11[ir] = (  fzr[ir])*(  fxr[ir]);
    }
    
/*------------------------------------------------------------*/
    
    /* allocate temporary arrays */
    bum=sf_floatalloc2(nz2,nx2);
    buo=sf_floatalloc2(nz2,nx2);
    bup=sf_floatalloc2(nz2,nx2);
    bud=sf_floatalloc2(nz2,nx2);

    pum=sf_floatalloc2(nz2,nx2);
    puo=sf_floatalloc2(nz2,nx2);
    pup=sf_floatalloc2(nz2,nx2);
    pud=sf_floatalloc2(nz2,nx2);

    tt=sf_floatalloc2(nz2,nx2);

#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(iz,ix) shared(nx2,nz2,bum,buo,bup,bud,pum,puo,pup,pud,tt)
#endif
    for (iz=0; iz<nz2; iz++) {
	for (ix=0; ix<nx2; ix++) {
	    bum[ix][iz]=pum[ix][iz]=0;
	    buo[ix][iz]=puo[ix][iz]=0;
	    bup[ix][iz]=pup[ix][iz]=0;
	    bud[ix][iz]=pud[ix][iz]=0;
	    tt[ix][iz]=1;
	}
    }

/*------------------------------------------------------------*/

    /* velocity in the expanded domain (vo=vv^2)*/
    bvo=sf_floatalloc2(nz2,nx2);
    pvo=sf_floatalloc2(nz2,nx2);

#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(iz,ix) shared(nz,nx,bvv,pvv,bvo,pvo)
#endif
    for (iz=0; iz<nz; iz++) {
	for (ix=0; ix<nx; ix++) {
	    bvo[nbx+ix][nbz+iz] = bvv[ix][iz] * bvv[ix][iz];
	    pvo[nbx+ix][nbz+iz] = pvv[ix][iz];
	}
    }
    /* fill boundaries */
    for (iz=0; iz<nbz; iz++) {
	for (ix=0; ix<nx2; ix++) {
	    bvo[ix][    iz  ] = bvo[ix][    nbz  ];
	    bvo[ix][nz2-iz-1] = bvo[ix][nz2-nbz-1];

	    pvo[ix][    iz  ] = pvo[ix][    nbz  ];
	    pvo[ix][nz2-iz-1] = pvo[ix][nz2-nbz-1];
	}
    }
    for (iz=0; iz<nz2; iz++) {
	for (ix=0; ix<nbx; ix++) {
	    bvo[    ix  ][iz] = bvo[    nbx  ][iz];
	    bvo[nx2-ix-1][iz] = bvo[nx2-nbx-1][iz];

	    pvo[    ix  ][iz] = pvo[    nbx  ][iz];
	    pvo[nx2-ix-1][iz] = pvo[nx2-nbx-1][iz];
	}
    }
 
/*------------------------------------------------------------*/

    /* free surface */
    if(abc && free) {
	for (iz=0; iz<nbz; iz++) {
	    for (ix=0; ix<nx2; ix++) {
		bvo[ix][iz]=0;
		pvo[ix][iz]=0;
	    }
	}
    }

/*------------------------------------------------------------*/

    /* sponge ABC setup */
    if(abc) {
	for (iz=0; iz<nbz; iz++) {
	    for (ix=0; ix<nx2; ix++) {
		tt[ix][    iz  ] = exp( - (tz*(nbz-iz))*(tz*(nbz-iz)) );
		tt[ix][nz2-iz-1] = tt[ix][iz];
	    }
	}
	for (iz=0; iz<nz2; iz++) {
	    for (ix=0; ix<nbx; ix++) {
		tt[    ix  ][iz] = exp( - (tx*(nbx-ix))*(tx*(nbx-ix)) );
		tt[nx2-ix-1][iz] = tt[ix][iz];
	    }
	}
    }

    /* one-way ABC setup */
    bzl=sf_floatalloc(nx2);
    bzh=sf_floatalloc(nx2);
    bxl=sf_floatalloc(nz2);
    bxh=sf_floatalloc(nz2);
    
    for (ix=0;ix<nx2;ix++) {
	dp = bvo[ix][     nop  ] *dt/dz; bzl[ix] = (1-dp)/(1+dp);
	dp = bvo[ix][nz2-nop-1] *dt/dz; bzh[ix] = (1-dp)/(1+dp);
    }
    for (iz=0;iz<nz2;iz++) {
	dp = bvo[    nop  ][iz] *dt/dx; bxl[iz] = (1-dp)/(1+dp);
	dp = bvo[nx2-nop-1][iz] *dt/dx; bxh[iz] = (1-dp)/(1+dp);
    }
/*------------------------------------------------------------*/

    /* 
     *  MAIN LOOP
     */
    if(verb) fprintf(stderr,"\n");
    for (it=0; it<nt; it++) {
	if(verb) fprintf(stderr,"\b\b\b\b\b%d",it);
	
	/* 4th order Laplacian operator */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(iz,ix) shared(nop,nx2,nz2,bud,buo,pud,puo,co,c1x,c1z,c2x,c2z,idx,idz)
#endif
	for (ix=nop; ix<nx2-nop; ix++) {
	    for (iz=nop; iz<nz2-nop; iz++) {
		bud[ix][iz] = 
		    co * buo[ix  ][iz  ] + 
		    c1x*(buo[ix-1][iz  ] + buo[ix+1][iz  ]) +
		    c2x*(buo[ix-2][iz  ] + buo[ix+2][iz  ]) +
		    c1z*(buo[ix  ][iz-1] + buo[ix  ][iz+1]) +
		    c2z*(buo[ix  ][iz-2] + buo[ix  ][iz+2]);	  

		pud[ix][iz] = 
		    co * puo[ix  ][iz  ] + 
		    c1x*(puo[ix-1][iz  ] + puo[ix+1][iz  ]) +
		    c2x*(puo[ix-2][iz  ] + puo[ix+2][iz  ]) +
		    c1z*(puo[ix  ][iz-1] + puo[ix  ][iz+1]) +
		    c2z*(puo[ix  ][iz-2] + puo[ix  ][iz+2]);	 
	    }
	}

	/* inject source */
	for (is=0;is<ns;is++) {
	    ws = ww[it] * ss[is].v;
	    bud[ jxs[is]  ][ jzs[is]  ] -= ws * ws00[is];
	    bud[ jxs[is]  ][ jzs[is]+1] -= ws * ws01[is];
	    bud[ jxs[is]+1][ jzs[is]  ] -= ws * ws10[is];
	    bud[ jxs[is]+1][ jzs[is]+1] -= ws * ws11[is];
	}

#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(ix,iz) shared(nx2,nz2,pud,bud,pvo)
#endif
	for (ix=0; ix<nx2; ix++) {
	    for (iz=0; iz<nz2; iz++) {
		pud[ix][iz] -= bud[ix][iz] * 2*pvo[ix][iz];
	    }
	}

	/* velocity scale */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(ix,iz) shared(nx2,nz2,bud,pud,bvo)
#endif
	for (ix=0; ix<nx2; ix++) {
	    for (iz=0; iz<nz2; iz++) {
		bud[ix][iz] *= bvo[ix][iz];
		pud[ix][iz] *= bvo[ix][iz];
	    }
	}
	
	/* time step */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(ix,iz) shared(nx2,nz2,bud,buo,bum,bup,pud,puo,pum,pup,dt2)
#endif
	for (ix=0; ix<nx2; ix++) {
	    for (iz=0; iz<nz2; iz++) {
		bup[ix][iz] = 2*buo[ix][iz] - bum[ix][iz] + bud[ix][iz] * dt2; 
		bum[ix][iz] =   buo[ix][iz];
		buo[ix][iz] =   bup[ix][iz];

		pup[ix][iz] = 2*puo[ix][iz] - pum[ix][iz] + pud[ix][iz] * dt2; 
		pum[ix][iz] =   puo[ix][iz];
		puo[ix][iz] =   pup[ix][iz];
	    }
	}
	
	/* one-way ABC apply */
	if(abc) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(ix,iz,iop) shared(nx2,nz2,nop,buo,bum,puo,pum,bzl,bzh)
#endif
	    for(ix=0;ix<nx2;ix++) {
		for(iop=0;iop<nop;iop++) {
		    iz = nop-iop;
		    buo      [ix][iz  ] 
			= bum[ix][iz+1] 
			+(bum[ix][iz  ]
			- buo[ix][iz+1]) * bzl[ix];
		    puo      [ix][iz  ] 
			= pum[ix][iz+1] 
			+(pum[ix][iz  ]
			- puo[ix][iz+1]) * bzl[ix];
		    
		    iz = nz2-nop+iop-1;
		    buo      [ix][iz  ] 
			= bum[ix][iz-1]
			+(bum[ix][iz  ]
			- buo[ix][iz-1]) * bzh[ix];
		    puo      [ix][iz  ] 
			= pum[ix][iz-1]
			+(pum[ix][iz  ]
			- puo[ix][iz-1]) * bzh[ix];
		}
	    }

#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,1) private(ix,iz,iop) shared(nx2,nz2,nop,buo,bum,puo,pum,bzl,bzh)
#endif
	    for(iop=0;iop<nop;iop++) {
		for(iz=0;iz<nz2;iz++) {
		    ix = nop-iop;
		    buo      [ix  ][iz] 
			= bum[ix+1][iz] 
			+(bum[ix  ][iz]
			- buo[ix+1][iz]) * bxl[iz];
		    puo      [ix  ][iz] 
			= pum[ix+1][iz] 
			+(pum[ix  ][iz]
			- puo[ix+1][iz]) * bxl[iz];
		    
		    ix = nx2-nop+iop-1;
		    buo      [ix  ][iz] 
			= bum[ix-1][iz]
			+(bum[ix  ][iz]
			- buo[ix-1][iz]) * bxh[iz];
		    puo      [ix  ][iz] 
			= pum[ix-1][iz]
			+(pum[ix  ][iz]
			- puo[ix-1][iz]) * bxh[iz];
		}
	    }
	}
	
	/* sponge ABC apply */
	if(abc) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(ix,iz) shared(nx2,nz2,buo,bum,bud,puo,pum,pud,tt)
#endif
	    for (ix=0; ix<nx2; ix++) {
		for (iz=0; iz<nz2; iz++) {
		    buo[ix][iz] *= tt[ix][iz];
		    bum[ix][iz] *= tt[ix][iz];
		    bud[ix][iz] *= tt[ix][iz];

		    puo[ix][iz] *= tt[ix][iz];
		    pum[ix][iz] *= tt[ix][iz];
		    bud[ix][iz] *= tt[ix][iz];
		}
	    }
	}
	
	/* write wavefield */
	if(snap && it%jsnap==0) {
	    sf_floatwrite(buo[0],nz2*nx2,Bu);
	    sf_floatwrite(puo[0],nz2*nx2,Pu);
	}

	/* write data */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,1) private(ir) shared(bdd,pdd,rr,buo,puo,jzr,wr00,wr01,wr10,wr11)
#endif
	for (ir=0;ir<nr;ir++) {
	    bdd[ir] =
		buo[ jxr[ir]  ][ jzr[ir]  ] * wr00[ir] +
		buo[ jxr[ir]  ][ jzr[ir]+1] * wr01[ir] +
		buo[ jxr[ir]+1][ jzr[ir]  ] * wr10[ir] +
		buo[ jxr[ir]+1][ jzr[ir]+1] * wr11[ir];
	    bdd[ir] *= rr[ir].v;

	    pdd[ir] =
		puo[ jxr[ir]  ][ jzr[ir]  ] * wr00[ir] +
		puo[ jxr[ir]  ][ jzr[ir]+1] * wr01[ir] +
		puo[ jxr[ir]+1][ jzr[ir]  ] * wr10[ir] +
		puo[ jxr[ir]+1][ jzr[ir]+1] * wr11[ir];
	    pdd[ir] *= rr[ir].v;
	}
	/* write data */
	sf_floatwrite(bdd,nr,Bd);
	sf_floatwrite(pdd,nr,Pd);
    }
    if(verb) fprintf(stderr,"\n");    

    exit (0);
}
Beispiel #2
0
int
main(int argc, char** argv)
{

    bool verb, fsrf, snap, expl, dabc, cden, adj;
    bool optfd, hybrid, sinc; 
    int jsnap, jdata;

    /* I/O files */
    sf_file file_wav=NULL; /* wavelet */
    sf_file file_vel=NULL; /* velocity */
    sf_file file_den=NULL; /* density */
    sf_file file_wfl=NULL; /* wavefield */
    sf_file file_dat=NULL; /* data */
    sf_file file_src=NULL; /* sources */
    sf_file file_rec=NULL; /* receivers */

    /* cube axes */
    sf_axis at = NULL, az = NULL, ax = NULL, ay = NULL;
    sf_axis as = NULL, ar = NULL;

    int nbd;  /* ABC boundary size */
    int fdorder;  /* finite difference spatial accuracy order */
    int nzpad,nxpad,nypad; /* boundary padded model size */
    int ix,iy,it,is,nx,ny,nz,nt,ns,nr;
    float dx,dy,dz,dt,dt2;
    float* damp=NULL; /* damping profile for hybrid bc */
    float* ws;  /* wavelet */
    float*** vel=NULL;  /* velocity */
    float*** rho=NULL; /* density */
    float*** u0=NULL;  /* wavefield array u@t-1 (u@t+1) */
    float*** u1=NULL;  /* wavefield array u@t */
    float* u_dat=NULL; /* output data */
    float*** ptr_tmp=NULL;   
    pt3d* src3d=NULL;  /* source position */
    pt3d* rec3d=NULL;  /*receiver position*/
    scoef3d cssinc = NULL, crsinc = NULL; 
    lint3d cslint = NULL, crlint = NULL;

    /* FDM structure */
    fdm3d fdm = NULL;
    abcone3d abc = NULL;
    sponge spo = NULL;

    int nbell;

    float* fdcoef_d2;
    float* fdcoef_d1;

    sf_axis acz = NULL, acx = NULL, acy = NULL;
    int nqz, nqx, nqy;
    float oqz, oqx, oqy, dqz, dqx, dqy;

    float** oslice = NULL; /* output 3D wavefield slice-by-slice */
    float*** tmp_array;

    double wall_clock_time_s, wall_clock_time_e;

    const int SECOND_DERIV = 2;
    const int FIRST_DERIV = 1;

    int nop;

#if defined _OPENMP && _DEBUG
    double tic;
    double toc;
#endif

    /* init RSF */
    sf_init(argc,argv);

#ifdef _OPENMP
    omp_init();
    wall_clock_time_s = omp_get_wtime();
#else
    wall_clock_time_s = (double) clock() / CLOCKS_PER_SEC;
#endif

    if (!sf_getbool("verb",&verb))  verb=false; /* Verbosity flag */
    if (!sf_getbool("snap",&snap))  snap=false; /* Wavefield snapshots flag */
    if (!sf_getbool("expl",&expl))  expl=false; /* Multiple sources, one wvlt*/
    if (!sf_getbool("dabc",&dabc))  dabc=false; /* Absorbing BC */
    if (!sf_getbool("cden",&cden))  cden=false; /* Constant density */
    if (!sf_getbool("adj",&adj))    adj=false; /* adjoint flag */

    if (!sf_getbool("free",&fsrf) && !sf_getbool("fsrf",&fsrf)) fsrf=false; /* Free surface flag */

    if (!sf_getint("nbell",&nbell)) nbell=5; /* gaussian for source injection */

    if (!sf_getbool("optfd",&optfd))  optfd=false; /* optimized FD coefficients flag */
    if (!sf_getint("fdorder",&fdorder))  fdorder=4; /* spatial FD order */
    if (!sf_getbool("hybridbc",&hybrid))  hybrid=false;  /* hybrid Absorbing BC */
    if (!sf_getbool("sinc",&sinc)) sinc=false; /* sinc source injection */
  
    /* Initialize variables */
    file_wav = sf_input("in"); /* wavelet */
    file_vel = sf_input("vel"); /* velocity */ 
    file_src = sf_input("sou"); /* sources */
    file_rec = sf_input("rec"); /* receivers */
    file_dat = sf_output("out"); /* data */

    if (snap)  file_wfl = sf_output("wfl"); /* wavefield */
    if (!cden) {
	if (sf_getstring("cden")) {
	    file_den = sf_input ("den"); /* density */
	} else {
	    cden = true;
	    if (verb) sf_warning("No density file provided, running with constant density");
	}
    }
  
    at = sf_iaxa(file_wav,2); sf_setlabel(at,"t"); if(verb) sf_raxa(at); /* time */
    az = sf_iaxa(file_vel,1); sf_setlabel(az,"z"); if(verb) sf_raxa(az); /* depth */
    ax = sf_iaxa(file_vel,2); sf_setlabel(ax,"x"); if(verb) sf_raxa(ax); /* space */
    ay = sf_iaxa(file_vel,3); sf_setlabel(ay,"y"); if(verb) sf_raxa(ay); /* space */

    as = sf_iaxa(file_src,2); sf_setlabel(as,"s"); if(verb) sf_raxa(as); /* sources */
    ar = sf_iaxa(file_rec,2); sf_setlabel(ar,"r"); if(verb) sf_raxa(ar); /* receivers */

    nt = sf_n(at); dt = sf_d(at); 
    nz = sf_n(az); dz = sf_d(az); 
    nx = sf_n(ax); dx = sf_d(ax); 
    ny = sf_n(ay); dy = sf_d(ay); 
    ns = sf_n(as);
    nr = sf_n(ar);

    /* other execution parameters */
    if (snap) {
	if (!sf_getint("jsnap",&jsnap))  jsnap=nt;
	/* # of t steps at which to save wavefield */
    }
    if (!sf_getint("jdata",&jdata)) jdata=1;
    /* # of t steps at which to save receiver data */

    /* setup output data header */
    sf_oaxa(file_dat,ar,1);
    sf_setn(at,(nt-1)/jdata+1);
    sf_setd(at,dt*jdata);
    sf_oaxa(file_dat,at,2);

    /* wavefield cut params */
    /* setup output wavefield header */
    if (snap) {
	if (!sf_getint  ("nqz",&nqz)) nqz=sf_n(az); /* Saved wfld window nz */
	if (!sf_getint  ("nqx",&nqx)) nqx=sf_n(ax); /* Saved wfld window nx */
	if (!sf_getint  ("nqy",&nqy)) nqy=sf_n(ay); /* Saved wfld window ny */

	if (!sf_getfloat("oqz",&oqz)) oqz=sf_o(az); /* Saved wfld window oz */
	if (!sf_getfloat("oqx",&oqx)) oqx=sf_o(ax); /* Saved wfld window ox */
	if (!sf_getfloat("oqy",&oqy)) oqy=sf_o(ay); /* Saved wfld window oy */

	if (!sf_getfloat("dqz",&dqz)) dqz=sf_d(az); /* Saved wfld window dz */
	if (!sf_getfloat("dqx",&dqx)) dqx=sf_d(ax); /* Saved wfld window dx */
	if (!sf_getfloat("dqy",&dqy)) dqy=sf_d(ay); /* Saved wfld window dy */
    
	acz = sf_maxa(nqz,oqz,dqz); if (verb) sf_raxa(acz);
	acx = sf_maxa(nqx,oqx,dqx); if (verb) sf_raxa(acx);
	acy = sf_maxa(nqy,oqy,dqy); if (verb) sf_raxa(acy);
	/* check if the imaging window fits in the wavefield domain */
	sf_setn(at,(nt-1)/jsnap+1);
	sf_setd(at,dt*jsnap);
	if (verb) sf_raxa(at);
    
	sf_oaxa(file_wfl,acz,1);
	sf_oaxa(file_wfl,acx,2);
	sf_oaxa(file_wfl,acy,3);
	sf_oaxa(file_wfl,at,4);
    }

    /* 2-2N finite difference coefficient */
    nop = fdorder/2; /* fd half-length stencil */
    if (!sf_getint("nb",&nbd) || nbd<nop)  nbd=nop;
    if (dabc && hybrid && nbd<=nop) nbd = 2*nop;

    /* expand domain for FD operators and ABC */
    fdm = fdutil3d_init(verb,fsrf,az,ax,ay,nbd,1);

    sf_setn(az,fdm->nzpad); sf_seto(az,fdm->ozpad); if (verb) sf_raxa(az);
    sf_setn(ax,fdm->nxpad); sf_seto(ax,fdm->oxpad); if (verb) sf_raxa(ax);
    sf_setn(ay,fdm->nypad); sf_seto(ay,fdm->oypad); if (verb) sf_raxa(ay);

    /* Precompute coefficients */
    dt2 = dt*dt;
    nzpad = nz+2*nbd;  nxpad = nx+2*nbd;  nypad = ny+2*nbd;

    fdcoef_d2 = compute_fdcoef(nop,dz,dx,dy,optfd,SECOND_DERIV);
    fdcoef_d1 = compute_fdcoef(nop,dz,dx,dy,optfd,FIRST_DERIV);

    /* Allocate memories */
    if (expl) ws = sf_floatalloc(1);
    else      ws = sf_floatalloc(ns);
    vel = sf_floatalloc3(nzpad,nxpad,nypad);
    if (!cden) rho = sf_floatalloc3(nzpad,nxpad,nypad);
    u_dat = sf_floatalloc(nr);
    src3d = pt3dalloc1(ns);
    rec3d = pt3dalloc1(nr);
    if (snap) oslice = sf_floatalloc2(sf_n(acz),sf_n(acx));

    /* source and receiver position */
    pt3dread1(file_src,src3d,ns,3);  /* read format: (x,y,z) */
    if (sinc) cssinc = sinc3d_make(ns,src3d,fdm);
    else      cslint = lint3d_make(ns,src3d,fdm);

    pt3dread1(file_rec,rec3d,nr,3);  /* read format: (x,y,z) */
    if (sinc) crsinc = sinc3d_make(nr,rec3d,fdm);
    else      crlint = lint3d_make(nr,rec3d,fdm);

    if (!sinc) fdbell3d_init(nbell);

    /* temperary array */
    tmp_array = sf_floatalloc3(nz,nx,ny);

    /* read velocity and pad */
    sf_floatread(tmp_array[0][0],nz*nx*ny,file_vel);
    expand3d(tmp_array,vel,fdm);
    /* read density and pad */
    if (!cden) {
	sf_floatread(tmp_array[0][0],nz*nx*ny,file_den);
	expand3d(tmp_array,rho,fdm);
    }

    free(**tmp_array);  free(*tmp_array);  free(tmp_array);

    /* A1 one-way ABC implicit scheme coefficients  */
    if (dabc) {
	abc = abcone3d_make(nbd,dt,vel,fsrf,fdm);
	if (hybrid)
	    damp = damp_make(nbd-nop); /* compute damping profiles for hybrid bc */
	else
	    spo = sponge_make(fdm->nb);
    }

    /* allocate memory for wavefield variables */
    u0 = sf_floatalloc3(nzpad,nxpad,nypad);
    u1 = sf_floatalloc3(nzpad,nxpad,nypad);

    /* initialize variables */
    memset(u0[0][0],0,sizeof(float)*nzpad*nxpad*nypad);
    memset(u1[0][0],0,sizeof(float)*nzpad*nxpad*nypad);
    memset(u_dat,0,sizeof(float)*nr);

    /* v = (v*dt)^2 */
    for (ix=0;ix<nzpad*nxpad*nypad;ix++)
	*(vel[0][0]+ix) *= *(vel[0][0]+ix)*dt2;
    if (fsrf && !hybrid) {
	for (iy=0; iy<nypad; iy++)
	    for (ix=0; ix<nxpad; ix++)
		memset(vel[iy][ix],0,sizeof(float)*fdm->nb);
    }

    for (it=0; it<nt; it++) {
	if (verb)  sf_warning("it=%d;",it+1);
#if defined _OPENMP && _DEBUG
	tic=omp_get_wtime();
#endif
    
	step_forward(u0,u1,vel,rho,fdcoef_d2,fdcoef_d1,nop,nzpad,nxpad,nypad);
    
	if (adj) { /* backward inject source wavelet */
	    if (expl) {
		sf_seek(file_wav,(off_t)(nt-it-1)*sizeof(float),SEEK_SET);
		sf_floatread(ws,1,file_wav);
		ws[0] *= dt2;
		if (sinc) sinc3d_inject1(u0,ws[0],cssinc);
		else      lint3d_inject1(u0,ws[0],cslint);
	    } else { 
		sf_seek(file_wav,(off_t)(nt-it-1)*ns*sizeof(float),SEEK_SET);
		sf_floatread(ws,ns,file_wav);
		for (is=0; is<ns; is++) ws[is] *= dt2;
		if (sinc) sinc3d_inject(u0,ws,cssinc);
		else      lint3d_inject(u0,ws,cslint);
	    }
	} else { /* forward inject source wavelet */
	    if (expl) {
		sf_floatread(ws,1,file_wav);
		ws[0] *= dt2;
		if (sinc) sinc3d_inject1(u0,ws[0],cssinc);
		else      lint3d_inject1(u0,ws[0],cslint);
	    } else {
		sf_floatread(ws,ns,file_wav);
		for (is=0; is<ns; is++) ws[is] *= dt2;
		if (sinc) sinc3d_inject(u0,ws,cssinc);
		else      lint3d_inject(u0,ws,cslint);
	    }
	}

	/* apply abc */
	if (dabc) {
	    if (hybrid) apply_abc(u0,u1,nz,nx,ny,nbd,abc,nop,damp);
	    else {
		abcone3d_apply(u0,u1,nop,abc,fdm);
		sponge3d_apply(u0,spo,fdm);
		sponge3d_apply(u1,spo,fdm);
	    }
	}

	/* loop over pointers */
	ptr_tmp = u0;  u0 = u1;  u1 = ptr_tmp;

	/* extract snapshot */
	if (snap && it%jsnap==0) {
	    int fy = (floor)((sf_o(acy)-fdm->oypad)/fdm->dy);
	    int jy = floor(sf_d(acy)/fdm->dy);
	    float **ptr_slice;
	    for (iy=0; iy<sf_n(acy); iy++) {
		ptr_slice = u0[fy+iy*jy];
		cut3d_slice(ptr_slice,oslice,fdm,acz,acx);
		sf_floatwrite(oslice[0],sf_n(acz)*sf_n(acx),file_wfl);
	    }
	}

	/* extract receiver data */
	if (sinc) sinc3d_extract(u0,u_dat,crsinc);
	else      lint3d_extract(u0,u_dat,crlint);

	sf_floatwrite(u_dat,nr,file_dat);

#if defined _OPENMP && _DEBUG
	toc=omp_get_wtime(); 
	fprintf(stderr,"%5.2gs",(float)(toc-tic));
#endif
    }
#ifdef _OPENMP
    wall_clock_time_e = omp_get_wtime();
#else
    wall_clock_time_e = (double) clock() / CLOCKS_PER_SEC;
#endif
    if (verb)
	fprintf(stderr,"\nElapsed time: %lf s\n",wall_clock_time_e-wall_clock_time_s);

    free(**u0); free(*u0); free(u0);
    free(**u1); free(*u1); free(u1);
    free(**vel); free(*vel); free(vel);
    free(u_dat);
    free(ws);
    free(fdcoef_d2); free(fdcoef_d1);
    if (snap) { free(*oslice); free(oslice); }
    if(!cden) { free(**rho); free(*rho); free(rho); }
    if (hybrid) free(damp);
    free(src3d); free(rec3d);

    return 0;
}
Beispiel #3
0
int main(int argc, char* argv[])
{
    bool verb,fsrf,snap,expl; 
    int  jsnap,ntsnap;
    int  jdata;

    /* I/O files */
    sf_file Fwav=NULL; /* wavelet   */
    sf_file Fsou=NULL; /* sources   */
    sf_file Frec=NULL; /* receivers */

    sf_file Fvel=NULL; /* velocity  */
    sf_file Fref=NULL; /* reflectivity */
    sf_file Fden=NULL; /* density   */

    sf_file Fdat=NULL; /* data (background)      */
    sf_file Fwfl=NULL; /* wavefield (background) */

    sf_file Flid=NULL; /* data (scattered)      */
    sf_file Fliw=NULL; /* wavefield (scattered) */

    /* I/O arrays */
    float  *ww=NULL;           /* wavelet   */
    pt2d   *ss=NULL;           /* sources   */
    pt2d   *rr=NULL;           /* receivers */

    float **vpin=NULL;         /* velocity  */
    float **roin=NULL;         /* density   */
    float **rfin=NULL;         /* reflectivity */

    float **vp=NULL;           /* velocity     in expanded domain */
    float **ro=NULL;           /* density      in expanded domain */
    float **ro1=NULL;          /* normalized 1st derivative of density on axis 1 */
    float **ro2=NULL;          /* normalized 1st derivative of density on axis 2 */

    float **rf=NULL;           /* reflectivity in expanded domain */

    float  *bdd=NULL;          /* data (background) */
    float  *sdd=NULL;          /* data (scattered)  */

    float **vt=NULL;           /* temporary vp*vp * dt*dt */

    float **bum,**buo,**bup,**bua,**but; /* wavefield: um = U @ t-1; uo = U @ t; up = U @ t+1 */
    float **sum,**suo,**sup,**sua,**sut; /* wavefield: um = U @ t-1; uo = U @ t; up = U @ t+1 */

    /* cube axes */
    sf_axis at,a1,a2,as,ar;
    int     nt,n1,n2,ns,nr,nb;
    int     it,i1,i2;
    float   dt,d1,d2,id1,id2,dt2;

    /* linear interpolation weights/indices */
    lint2d cs,cr;

    fdm2d    fdm;
    abcone2d abc;     /* abc */
    sponge spo;

    /* FD operator size */
    float co,ca2,cb2,ca1,cb1;

    int ompchunk; 
#ifdef _OPENMP
    int ompnth,ompath;
#endif

    sf_axis   ac1=NULL,ac2=NULL;
    int       nqz,nqx;
    float     oqz,oqx;
    float     dqz,dqx;
    float     **uc=NULL;

    /*------------------------------------------------------------*/
    /* init RSF */
    sf_init(argc,argv);
    if(! sf_getint("ompchunk",&ompchunk)) ompchunk=1;  
    /* OpenMP data chunk size */
#ifdef _OPENMP
    if(! sf_getint("ompnth",  &ompnth))     ompnth=0;  
    /* OpenMP available threads */

#pragma omp parallel
    ompath=omp_get_num_threads();
    if(ompnth<1) ompnth=ompath;
    omp_set_num_threads(ompnth);
    sf_warning("using %d threads of a total of %d",ompnth,ompath);
#endif

    if(! sf_getbool("verb",&verb)) verb=false; /* verbosity flag */
    if(! sf_getbool("snap",&snap)) snap=false; /* wavefield snapshots flag */
    if(! sf_getbool("free",&fsrf)) fsrf=false; /* free surface flag */
    if(! sf_getbool("expl",&expl)) expl=false; /* "exploding reflector" */

    Fwav = sf_input ("in" ); /* wavelet   */
    Fsou = sf_input ("sou"); /* sources   */
    Frec = sf_input ("rec"); /* receivers */

    Fvel = sf_input ("vel"); /* velocity  */
    Fden = sf_input ("den"); /* density   */
    Fref = sf_input ("ref"); /* reflectivity */

    Fwfl = sf_output("wfl"); /* wavefield */
    Fdat = sf_output("out"); /* data      */

    Fliw = sf_output("liw"); /* wavefield (scattered) */
    Flid = sf_output("lid"); /* data (scattered) */

    /* axes */
    at = sf_iaxa(Fwav,2); sf_setlabel(at,"t"); if(verb) sf_raxa(at); /* time */
    as = sf_iaxa(Fsou,2); sf_setlabel(as,"s"); if(verb) sf_raxa(as); /* sources */
    ar = sf_iaxa(Frec,2); sf_setlabel(ar,"r"); if(verb) sf_raxa(ar); /* receivers */
    a1 = sf_iaxa(Fvel,1); sf_setlabel(a1,"z"); if(verb) sf_raxa(a1); /* depth */
    a2 = sf_iaxa(Fvel,2); sf_setlabel(a2,"x"); if(verb) sf_raxa(a2); /* space */

    nt = sf_n(at); dt = sf_d(at);
    ns = sf_n(as);
    nr = sf_n(ar);
    n1 = sf_n(a1); d1 = sf_d(a1);
    n2 = sf_n(a2); d2 = sf_d(a2);

    if(! sf_getint("jdata",&jdata)) jdata=1;
    if(snap) {  /* save wavefield every *jsnap* time steps */
	if(! sf_getint("jsnap",&jsnap)) jsnap=nt;
    }


    /*------------------------------------------------------------*/

    /* setup output data header */
    sf_oaxa(Fdat,ar,1);
    sf_oaxa(Flid,ar,1);

    sf_setn(at,nt/jdata);
    sf_setd(at,dt*jdata);
    sf_oaxa(Fdat,at,2);
    sf_oaxa(Flid,at,2);

    /* setup output wavefield header */
    if(snap) {
	if(!sf_getint  ("nqz",&nqz)) nqz=sf_n(a1);
	if(!sf_getint  ("nqx",&nqx)) nqx=sf_n(a2);
	if(!sf_getfloat("oqz",&oqz)) oqz=sf_o(a1);
	if(!sf_getfloat("oqx",&oqx)) oqx=sf_o(a2);
	dqz=sf_d(a1);
	dqx=sf_d(a2);

	ac1 = sf_maxa(nqz,oqz,dqz);
	ac2 = sf_maxa(nqx,oqx,dqx);

	/* check if the imaging window fits in the wavefield domain */

	uc=sf_floatalloc2(sf_n(ac1),sf_n(ac2));

	ntsnap=0;
        for(it=0; it<nt; it++) {
            if(it%jsnap==0) ntsnap++;
        }
        sf_setn(at,  ntsnap);
        sf_setd(at,dt*jsnap);
        if(verb) sf_raxa(at);

/*	sf_setn(at,nt/jsnap);
	sf_setd(at,dt*jsnap); */

	sf_oaxa(Fwfl,ac1,1);
	sf_oaxa(Fwfl,ac2,2);
	sf_oaxa(Fwfl,at, 3);

	sf_oaxa(Fliw,ac1,1);
	sf_oaxa(Fliw,ac2,2);
	sf_oaxa(Fliw,at, 3);
    }

    /*------------------------------------------------------------*/
    /* expand domain for FD operators and ABC */
    if( !sf_getint("nb",&nb) || nb<NOP) nb=NOP;

    fdm=fdutil_init(verb,fsrf,a1,a2,nb,ompchunk);

    sf_setn(a1,fdm->nzpad); sf_seto(a1,fdm->ozpad); if(verb) sf_raxa(a1);
    sf_setn(a2,fdm->nxpad); sf_seto(a2,fdm->oxpad); if(verb) sf_raxa(a2);

    /*------------------------------------------------------------*/
    if(expl) ww = sf_floatalloc( 1);
    else     ww = sf_floatalloc(ns);
    bdd =sf_floatalloc(nr);
    sdd =sf_floatalloc(nr);

    /*------------------------------------------------------------*/
    /* setup source/receiver coordinates */
    ss = (pt2d*) sf_alloc(ns,sizeof(*ss)); 
    rr = (pt2d*) sf_alloc(nr,sizeof(*rr)); 

    pt2dread1(Fsou,ss,ns,2); /* read (x,z) coordinates */
    pt2dread1(Frec,rr,nr,2); /* read (x,z) coordinates */

    cs = lint2d_make(ns,ss,fdm);
    cr = lint2d_make(nr,rr,fdm);

    /*------------------------------------------------------------*/
    /* setup FD coefficients */
    dt2 =    dt*dt;
    id1 = 1/d1;
    id2 = 1/d2;

    co = C0 * (id2*id2+id1*id1);
    ca2= CA *  id2*id2;
    cb2= CB *  id2*id2;
    ca1= CA *          id1*id1;
    cb1= CB *          id1*id1;

    /*------------------------------------------------------------*/ 
    /* input density */
    roin=sf_floatalloc2(n1,   n2   ); 
    ro  =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
    ro1 =sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    ro2 =sf_floatalloc2(fdm->nzpad,fdm->nxpad);

    sf_floatread(roin[0],n1*n2,Fden); 
    expand(roin,ro,fdm);

    /* normalized density derivatives */
    for    (i2=NOP; i2<fdm->nxpad-NOP; i2++) {
	for(i1=NOP; i1<fdm->nzpad-NOP; i1++) {
	    ro1[i2][i1] = D1(ro,i2,i1,id1) / ro[i2][i1];
	    ro2[i2][i1] = D2(ro,i2,i1,id2) / ro[i2][i1];
	}
    }

    free(*roin); free(roin);

    /*------------------------------------------------------------*/
    /* input velocity */
    vpin=sf_floatalloc2(n1,   n2   ); 
    vp  =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
    vt  =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
    sf_floatread(vpin[0],n1*n2,Fvel);
    expand(vpin,vp,fdm);
    free(*vpin); free(vpin);

    /*------------------------------------------------------------*/
    /* input reflectivity */
    rfin=sf_floatalloc2(n1,   n2   ); 
    rf  =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
    sf_floatread(rfin[0],n1*n2,Fref); 
    expand(rfin,rf,fdm);
    free(*rfin); free(rfin);

    for    (i2=0; i2<fdm->nxpad; i2++) {
	for(i1=0; i1<fdm->nzpad; i1++) {
	    vt[i2][i1] = vp[i2][i1] * vp[i2][i1] * dt2;
	}
    }

    /* free surface */
    if(fsrf) {
	for    (i2=0; i2<fdm->nxpad; i2++) {
	    for(i1=0; i1<fdm->nb; i1++) {
		vt[i2][i1]=0;
	    }
	}
    }

    /*------------------------------------------------------------*/
    /* allocate wavefield arrays */
    bum=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    buo=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    bup=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    bua=sf_floatalloc2(fdm->nzpad,fdm->nxpad);

    sum=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    suo=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    sup=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    sua=sf_floatalloc2(fdm->nzpad,fdm->nxpad);

    for    (i2=0; i2<fdm->nxpad; i2++) {
	for(i1=0; i1<fdm->nzpad; i1++) {
	    bum[i2][i1]=0;
	    buo[i2][i1]=0;
	    bup[i2][i1]=0;
	    bua[i2][i1]=0;

	    sum[i2][i1]=0;
	    suo[i2][i1]=0;
	    sup[i2][i1]=0;
	    sua[i2][i1]=0;
	}
    }

    /*------------------------------------------------------------*/
    /* one-way abc setup */
    abc = abcone2d_make(NOP,dt,vp,fsrf,fdm);
    /* sponge abc setup */
    spo = sponge_make(fdm->nb);

    /*------------------------------------------------------------*/
    /* 
     *  MAIN LOOP
     */
    /*------------------------------------------------------------*/
    if(verb) fprintf(stderr,"\n");
    for (it=0; it<nt; it++) {
	if(verb) fprintf(stderr,"\b\b\b\b\b%d",it);
	
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,fdm->ompchunk) private(i2,i1) shared(fdm,bua,buo,sua,suo,co,ca2,ca1,cb2,cb1,id2,id1)
#endif
	for    (i2=NOP; i2<fdm->nxpad-NOP; i2++) {
	    for(i1=NOP; i1<fdm->nzpad-NOP; i1++) {
		
		/* 4th order Laplacian operator */
		bua[i2][i1] = 
		    co * buo[i2  ][i1  ] + 
		    ca2*(buo[i2-1][i1  ] + buo[i2+1][i1  ]) +
		    cb2*(buo[i2-2][i1  ] + buo[i2+2][i1  ]) +
		    ca1*(buo[i2  ][i1-1] + buo[i2  ][i1+1]) +
		    cb1*(buo[i2  ][i1-2] + buo[i2  ][i1+2]);
		sua[i2][i1] = 
		    co * suo[i2  ][i1  ] + 
		    ca2*(suo[i2-1][i1  ] + suo[i2+1][i1  ]) +
		    cb2*(suo[i2-2][i1  ] + suo[i2+2][i1  ]) +
		    ca1*(suo[i2  ][i1-1] + suo[i2  ][i1+1]) +
		    cb1*(suo[i2  ][i1-2] + suo[i2  ][i1+2]);
		
		/* density term */
		bua[i2][i1] -= (
		    D1(buo,i2,i1,id1) * ro1[i2][i1] +
		    D2(buo,i2,i1,id2) * ro2[i2][i1] );
		sua[i2][i1] -= (
		    D1(suo,i2,i1,id1) * ro1[i2][i1] +
		    D2(suo,i2,i1,id2) * ro2[i2][i1] );
	    }
	}   
	
	/* inject acceleration source */
	if(expl) {
	    sf_floatread(ww, 1,Fwav);
	    lint2d_inject1(bua,ww[0],cs);
	} else {
	    sf_floatread(ww,ns,Fwav);	
	    lint2d_inject(bua,ww,cs);
	}

	/* single scattering */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(i2,i1) shared(fdm,buo,sua,rf)
#endif
	for     (i2=0; i2<fdm->nxpad; i2++) {
	    for (i1=0; i1<fdm->nzpad; i1++) {
		sua[i2][i1] -= bua[i2][i1] * 2*rf[i2][i1];
	    }
	}

	/* step forward in time */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,fdm->ompchunk) private(i2,i1) shared(fdm,bua,buo,bum,bup,sua,suo,sum,sup,vt,dt2)
#endif
	for    (i2=0; i2<fdm->nxpad; i2++) {
	    for(i1=0; i1<fdm->nzpad; i1++) {
		bup[i2][i1] = 2*buo[i2][i1] 
		    -           bum[i2][i1] 
		    +           bua[i2][i1] * vt[i2][i1];

		sup[i2][i1] = 2*suo[i2][i1] 
		    -           sum[i2][i1] 
		    +           sua[i2][i1] * vt[i2][i1];

	    }
	}
	/* circulate wavefield arrays */
	but=bum;
	bum=buo;
	buo=bup;
	bup=but;

	sut=sum;
	sum=suo;
	suo=sup;
	sup=sut;
	
	/* one-way abc apply*/
	abcone2d_apply(buo,bum,NOP,abc,fdm);
	sponge2d_apply(bum,        spo,fdm);
	sponge2d_apply(buo,        spo,fdm);

	abcone2d_apply(suo,sum,NOP,abc,fdm);
	sponge2d_apply(sum,        spo,fdm);
	sponge2d_apply(suo,        spo,fdm);

	/* extract data at receivers */
	lint2d_extract(buo,bdd,cr);
	lint2d_extract(suo,sdd,cr);
	if(        it%jdata==0) {
	    sf_floatwrite(bdd,nr,Fdat);
	    sf_floatwrite(sdd,nr,Flid);
	}

	/* extract wavefield in the "box" */
	if(snap && it%jsnap==0) {
	    cut2d(buo,uc,fdm,ac1,ac2);
	    sf_floatwrite(uc[0],sf_n(ac1)*sf_n(ac2),Fwfl);

	    cut2d(suo,uc,fdm,ac1,ac2);
	    sf_floatwrite(uc[0],sf_n(ac1)*sf_n(ac2),Fliw);
	}

    }
    if(verb) fprintf(stderr,"\n");    

    exit (0);
}
Beispiel #4
0
int main(int argc, char *argv[])
{
	clock_t tstart, tend;
	double duration;

	int numprocs, rank;
	float *sendbuf, *recvbuf;
	MPI_Comm Comm=MPI_COMM_WORLD;

	bool verb, wantrecord, wantwf, onlyrecord;
	sf_file Ffvel, Ffden, Fbvel, Fbden;
	sf_file Fsrc, Frcd, Fimg1, Fimg2;
	sf_file FGx, FGz, Fsxx, Fsxz, Fszx, Fszz;
	sf_file Ftmpfwf, Ftmpbwf;

	sf_axis at, ax, az, atau;

	int shtbgn, shtinv, shtnmb, shtpad, shtnmb0;
	int snapturn, tmpint;

	float **fvel, **bvel;
	float ***fwf, ***record, **localrec;
	float ***img1, **img2, ***mig1, **mig2;
	float *tmpsxx, *tmpsxz, *tmpszx, *tmpszz;

	sf_init(argc, argv);

	MPI_Init(&argc, &argv);
	MPI_Comm_size(Comm, &numprocs);
	MPI_Comm_rank(Comm, &rank);

	tstart=clock();
	if(rank==0) sf_warning("numprocs=%d", numprocs);

	if(!sf_getbool("verb", &verb)) verb=true;
	if(!sf_getbool("wantrecord", &wantrecord)) wantrecord=false;
	if(!sf_getbool("wantwf", &wantwf)) wantwf=false;
	if(!sf_getbool("onlyrecord", &onlyrecord)) onlyrecord=false;

	Fsrc=sf_input("-input");
	Fimg1=sf_output("-output");
	Fimg2=sf_output("img2");
	Ffvel=sf_input("fvel");
	Ffden=sf_input("fden");
	Fbvel=sf_input("bvel");
	Fbden=sf_input("bden");

	if(wantrecord)
		Frcd=sf_input("record");
	else
		Frcd=sf_output("record");

	if(wantwf){
		Ftmpfwf=sf_output("tmpfwf");
		Ftmpbwf=sf_output("tmpbwf");
	}

	FGx=sf_input("Gx");
	FGz=sf_input("Gz");
	Fsxx=sf_input("sxx");
	Fsxz=sf_input("sxz");
	Fszx=sf_input("szx");
	Fszz=sf_input("szz");
	
	at=sf_iaxa(Fsrc, 1); nt=sf_n(at); dt=sf_d(at);
	if(!sf_getbool("srcdecay", &srcdecay)) srcdecay=true;
	if(!sf_getint("srcrange", &srcrange)) srcrange=3;
	if(!sf_getfloat("srctrunc", &srctrunc)) srctrunc=0.2;
	if(!sf_getfloat("srcalpha", &srcalpha)) srcalpha=0.5;
	wavelet=sf_floatalloc(nt);
	sf_floatread(wavelet, nt, Fsrc);

	if(!sf_getint("pmlsize", &pmlsize)) pmlsize=30;
	if(!sf_getint("nfd", &nfd)) sf_error("Need half of the FD order!");
	if(!sf_getfloat("pmld0", &pmld0)) pmld0=200;

	if(!sf_getint("shtnmb", &shtnmb)) sf_error("Need shot number!");
	if(!sf_getint("shtinv", &shtinv)) sf_error("Need shot interval!");
	if(!sf_getint("shtbgn", &shtbgn)) shtbgn=0;
	shtpad=numprocs-shtnmb%numprocs;
	shtnmb0=shtnmb+shtpad;

	az=sf_iaxa(Ffvel, 1); nzb=sf_n(az);
	ax=sf_iaxa(Ffvel, 2); nxb=sf_n(ax);
	nxzb=nxb*nzb;
	nz=nzb-2*nfd-2*pmlsize;
	nx=nxb-2*nfd-2*pmlsize;

	if(!sf_getint("snapturn", &snapturn)) snapturn=1;
	if(!sf_getint("ginv", &ginv)) ginv=1;
	if(!sf_getint("wfinv", &wfinv)) wfinv=1;
	if(!sf_getint("spz", &spz)) spz=6;
	if(!sf_getint("gp", &gp)) gp=0;
	ng=(nx-1)/ginv+1;
	wfnt=(nt-1)/wfinv+1;
	wfdt=dt*wfinv;

	if(!sf_getint("ntau", &ntau)) ntau=1;
	if(!sf_getfloat("dtau", &dtau)) dtau=wfdt;
	if(!sf_getfloat("tau0", &tau0)) tau0=0;
	atau=sf_iaxa(Fsrc, 1);
	sf_setn(atau, ntau);
	sf_setd(atau, dtau);
	sf_seto(atau, tau0);

	if(!sf_histint(FGx, "n1", &nxz)) sf_error("No n1= in FGx!");
	if(nxz != nxzb) sf_error("Dimension error!");
	if(!sf_histint(FGx, "n2", &lenx)) sf_error("No n2= in FGx!");
	if(!sf_histint(FGz, "n2", &lenz)) sf_error("No n2= in FGz!");
	Gx=sf_floatalloc3(nzb, nxb, lenx);
	Gz=sf_floatalloc3(nzb, nxb, lenz);
	sxx=sf_intalloc(lenx);
	sxz=sf_intalloc(lenx);
	szx=sf_intalloc(lenz);
	szz=sf_intalloc(lenz);
	tmpsxx=sf_floatalloc(lenx);
	tmpsxz=sf_floatalloc(lenx);
	tmpszx=sf_floatalloc(lenz);
	tmpszz=sf_floatalloc(lenz);
	sf_floatread(Gx[0][0], nxzb*lenx, FGx);
	sf_floatread(Gz[0][0], nxzb*lenz, FGz);
	sf_floatread(tmpsxx, lenx, Fsxx);
	sf_floatread(tmpsxz, lenx, Fsxz);
	sf_floatread(tmpszx, lenz, Fszx);
	sf_floatread(tmpszz, lenz, Fszz);
	for (ix=0; ix<lenx; ix++){
		sxx[ix]=(int)tmpsxx[ix];
		sxz[ix]=(int)tmpsxz[ix];
	}
	for (iz=0; iz<lenz; iz++){
		szx[iz]=(int)tmpszx[iz];
		szz[iz]=(int)tmpszz[iz];
	}

	fvel=sf_floatalloc2(nzb, nxb);
	fden=sf_floatalloc2(nzb, nxb);
	fc11=sf_floatalloc2(nzb, nxb);
	bvel=sf_floatalloc2(nzb, nxb);
	bden=sf_floatalloc2(nzb, nxb);
	bc11=sf_floatalloc2(nzb, nxb);
	sf_floatread(fvel[0], nxzb, Ffvel);
	sf_floatread(fden[0], nxzb, Ffden);
	sf_floatread(bvel[0], nxzb, Fbvel);
	sf_floatread(bden[0], nxzb, Fbden);
	for (ix=0; ix<nxb; ix++){
		for (iz=0; iz<nzb; iz++){
			fc11[ix][iz]=fden[ix][iz]*fvel[ix][iz]*fvel[ix][iz];
			bc11[ix][iz]=bden[ix][iz]*bvel[ix][iz]*bvel[ix][iz];
		}
	}

	if(wantrecord){
		/* check record data */
		sf_histint(Frcd, "n1", &tmpint);
		if(tmpint != nt) sf_error("Not matched dimensions!");
		sf_histint(Frcd, "n2", &tmpint);
		if(tmpint != ng) sf_error("Not matched dimensions!");
		sf_histint(Frcd, "n3", &tmpint);
		if(tmpint != shtnmb) sf_error("Not matched dimensions!");
	}

	if(rank==0){
		record=sf_floatalloc3(nt, ng, shtnmb0);
		if(wantrecord){
			sf_floatread(record[0][0], nt*ng*shtnmb, Frcd);
			for(is=shtnmb; is<shtnmb0; is++)
				for(ix=0; ix<ng; ix++)
					for(it=0; it<nt; it++)
						record[is][ix][it]=0.0;
		}
	}

	img1=sf_floatalloc3(nz, nx, ntau);
	mig1=sf_floatalloc3(nz, nx, ntau);
	img2=sf_floatalloc2(nz, nx);
	mig2=sf_floatalloc2(nz, nx);
	zero3(img1, nz, nx, ntau);
	zero2(img2, nz, nx);

	sf_setn(az, nz);
	sf_setn(ax, ng);
	if(!wantrecord){
		sf_oaxa(Frcd, at, 1);
		sf_oaxa(Frcd, ax, 2);
		sf_putint(Frcd, "n3", shtnmb);
		sf_putint(Frcd, "d3", shtinv);
		sf_putint(Frcd, "o3", shtbgn);
	}

	sf_setn(ax, nx);
	if(wantwf){
		sf_setn(at, wfnt);
		sf_setd(at, wfdt);

		sf_oaxa(Ftmpfwf, az, 1);
		sf_oaxa(Ftmpfwf, ax, 2);
		sf_oaxa(Ftmpfwf, at, 3);

		sf_oaxa(Ftmpbwf, az, 1);
		sf_oaxa(Ftmpbwf, ax, 2);
		sf_oaxa(Ftmpbwf, at, 3);
	}

	sf_oaxa(Fimg1, az, 1);
	sf_oaxa(Fimg1, ax, 2);
	sf_oaxa(Fimg1, atau, 3);
	sf_oaxa(Fimg2, az, 1);
	sf_oaxa(Fimg2, ax, 2);

	fwf=sf_floatalloc3(nz, nx, wfnt);
	localrec=sf_floatalloc2(nt, ng);

	if(verb){
		sf_warning("==================================");
		sf_warning("nx=%d nz=%d nt=%d", nx, nz, nt);
		sf_warning("wfnt=%d wfdt=%f wfinv=%d dt=%f", wfnt, wfdt, wfinv, dt);
		sf_warning("nxb=%d nzb=%d pmlsize=%d nfd=%d", nxb, nzb, pmlsize, nfd);
		sf_warning("ntau=%d dtau=%f tau0=%f", ntau, dtau, tau0);
		sf_warning("shtnmb=%d shtbgn=%d shtinv=%d", shtnmb, shtbgn, shtinv);
		sf_warning("lenx=%d lenz=%d spz=%d gp=%d", lenx, lenz, spz, gp);
		sf_warning("==================================");
	}

	init();

	for(iturn=0; iturn*numprocs<shtnmb; iturn++){
		is=iturn*numprocs+rank;
		if(is<shtnmb){
			sf_warning("ishot/nshot: %d/%d", is+1, shtnmb);
			spx=is*shtinv+shtbgn;
			sglfdfor2(fwf, localrec, verb);
		}

		if(wantrecord){
			recvbuf=localrec[0];
			if(rank==0) sendbuf=record[iturn*numprocs][0];
			else sendbuf=NULL;
			MPI_Scatter(sendbuf, ng*nt, MPI_FLOAT, recvbuf, ng*nt, MPI_FLOAT, 0, Comm);
		}else{
			sendbuf=localrec[0];
			if(rank==0) recvbuf=record[iturn*numprocs][0];
			else recvbuf=NULL;
			MPI_Gather(sendbuf, ng*nt, MPI_FLOAT, recvbuf, ng*nt, MPI_FLOAT, 0, Comm);
		}

		if(wantwf && rank==0 && iturn==snapturn-1) wantwf=true;
		else wantwf=false;
		if(wantwf) sf_floatwrite(fwf[0][0], wfnt*nx*nz, Ftmpfwf);

		if(!onlyrecord && is<shtnmb){
			sglfdback2(mig1, mig2, fwf, localrec, verb, wantwf, Ftmpbwf);
			for(itau=0; itau<ntau; itau++){
				for(ix=0; ix<nx; ix++){
					for(iz=0; iz<nz; iz++){
						img1[itau][ix][iz]+=mig1[itau][ix][iz];
					}
				}
			}
			for(ix=0; ix<nx; ix++){
				for(iz=0; iz<nz; iz++){
					img2[ix][iz]+=mig2[ix][iz];
				}
			}
		}
		MPI_Barrier(Comm);
	} //end of iturn

	if(!onlyrecord){
	if(rank==0){
		sendbuf=(float *)MPI_IN_PLACE;
		recvbuf=img1[0][0];
	}else{
		sendbuf=img1[0][0];
		recvbuf=NULL;
	}
	MPI_Reduce(sendbuf, recvbuf, ntau*nx*nz, MPI_FLOAT, MPI_SUM, 0, Comm);

	if(rank==0){
		sendbuf=MPI_IN_PLACE;
		recvbuf=img2[0];
	}else{
		sendbuf=img2[0];
		recvbuf=NULL;
	}
	MPI_Reduce(sendbuf, recvbuf, nx*nz, MPI_FLOAT, MPI_SUM, 0, Comm);
	}

	if(rank==0){
		if(!wantrecord){
			sf_floatwrite(record[0][0], shtnmb*ng*nt, Frcd);
		}
		sf_floatwrite(img1[0][0], ntau*nx*nz, Fimg1);
		sf_floatwrite(img2[0], nx*nz, Fimg2);
	}

	tend=clock();
	duration=(double)(tend-tstart)/CLOCKS_PER_SEC;
	sf_warning(">>The CPU time of sfmpilfdrtm2 is: %f seconds<<", duration);
	MPI_Finalize();
	exit(0);
}
Beispiel #5
0
int main (int argc, char* argv[])
{
    bool verb, fsrf, snap, expl, dabc; 
    int  jsnap, ntsnap, jdata;

    /* I/O files */
    sf_file Fwav = NULL; /* wavelet   */
    sf_file Fsou = NULL; /* sources   */
    sf_file Frec = NULL; /* receivers */
    sf_file Fvel = NULL; /* velocity  */
    sf_file Fden = NULL; /* density   */
    sf_file Fdat = NULL; /* data      */
    sf_file Fwfl = NULL; /* wavefield */

    /* cube axes */
    sf_axis at, az, ax;
    sf_axis as, ar;

    int cpuid;
    int nt, nz, nx, ns, nr;
    int it, ia;
    float dt, dz, dx;

    /* FDM structure */
    /* Wee keep these structures for compatibility,
       as soon as PETSC version is finished,
       this will be removed */
    fdm2d fdm = NULL;

    /* I/O arrays */
    float *ww = NULL;           /* wavelet   */
    pt2d  *ss = NULL;           /* sources   */
    pt2d  *rr = NULL;           /* receivers */
    float *dd = NULL;           /* data      */

    float **u,**v;

    /* linear interpolation weights/indices */
    lint2d cs,cr;

    /* wavefield cut params */
    sf_axis acz = NULL, acx = NULL;
    int   nqz, nqx;
    float oqz, oqx;
    float dqz, dqx;
    float **uc = NULL;

    sf_petsc_aimplfd2 aimplfd;
    PetscErrorCode ierr;
    /* PETSc Initialization */
    ierr = PetscInitialize (&argc, &argv, 0, 0); CHKERRQ(ierr);
    MPI_Comm_rank (MPI_COMM_WORLD, &cpuid);

    /*------------------------------------------------------------*/
    /* init RSF */
    sf_init (argc, argv);

    /*------------------------------------------------------------*/

    if (!sf_getbool ("verb", &verb)) verb = false; /* verbosity flag */
    if (!sf_getbool ("snap", &snap)) snap = false; /* wavefield snapshots flag */
    if (!sf_getbool ("free", &fsrf)) fsrf = false; /* free surface flag */
    if (!sf_getbool ("expl", &expl)) expl = false; /* "exploding reflector" */
    if (!sf_getbool ("dabc", &dabc)) dabc = false; /* absorbing BC */
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* I/O files */
    Fwav = sf_input ("in" ); /* wavelet   */
    Fvel = sf_input ("vel"); /* velocity  */
    Fsou = sf_input ("sou"); /* sources   */
    Frec = sf_input ("rec"); /* receivers */
    Fwfl = sf_output("wfl"); /* wavefield */
    Fdat = sf_output("out"); /* data      */
    Fden = sf_input ("den"); /* density   */

    /*------------------------------------------------------------*/
    /* axes */
    at = sf_iaxa (Fwav,2); sf_setlabel (at,"t"); if (verb && 0 == cpuid) sf_raxa (at); /* time */
    az = sf_iaxa (Fvel,1); sf_setlabel (az,"z"); if (verb && 0 == cpuid) sf_raxa (az); /* depth */
    ax = sf_iaxa (Fvel,2); sf_setlabel (ax,"x"); if (verb && 0 == cpuid) sf_raxa (ax); /* space */

    as = sf_iaxa (Fsou, 2); sf_setlabel (as, "s"); if (verb && 0 == cpuid) sf_raxa (as); /* sources */
    ar = sf_iaxa (Frec, 2); sf_setlabel (ar, "r"); if (verb && 0 == cpuid) sf_raxa (ar); /* receivers */

    nt = sf_n (at); dt = sf_d (at);
    nz = sf_n (az); dz = sf_d (az);
    nx = sf_n (ax); dx = sf_d (ax);

    ns = sf_n (as);
    nr = sf_n (ar);
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* other execution parameters */
    if (!sf_getint ("jdata", &jdata)) jdata = 1;
    if (snap) {  /* save wavefield every *jsnap* time steps */
        if (!sf_getint ("jsnap", &jsnap)) jsnap = nt;
    }
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* expand domain for FD operators and ABC */
    /*if (!sf_getint("nb",&nb) || nb<NOP) nb=NOP;*/
    fdm = fdutil_init (verb, true, az, ax, 0, 1);

    /*------------------------------------------------------------*/

    if (0 == cpuid) {
        sf_setn (az, fdm->nzpad); sf_seto (az, fdm->ozpad); if(verb) sf_raxa (az);
        sf_setn (ax, fdm->nxpad); sf_seto (ax, fdm->oxpad); if(verb) sf_raxa (ax);
        /*------------------------------------------------------------*/

        /*------------------------------------------------------------*/
        /* setup output data header */
        sf_oaxa (Fdat, ar, 1);

        sf_setn (at, nt/jdata);
        sf_setd (at, dt*jdata);
        sf_oaxa (Fdat, at, 2);
    }

    /* setup output wavefield header */
    if (snap && 0 == cpuid) {
        if (!sf_getint ("nqz", &nqz)) nqz = sf_n (az);
        if (!sf_getint ("nqx", &nqx)) nqx = sf_n (ax);

        if (!sf_getfloat ("oqz", &oqz)) oqz = sf_o (az);
        if (!sf_getfloat ("oqx", &oqx)) oqx = sf_o (ax);

        dqz = sf_d (az);
        dqx = sf_d (ax);

        acz = sf_maxa (nqz, oqz, dqz); sf_raxa (acz);
        acx = sf_maxa (nqx, oqx, dqx); sf_raxa (acx);
        /* check if the imaging window fits in the wavefield domain */

        uc = sf_floatalloc2 (sf_n (acz), sf_n (acx));

        ntsnap = 0;
        for (it = 0; it < nt; it++) {
            if (it % jsnap == 0)
                ntsnap++;
        }
        sf_setn (at, ntsnap);
        sf_setd (at, dt*jsnap);
        if (verb)
            sf_raxa(at);

        sf_oaxa (Fwfl, acz, 1);
        sf_oaxa (Fwfl, acx, 2);
        sf_oaxa (Fwfl, at,  3);
    }

    if (expl) {
        ww = sf_floatalloc (1);
    } else {
        ww = sf_floatalloc (ns);
    }
    dd = sf_floatalloc (nr);

    /*------------------------------------------------------------*/
    /* setup source/receiver coordinates */
    ss = (pt2d*) sf_alloc (ns, sizeof (*ss));
    rr = (pt2d*) sf_alloc (nr, sizeof (*rr));

    pt2dread1 (Fsou, ss, ns, 2); /* read (x,z) coordinates */
    pt2dread1 (Frec, rr, nr, 2); /* read (x,z) coordinates */

    cs = lint2d_make (ns, ss, fdm);
    cr = lint2d_make (nr, rr, fdm);

    v = sf_floatalloc2 (nz, nx);
    u = sf_floatalloc2 (nz, nx);

    /* input velocity */
    sf_floatread (v[0], nz*nx, Fvel);

    /*------------------------------------------------------------*/
    PetscFPrintf (MPI_COMM_WORLD, stderr, "Initializing GMRES solver\n");   
    aimplfd = sf_petsc_aimplfd2_init (nz, nx, dz, dx, dt, &v[0][0], 100, true);

    /*------------------------------------------------------------*/
    /* 
     *  MAIN LOOP
     */
    /*------------------------------------------------------------*/
    for (it = 0; it < nt; it++) {
        PetscFPrintf (MPI_COMM_WORLD, stderr, "Timestep #%d, t=%f\n", it, it*dt);

        sf_petsc_aimplfd2_next_step (aimplfd);

        /* inject acceleration source */
        if (expl) {
            sf_floatread (ww, 1, Fwav);
            for (ia = 0; ia < cs->n; ia++) {
                sf_petsc_aimplfd2_add_source_ut1 (aimplfd, ww[0], cs->jz[ia], cs->jx[ia]);
            }
        } else {
            sf_floatread (ww, ns, Fwav);
            for (ia = 0; ia < cs->n; ia++) {
            /*
                PetscFPrintf (MPI_COMM_WORLD, stderr, "Source #%d [%d, %d], f=%f\n", ia, cs->jz[ia], cs->jx[ia], ww[0]);
                */
                sf_petsc_aimplfd2_add_source_ut1 (aimplfd, ww[ia], cs->jz[ia], cs->jx[ia]);
            }
        }
        sf_petsc_aimplfd2_get_wavefield_ut2 (aimplfd, &u[0][0]);

        /* extract data */
        /*
        lint2d_extract (u, dd, cr);
        */
        for (ia = 0; ia < cr->n; ia++) {
            dd[ia] = u[cr->jx[ia]][cr->jz[ia]];
        }

        if (snap && it % jsnap == 0 && 0 == cpuid) {
            cut2d (u, uc, fdm, acz, acx);
            sf_floatwrite (uc[0], sf_n(acz)*sf_n(acx), Fwfl);
        }
        if (it % jdata == 0 && 0 == cpuid)
            sf_floatwrite (dd, nr, Fdat);
    }

    exit (0);
}
Beispiel #6
0
int main(int argc, char* argv[])
{
    /*------------------------------------------------------------*/
    /* Execution control, I/O files and geometry                  */
    /*------------------------------------------------------------*/
    bool verb,fsrf,snap,back,esou; /* execution flags */
    int  jsnap,ntsnap,jdata; /* jump along axes */
    int  shft; /* time shift for wavefield matching in RTM */

    /* I/O files */
    sf_file Fwav=NULL; /* wavelet   */
    sf_file Fdat=NULL; /* data      */
    sf_file Fsou=NULL; /* sources   */
    sf_file Frec=NULL; /* receivers */
    sf_file Fccc=NULL; /* velocity  */
    sf_file Frkp=NULL; /* app. rank */
    sf_file Fltp=NULL; /* left mat  */
    sf_file Frtp=NULL; /* right mat */
    sf_file Fwfp=NULL; /* wavefield */
    sf_file Frks=NULL; /* app. rank */
    sf_file Flts=NULL; /* left mat  */
    sf_file Frts=NULL; /* right mat */
    sf_file Fwfs=NULL; /* wavefield */

    /* cube axes */
    sf_axis at,ax,ay,az; /* time, x, y, z */ 
    sf_axis asx,asy,arx,ary,ac;    /* sou, rec-x, rec-y, component */ 

    /* dimension, index and interval */
    int     nt,nz,nx,ny,ns,nr,nc,nb;
    int     it,iz,ix,iy;
    float   dt,dz,dx,dy;
    int     nxyz, nk;

    /* FDM and KSP structure */ //!!!JS
    fdm3d    fdm=NULL;
    dft3d    dft=NULL;
    clr3d    clr_p=NULL, clr_s=NULL;

    /* I/O arrays for sou & rec */
    sf_complex***ww=NULL;    /* wavelet   */
    pt3d        *ss=NULL;    /* sources   */
    pt3d        *rr=NULL;    /* receivers */
    sf_complex **dd=NULL;    /* data      */

    /*------------------------------------------------------------*/
    /* displacement: uo = U @ t; up = U @ t+1                     */
    /*------------------------------------------------------------*/
    sf_complex ***uox, ***uoy, ***uoz, **uo;
    sf_complex ***uox_p, ***uoy_p, ***uoz_p, **uo_p;
    sf_complex ***uox_s, ***uoy_s, ***uoz_s, **uo_s;
    /*sf_complex ***upx, ***upy, ***upz, **up;*/

    /*------------------------------------------------------------*/
    /* lowrank decomposition arrays                               */
    /*------------------------------------------------------------*/
    int ntmp, *n2s_p, *n2s_s;
    sf_complex **lt_p, **rt_p, **lt_s, **rt_s;

    /*------------------------------------------------------------*/
    /* linear interpolation weights/indices                       */
    /*------------------------------------------------------------*/
    lint3d cs,cr; /* for injecting source and extracting data */

    /* Gaussian bell */
    int nbell;
    
    /*------------------------------------------------------------*/
    /* wavefield cut params                                       */
    /*------------------------------------------------------------*/
    sf_axis   acz=NULL,acx=NULL,acy=NULL;
    int       nqz,nqx,nqy;
    float     oqz,oqx,oqy;
    float     dqz,dqx,dqy;
    sf_complex***uc=NULL; /* tmp array for output wavefield snaps */

    /*------------------------------------------------------------*/
    /* init RSF                                                   */
    /*------------------------------------------------------------*/
    sf_init(argc,argv);

    /*------------------------------------------------------------*/
    /* OMP parameters                                             */
    /*------------------------------------------------------------*/
#ifdef _OPENMP
    omp_init();
#endif

    /*------------------------------------------------------------*/
    /* read execution flags                                       */
    /*------------------------------------------------------------*/
    if(! sf_getbool("verb",&verb)) verb=false; /* verbosity flag */
    if(! sf_getbool("snap",&snap)) snap=false; /* wavefield snapshots flag */
    if(! sf_getbool("free",&fsrf)) fsrf=false; /* free surface flag */
    if(! sf_getbool("back",&back)) back=false; /* backward extrapolation flag (for rtm) */
    if(! sf_getbool("esou",&esou)) esou=false; /* explosive force source */

    /*------------------------------------------------------------*/
    /* I/O files                                                  */
    /*------------------------------------------------------------*/
    Fwav = sf_input ("in" ); /* wavelet   */
    Fdat = sf_output("out"); /* data      */
    Fsou = sf_input ("sou"); /* sources   */
    Frec = sf_input ("rec"); /* receivers */
    Fccc = sf_input ("ccc"); /* stiffness */
    Frkp = sf_input ("rkp"); /* app. rank */
    Fltp = sf_input ("ltp"); /* left mat  */
    Frtp = sf_input ("rtp"); /* right mat */
    Fwfp = sf_output("wfp"); /* wavefield */
    Frks = sf_input ("rks"); /* app. rank */
    Flts = sf_input ("lts"); /* left mat  */
    Frts = sf_input ("rts"); /* right mat */
    Fwfs = sf_output("wfs"); /* wavefield */

    /*------------------------------------------------------------*/
    /* axes                                                       */
    /*------------------------------------------------------------*/
    at = sf_iaxa(Fwav,4); sf_setlabel(at,"t"); if(verb) sf_raxa(at); /* time */
    az = sf_iaxa(Fccc,1); sf_setlabel(az,"z"); if(verb) sf_raxa(az); /* depth */
    ax = sf_iaxa(Fccc,2); sf_setlabel(ax,"x"); if(verb) sf_raxa(ax); /* space x */
    ay = sf_iaxa(Fccc,3); sf_setlabel(ay,"y"); if(verb) sf_raxa(ay); /* space y */

    asx = sf_iaxa(Fsou,2); sf_setlabel(asx,"sx"); if(verb) sf_raxa(asx); /* sources x */
    asy = sf_iaxa(Fsou,3); sf_setlabel(asy,"sy"); if(verb) sf_raxa(asy); /* sources y */
    arx = sf_iaxa(Frec,2); sf_setlabel(arx,"rx"); if(verb) sf_raxa(arx); /* receivers x */
    ary = sf_iaxa(Frec,3); sf_setlabel(ary,"ry"); if(verb) sf_raxa(ary); /* receivers y */

    nt = sf_n(at); dt = sf_d(at);
    nz = sf_n(az); dz = sf_d(az);
    nx = sf_n(ax); dx = sf_d(ax);
    ny = sf_n(ay); dy = sf_d(ay);

    ns = sf_n(asx)*sf_n(asy);
    nr = sf_n(arx)*sf_n(ary);

    /*------------------------------------------------------------*/
    /* other execution parameters                                 */
    /*------------------------------------------------------------*/
    if(! sf_getint("nbell",&nbell)) nbell=NOP;  /* bell size */
    if(verb) sf_warning("nbell=%d",nbell);
    if(! sf_getint("jdata",&jdata)) jdata=1;
    if(snap) {  /* save wavefield every *jsnap* time steps */
	if(! sf_getint("jsnap",&jsnap)) jsnap=nt;
    }
    if(back) {
        shft = (nt-1)%jsnap;
        sf_warning("For backward extrapolation, make sure nbell(%d)=0",nbell);
    } else shft = 0;

    /*------------------------------------------------------------*/
    /* expand domain for FD operators and ABC                     */
    /*------------------------------------------------------------*/
    if( !sf_getint("nb",&nb)) nb=NOP;

    fdm=fdutil3d_init(verb,fsrf,az,ax,ay,nb,1);
    if(nbell) fdbell3d_init(nbell);

    sf_setn(az,fdm->nzpad); sf_seto(az,fdm->ozpad); if(verb) sf_raxa(az);
    sf_setn(ax,fdm->nxpad); sf_seto(ax,fdm->oxpad); if(verb) sf_raxa(ax);
    sf_setn(ay,fdm->nypad); sf_seto(ay,fdm->oypad); if(verb) sf_raxa(ay);

    /*------------------------------------------------------------*/
    /* 3D vector components                                       */
    /*------------------------------------------------------------*/
    nc=3;
    ac=sf_maxa(nc,0,1); /* output 3 cartesian components */

    /*------------------------------------------------------------*/
    /* setup output data header                                   */
    /*------------------------------------------------------------*/
    sf_settype(Fdat,SF_COMPLEX);
    sf_oaxa(Fdat,arx,1);
    sf_oaxa(Fdat,ary,2);
    sf_oaxa(Fdat,ac,3);

    sf_setn(at,nt/jdata);
    sf_setd(at,dt*jdata);
    sf_oaxa(Fdat,at,4);

    /* setup output wavefield header */
    if(snap) {
	if(!sf_getint  ("nqz",&nqz)) nqz=sf_n(az);
	if(!sf_getint  ("nqx",&nqx)) nqx=sf_n(ax);
	if(!sf_getint  ("nqy",&nqy)) nqy=sf_n(ay);

	if(!sf_getfloat("oqz",&oqz)) oqz=sf_o(az);
	if(!sf_getfloat("oqx",&oqx)) oqx=sf_o(ax);
	if(!sf_getfloat("oqy",&oqy)) oqy=sf_o(ay);

	dqz=sf_d(az);
	dqx=sf_d(ax);
	dqy=sf_d(ay);

	acz = sf_maxa(nqz,oqz,dqz); sf_raxa(acz);
	acx = sf_maxa(nqx,oqx,dqx); sf_raxa(acx);
	acy = sf_maxa(nqy,oqy,dqy); sf_raxa(acy);

	uc=sf_complexalloc3(sf_n(acz),sf_n(acx),sf_n(acy));

	ntsnap=0; /* ntsnap = it/jsnap+1; */
	for(it=0; it<nt; it++) {
	    if(it%jsnap==0) ntsnap++;
	}
	sf_setn(at,  ntsnap);
	sf_setd(at,dt*jsnap);
	if(verb) sf_raxa(at);

        sf_settype(Fwfp,SF_COMPLEX);
	sf_oaxa(Fwfp,acz,1);
	sf_oaxa(Fwfp,acx,2);
	sf_oaxa(Fwfp,acy,3);
	sf_oaxa(Fwfp,ac, 4);
	sf_oaxa(Fwfp,at, 5);

        sf_settype(Fwfs,SF_COMPLEX);
	sf_oaxa(Fwfs,acz,1);
	sf_oaxa(Fwfs,acx,2);
	sf_oaxa(Fwfs,acy,3);
	sf_oaxa(Fwfs,ac, 4);
	sf_oaxa(Fwfs,at, 5);
    }

    /*------------------------------------------------------------*/
    /* source and data array                                      */
    /*------------------------------------------------------------*/
    ww=sf_complexalloc3(ns,nc,nt); /* Fast axis: n_sou > n_comp > n_time */
    sf_complexread(ww[0][0],nt*nc*ns,Fwav);

    dd=sf_complexalloc2(nr,nc);

    /*------------------------------------------------------------*/
    /* setup source/receiver coordinates                          */
    /*------------------------------------------------------------*/
    ss = (pt3d*) sf_alloc(ns,sizeof(*ss)); 
    rr = (pt3d*) sf_alloc(nr,sizeof(*rr)); 

    pt3dread1(Fsou,ss,ns,3); /* read (x,y,z) coordinates */
    pt3dread1(Frec,rr,nr,3); /* read (x,y,z) coordinates */

    /* calculate 3d linear interpolation coef for sou & rec */
    cs = lint3d_make(ns,ss,fdm);
    cr = lint3d_make(nr,rr,fdm);

    /*------------------------------------------------------------*/
    /* allocate and initialize wavefield arrays                   */
    /*------------------------------------------------------------*/
    /* z-component */
    uoz=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uoz_p=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uoz_s=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    /*upz=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);*/

    /* x-component */
    uox=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uox_p=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uox_s=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    /*upx=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);*/

    /* y-component */
    uoy=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uoy_p=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uoy_s=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    /*upy=sf_complexalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);*/

    /* wavefield vector */
    uo = (sf_complex**) sf_alloc(3,sizeof(sf_complex*));
    uo[0] = uox[0][0]; uo[1] = uoy[0][0]; uo[2] = uoz[0][0];
    uo_p = (sf_complex**) sf_alloc(3,sizeof(sf_complex*));
    uo_p[0] = uox_p[0][0]; uo_p[1] = uoy_p[0][0]; uo_p[2] = uoz_p[0][0];
    uo_s = (sf_complex**) sf_alloc(3,sizeof(sf_complex*));
    uo_s[0] = uox_s[0][0]; uo_s[1] = uoy_s[0][0]; uo_s[2] = uoz_s[0][0];
    /*up = (sf_complex**) sf_alloc(3,sizeof(sf_complex*));*/
    /*up[0] = upx[0][0]; up[1] = upy[0][0]; up[2] = upz[0][0];*/

    /* initialize fft and lrk */
    dft = dft3d_init(1,false,false,fdm);
    nxyz= fdm->nypad*fdm->nxpad*fdm->nzpad;
    nk  = dft->nky  *dft->nkx  *dft->nkz;

    /*------------------------------------------------------------*/ 
    /* allocation I/O arrays                                      */
    /*------------------------------------------------------------*/ 
    n2s_p = sf_intalloc(9);
    sf_intread(n2s_p,9,Frkp);
    clr_p = clr3d_make2(n2s_p,fdm);

    n2s_s = sf_intalloc(9);
    sf_intread(n2s_s,9,Frks);
    clr_s = clr3d_make2(n2s_s,fdm);

    if (clr_p->n2_max > clr_s->n2_max) clr3d_init(fdm,dft,clr_p);
    else clr3d_init(fdm,dft,clr_s);

    /* check the dimension */
    if (!sf_histint(Fltp,"n1",&ntmp) || ntmp != nxyz)          sf_error("Need n1=%d in left",nxyz);
    if (!sf_histint(Fltp,"n2",&ntmp) || ntmp != clr_p->n2_sum) sf_error("Need n2=%d in left",clr_p->n2_sum);
    if (!sf_histint(Frtp,"n1",&ntmp) || ntmp != nk)            sf_error("Need n1=%d in right",nk);
    if (!sf_histint(Frtp,"n2",&ntmp) || ntmp != clr_p->n2_sum) sf_error("Need n2=%d in right",clr_p->n2_sum);
  
    lt_p = sf_complexalloc2(nxyz,clr_p->n2_sum); 
    rt_p = sf_complexalloc2(nk  ,clr_p->n2_sum); 
    sf_complexread(lt_p[0],nxyz*clr_p->n2_sum,Fltp);
    sf_complexread(rt_p[0],nk  *clr_p->n2_sum,Frtp);

    if (!sf_histint(Flts,"n1",&ntmp) || ntmp != nxyz)          sf_error("Need n1=%d in left",nxyz);
    if (!sf_histint(Flts,"n2",&ntmp) || ntmp != clr_s->n2_sum) sf_error("Need n2=%d in left",clr_s->n2_sum);
    if (!sf_histint(Frts,"n1",&ntmp) || ntmp != nk)            sf_error("Need n1=%d in right",nk);
    if (!sf_histint(Frts,"n2",&ntmp) || ntmp != clr_s->n2_sum) sf_error("Need n2=%d in right",clr_s->n2_sum);

    lt_s = sf_complexalloc2(nxyz,clr_s->n2_sum); 
    rt_s = sf_complexalloc2(nk  ,clr_s->n2_sum); 
    sf_complexread(lt_s[0],nxyz*clr_s->n2_sum,Flts);
    sf_complexread(rt_s[0],nk  *clr_s->n2_sum,Frts);

    /* initialize to zero */
#ifdef _OPENMP
#pragma omp parallel for              \
    schedule(dynamic,1)               \
    private(iy,ix,iz)                 \
    shared(fdm,uoz,uox,uoy,uoz_p,uox_p,uoy_p,uoz_s,uox_s,uoy_s)
#endif
    for        (iy=0; iy<fdm->nypad; iy++) {
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {
		uoz  [iy][ix][iz]=sf_cmplx(0.,0.); uox  [iy][ix][iz]=sf_cmplx(0.,0.); uoy  [iy][ix][iz]=sf_cmplx(0.,0.);
		uoz_p[iy][ix][iz]=sf_cmplx(0.,0.); uox_p[iy][ix][iz]=sf_cmplx(0.,0.); uoy_p[iy][ix][iz]=sf_cmplx(0.,0.);
		uoz_s[iy][ix][iz]=sf_cmplx(0.,0.); uox_s[iy][ix][iz]=sf_cmplx(0.,0.); uoy_s[iy][ix][iz]=sf_cmplx(0.,0.);
		/*upz[iy][ix][iz]=sf_cmplx(0.,0.); upx[iy][ix][iz]=sf_cmplx(0.,0.); upy[iy][ix][iz]=sf_cmplx(0.,0.);*/
	    }
	}
    }

    /*------------------------------------------------------------*/ 
    /*------------------------ MAIN LOOP -------------------------*/ 
    /*------------------------------------------------------------*/
    if(verb) fprintf(stderr,"\n");
    for (it=0; it<nt; it++) {
        if(verb) sf_warning("it=%d/%d;",it,nt); /*fprintf(stderr,"\b\b\b\b\b%d",it);*/

	/*------------------------------------------------------------*/
	/* apply lowrank matrix to wavefield vector                   */
        /*------------------------------------------------------------*/
        clr3d_apply(uo_p, uo, lt_p, rt_p, fdm, dft, clr_p);
        clr3d_apply(uo_s, uo, lt_s, rt_s, fdm, dft, clr_s);

	/*------------------------------------------------------------*/
        /* combine P and S wave modes                                 */
        /*------------------------------------------------------------*/
#ifdef _OPENMP
#pragma omp parallel for              \
        schedule(dynamic,1)               \
        private(iy,ix,iz)                 \
        shared(fdm,uoz,uox,uoy,uoz_p,uox_p,uoy_p,uoz_s,uox_s,uoy_s)
#endif
        for        (iy=0; iy<fdm->nypad; iy++) {
            for    (ix=0; ix<fdm->nxpad; ix++) {
                for(iz=0; iz<fdm->nzpad; iz++) {
                    uoz[iy][ix][iz] = uoz_p[iy][ix][iz] + uoz_s[iy][ix][iz];
                    uox[iy][ix][iz] = uox_p[iy][ix][iz] + uox_s[iy][ix][iz];
                    uoy[iy][ix][iz] = uoy_p[iy][ix][iz] + uoy_s[iy][ix][iz];
                    /*upz[iy][ix][iz]=sf_cmplx(0.,0.); upx[iy][ix][iz]=sf_cmplx(0.,0.); upy[iy][ix][iz]=sf_cmplx(0.,0.);*/
                }
            }
        }

	/*------------------------------------------------------------*/
	/* free surface */
	/*------------------------------------------------------------*/
	if(fsrf) { /* need to do something here */ }

        /*------------------------------------------------------------*/
	/* inject displacement source                                 */
	/*------------------------------------------------------------*/
        if(esou) {
            /* exploding force source */
            lint3d_expl_complex(uoz,uox,uoy,ww[it],cs);
        } else {
            if(nbell) {
                lint3d_bell_complex(uoz,ww[it][0],cs);
                lint3d_bell_complex(uox,ww[it][1],cs);
                lint3d_bell_complex(uoy,ww[it][2],cs);
            } else {
                lint3d_inject_complex(uoz,ww[it][0],cs);
                lint3d_inject_complex(uox,ww[it][1],cs);
                lint3d_inject_complex(uoy,ww[it][2],cs);
            }
        }

	/*------------------------------------------------------------*/
	/* cut wavefield and save */
	/*------------------------------------------------------------*/
        if(snap && (it-shft)%jsnap==0) {
            /* P wave */
            cut3d_complex(uoz_p,uc,fdm,acz,acx,acy);
            sf_complexwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfp);

            cut3d_complex(uox_p,uc,fdm,acz,acx,acy);
            sf_complexwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfp);

            cut3d_complex(uoy_p,uc,fdm,acz,acx,acy);
            sf_complexwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfp);

            /* S wave */
            cut3d_complex(uoz_s,uc,fdm,acz,acx,acy);
            sf_complexwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfs);

            cut3d_complex(uox_s,uc,fdm,acz,acx,acy);
            sf_complexwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfs);

            cut3d_complex(uoy_s,uc,fdm,acz,acx,acy);
            sf_complexwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfs);
        }

        lint3d_extract_complex(uoz,dd[0],cr);
        lint3d_extract_complex(uox,dd[1],cr);
        lint3d_extract_complex(uoy,dd[2],cr);
        if(it%jdata==0) sf_complexwrite(dd[0],nr*nc,Fdat);

    }
    if(verb) sf_warning(".");
    if(verb) fprintf(stderr,"\n");    
    
    /*------------------------------------------------------------*/
    /* deallocate arrays */
    
    free(dft);
    dft3d_finalize();
    free(clr_p); free(clr_s);
    clr3d_finalize();

    free(**ww); free(*ww); free(ww);
    free(ss);
    free(rr);
    free(*dd);  free(dd);

    free(n2s_p); free(n2s_s);
    free(*lt_p); free(lt_p); free(*rt_p); free(rt_p);
    free(*lt_s); free(lt_s); free(*rt_s); free(rt_s);

    free(**uoz  ); free(*uoz  ); free(uoz)  ;
    free(**uoz_p); free(*uoz_p); free(uoz_p);
    free(**uoz_s); free(*uoz_s); free(uoz_s);
    /*free(**upz); free(*upz); free(upz);*/
    free(uo); free(uo_p); free(uo_s);
    /*free(up);*/

    if (snap) {
       free(**uc);  free(*uc);  free(uc);    
    }

    /*------------------------------------------------------------*/


    exit (0);
}
Beispiel #7
0
int main(int argc, char* argv[])
{
    bool verb,fsrf,snap,ssou,dabc,opot;
    int  jsnap,ntsnap,jdata;

    /* I/O files */
    sf_file Fwav=NULL; /* wavelet   */
    sf_file Fsou=NULL; /* sources   */
    sf_file Frec=NULL; /* receivers */
    sf_file Fccc=NULL; /* velocity  */
    sf_file Fden=NULL; /* density   */
    sf_file Fdat=NULL; /* data      */
    sf_file Fwfl=NULL; /* wavefield */

    /* cube axes */
    sf_axis at,ax,ay,az;
    sf_axis as,ar,ac;

    int     nt,nz,nx,ny,ns,nr,nc,nb;
    int     it,iz,ix,iy;
    float   dt,dz,dx,dy,idz,idx,idy;

    /* FDM structure */
    fdm3d    fdm=NULL;
    abcone3d /* abcp=NULL, */ abcs=NULL;
    sponge   spo=NULL;

    /* I/O arrays */
    float***ww=NULL;           /* wavelet   */
    pt3d   *ss=NULL;           /* sources   */
    pt3d   *rr=NULL;           /* receivers */
    float **dd=NULL;           /* data      */

    /*------------------------------------------------------------*/
    float ***tt=NULL;
    float ***ro=NULL;           /* density */

    /* orthorombic footprint - 9 coefficients */
    /* c11 c12 c13 
       .   c22 c23 
       .   .   c33 
                  c44
                     c55
                        c66 */
    float ***c11=NULL;
    float ***c22=NULL;
    float ***c33=NULL;
    float ***c44=NULL;
    float ***c55=NULL;
    float ***c66=NULL;
    float ***c12=NULL;
    float ***c13=NULL;
    float ***c23=NULL;
    float ***vp,***vs;
    float ***qp=NULL,***qsx=NULL,***qsy=NULL,***qsz=NULL;

    /*------------------------------------------------------------*/
    /* displacement: um = U @ t-1; uo = U @ t; up = U @ t+1 */
    float ***umz,***uoz,***upz,***uaz,***utz; 
    float ***umx,***uox,***upx,***uax,***utx;
    float ***umy,***uoy,***upy,***uay,***uty;

    /* stress/strain tensor */ 
    float ***tzz,***txx,***tyy,***txy,***tyz,***tzx;       
    float    szz,   sxx,   syy,   sxy,   syz,   szx;

    /*------------------------------------------------------------*/
    /* linear interpolation weights/indices */
    lint3d cs,cr;

    /* Gaussian bell */
    int nbell;
    
    /* wavefield cut params */
    sf_axis   acz=NULL,acx=NULL,acy=NULL;
    int       nqz,nqx,nqy;
    float     oqz,oqx,oqy;
    float     dqz,dqx,dqy;
    float     ***uc=NULL;

    /*------------------------------------------------------------*/
    /* init RSF */
    sf_init(argc,argv);

    /*------------------------------------------------------------*/
    /* OMP parameters */
#ifdef _OPENMP
    omp_init();
#endif
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* execution flags */
    if(! sf_getbool("verb",&verb)) verb=false; /* verbosity flag */
    if(! sf_getbool("snap",&snap)) snap=false; /* wavefield snapshots flag */
    if(! sf_getbool("free",&fsrf)) fsrf=false; /* free surface flag */
    if(! sf_getbool("ssou",&ssou)) ssou=false; /* stress source */
    if(! sf_getbool("dabc",&dabc)) dabc=false; /* absorbing BC */
    if(! sf_getbool("opot",&opot)) opot=false; /* output potentials */
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* I/O files */
    Fwav = sf_input ("in" ); /* wavelet   */
    Fccc = sf_input ("ccc"); /* stiffness */
    Fden = sf_input ("den"); /* density   */
    Fsou = sf_input ("sou"); /* sources   */
    Frec = sf_input ("rec"); /* receivers */
    Fwfl = sf_output("wfl"); /* wavefield */
    Fdat = sf_output("out"); /* data      */
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* axes */
    at = sf_iaxa(Fwav,3); sf_setlabel(at,"t"); if(verb) sf_raxa(at); /* time */
    az = sf_iaxa(Fccc,1); sf_setlabel(az,"z"); if(verb) sf_raxa(az); /* depth */
    ax = sf_iaxa(Fccc,2); sf_setlabel(ax,"x"); if(verb) sf_raxa(ax); /* space x */
    ay = sf_iaxa(Fccc,3); sf_setlabel(ay,"y"); if(verb) sf_raxa(ay); /* space y */

    as = sf_iaxa(Fsou,2); sf_setlabel(as,"s"); if(verb) sf_raxa(as); /* sources */
    ar = sf_iaxa(Frec,2); sf_setlabel(ar,"r"); if(verb) sf_raxa(ar); /* receivers */

    nt = sf_n(at); dt = sf_d(at);
    nz = sf_n(az); dz = sf_d(az);
    nx = sf_n(ax); dx = sf_d(ax);
    ny = sf_n(ay); dy = sf_d(ay);

    ns = sf_n(as);
    nr = sf_n(ar);
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* other execution parameters */
    if(! sf_getint("nbell",&nbell)) nbell=5;  /* bell size */
    if(verb) sf_warning("nbell=%d",nbell);
    if(! sf_getint("jdata",&jdata)) jdata=1;
    if(snap) {  /* save wavefield every *jsnap* time steps */
	if(! sf_getint("jsnap",&jsnap)) jsnap=nt;
    }
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* expand domain for FD operators and ABC */
    if( !sf_getint("nb",&nb) || nb<NOP) nb=NOP;

    fdm=fdutil3d_init(verb,fsrf,az,ax,ay,nb,1);
    fdbell3d_init(nbell);

    sf_setn(az,fdm->nzpad); sf_seto(az,fdm->ozpad); if(verb) sf_raxa(az);
    sf_setn(ax,fdm->nxpad); sf_seto(ax,fdm->oxpad); if(verb) sf_raxa(ax);
    sf_setn(ay,fdm->nypad); sf_seto(ay,fdm->oypad); if(verb) sf_raxa(ay);
    /*------------------------------------------------------------*/

    /* 3D vector components */
    nc=3;
    if(opot) {
	ac=sf_maxa(nc+1,0,1);
    } else {
	ac=sf_maxa(nc  ,0,1);
    }

    /*------------------------------------------------------------*/
    /* setup output data header */
    sf_oaxa(Fdat,ar,1);
    sf_oaxa(Fdat,ac,2);

    sf_setn(at,nt/jdata);
    sf_setd(at,dt*jdata);
    sf_oaxa(Fdat,at,3);

    /* setup output wavefield header */
    if(snap) {
	if(!sf_getint  ("nqz",&nqz)) nqz=sf_n(az);
	if(!sf_getint  ("nqx",&nqx)) nqx=sf_n(ax);
	if(!sf_getint  ("nqy",&nqy)) nqy=sf_n(ay);

	if(!sf_getfloat("oqz",&oqz)) oqz=sf_o(az);
	if(!sf_getfloat("oqx",&oqx)) oqx=sf_o(ax);
	if(!sf_getfloat("oqy",&oqy)) oqy=sf_o(ay);

	dqz=sf_d(az);
	dqx=sf_d(ax);
	dqy=sf_d(ay);

	acz = sf_maxa(nqz,oqz,dqz); sf_raxa(acz);
	acx = sf_maxa(nqx,oqx,dqx); sf_raxa(acx);
	acy = sf_maxa(nqy,oqy,dqy); sf_raxa(acy);
	/* TODO: check if the imaging window fits in the wavefield domain */

	uc=sf_floatalloc3(sf_n(acz),sf_n(acx),sf_n(acy));

	ntsnap=0;
	for(it=0; it<nt; it++) {
	    if(it%jsnap==0) ntsnap++;
	}
	sf_setn(at,  ntsnap);
	sf_setd(at,dt*jsnap);
	if(verb) sf_raxa(at);

	sf_oaxa(Fwfl,acz,1);
	sf_oaxa(Fwfl,acx,2);
	sf_oaxa(Fwfl,acy,3);
	sf_oaxa(Fwfl,ac, 4);
	sf_oaxa(Fwfl,at, 5);
    }

    /*------------------------------------------------------------*/
    /* source array */
    ww=sf_floatalloc3(ns,nc,nt); 
    sf_floatread(ww[0][0],nt*nc*ns,Fwav);

    /* data array */
    if(opot) {
	dd=sf_floatalloc2(nr,nc+1);
    } else {
	dd=sf_floatalloc2(nr,nc  );
    }

    /*------------------------------------------------------------*/
    /* setup source/receiver coordinates */
    ss = (pt3d*) sf_alloc(ns,sizeof(*ss)); 
    rr = (pt3d*) sf_alloc(nr,sizeof(*rr)); 

    pt3dread1(Fsou,ss,ns,3); /* read (x,y,z) coordinates */
    pt3dread1(Frec,rr,nr,3); /* read (x,y,z) coordinates */
    
    cs = lint3d_make(ns,ss,fdm);
    cr = lint3d_make(nr,rr,fdm);

    /*------------------------------------------------------------*/
    /* setup FD coefficients */
/*    idz = 2/dz;*/
/*    idx = 2/dx;*/
/*    idy = 2/dy;*/

    idz = 1/dz;
    idx = 1/dx;
    idy = 1/dy;

    /*------------------------------------------------------------*/ 
    tt = sf_floatalloc3(nz,nx,ny); 
    
    ro =sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    c11=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
    c22=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
    c33=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
    c44=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
    c55=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
    c66=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
    c12=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
    c13=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
    c23=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);     

    /* input density */
    sf_floatread(tt[0][0],nz*nx*ny,Fden);     expand3d(tt,ro ,fdm);

    /* input stiffness */
    sf_floatread(tt[0][0],nz*nx*ny,Fccc );    expand3d(tt,c11,fdm);
    sf_floatread(tt[0][0],nz*nx*ny,Fccc );    expand3d(tt,c22,fdm);    
    sf_floatread(tt[0][0],nz*nx*ny,Fccc );    expand3d(tt,c33,fdm);    
    sf_floatread(tt[0][0],nz*nx*ny,Fccc );    expand3d(tt,c44,fdm);
    sf_floatread(tt[0][0],nz*nx*ny,Fccc );    expand3d(tt,c55,fdm);    
    sf_floatread(tt[0][0],nz*nx*ny,Fccc );    expand3d(tt,c66,fdm);
    sf_floatread(tt[0][0],nz*nx*ny,Fccc );    expand3d(tt,c12,fdm);
    sf_floatread(tt[0][0],nz*nx*ny,Fccc );    expand3d(tt,c13,fdm);
    sf_floatread(tt[0][0],nz*nx*ny,Fccc );    expand3d(tt,c23,fdm);

    free(**tt); free(*tt); free(tt);

    /*------------------------------------------------------------*/
    if(dabc) {
	/* one-way abc setup   */
	vp = sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
	vs = sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
	for        (iy=0; iy<fdm->nypad; iy++) {
	    for    (ix=0; ix<fdm->nxpad; ix++) {
		for(iz=0; iz<fdm->nzpad; iz++) {
		    vp[iy][ix][iz] = sqrt( c11[iy][ix][iz]/ro[iy][ix][iz] );
		    vs[iy][ix][iz] = sqrt( c55[iy][ix][iz]/ro[iy][ix][iz] );
		}
	    }
	}
/*	abcp = abcone3d_make(NOP,dt,vp,fsrf,fdm); */
	abcs = abcone3d_make(NOP,dt,vs,fsrf,fdm);
	free(**vp); free(*vp); free(vp);
	free(**vs); free(*vs); free(vs);

	/* sponge abc setup */
	spo = sponge_make(fdm->nb);
    }

    /*------------------------------------------------------------*/
    /* precompute 1/ro * dt^2 */
    for        (iy=0; iy<fdm->nypad; iy++) {
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {
		ro[iy][ix][iz] = dt*dt/ro[iy][ix][iz];
	    }
	}
     }

    /*------------------------------------------------------------*/
    /* allocate wavefield arrays */
    umz=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uoz=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    upz=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uaz=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);

    umx=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uox=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    upx=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uax=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);

    umy=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uoy=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    upy=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uay=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);

    tzz=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    tyy=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    txx=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    txy=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    tyz=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    tzx=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);

    for        (iy=0; iy<fdm->nypad; iy++) {
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {
		umz[iy][ix][iz]=0; umx[iy][ix][iz]=0; umy[iy][ix][iz]=0;
		uoz[iy][ix][iz]=0; uox[iy][ix][iz]=0; uoy[iy][ix][iz]=0;
		upz[iy][ix][iz]=0; upx[iy][ix][iz]=0; upy[iy][ix][iz]=0;
		uaz[iy][ix][iz]=0; uax[iy][ix][iz]=0; uay[iy][ix][iz]=0;
	    }
	}
    }

    if(opot) {
	qp =sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
	qsx=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
	qsy=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
	qsz=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    }

    /*------------------------------------------------------------*/
    /* 
     *  MAIN LOOP
     */
    /*------------------------------------------------------------*/
    if(verb) fprintf(stderr,"\n");
    for (it=0; it<nt; it++) {
	if(verb) fprintf(stderr,"\b\b\b\b\b%d",it);

	/*------------------------------------------------------------*/
	/* from displacement to strain                                */
	/*------------------------------------------------------------*/	
	/* 
	 * exx = Fx(ux)
	 * eyy = Fy(uy)
	 * ezz = Fz(uz)
	 * exy = By(ux) + Bx(uy)
	 * eyz = Bz(uy) + By(uz)
	 * ezx = Bx(uz) + Bz(ux)
	 */
#ifdef _OPENMP
#pragma omp parallel for					\
    schedule(dynamic,fdm->ompchunk)				\
    private(ix,iy,iz)						\
    shared(fdm,txx,tyy,tzz,txy,tyz,tzx,uox,uoy,uoz,idx,idy,idz)
#endif
	for        (iy=NOP; iy<fdm->nypad-NOP; iy++) {
	    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
		for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
		    
		    txx[iy][ix][iz] = Dx(uox,ix,iy,iz,idx);
		    tyy[iy][ix][iz] = Dy(uoy,ix,iy,iz,idy);
		    tzz[iy][ix][iz] = Dz(uoz,ix,iy,iz,idz);
		    
		    txy[iy][ix][iz] = Dy(uox,ix,iy,iz,idy) + Dx(uoy,ix,iy,iz,idx);
		    tyz[iy][ix][iz] = Dz(uoy,ix,iy,iz,idz) + Dy(uoz,ix,iy,iz,idy);
		    tzx[iy][ix][iz] = Dx(uoz,ix,iy,iz,idx) + Dz(uox,ix,iy,iz,idz);
		}
	    }
	}
	
	/*------------------------------------------------------------*/
	/* from strain to stress                                      */
	/*------------------------------------------------------------*/
#ifdef _OPENMP
#pragma omp parallel for						\
    schedule(dynamic,fdm->ompchunk)					\
    private(ix,iy,iz,sxx,syy,szz,sxy,syz,szx)				\
    shared(fdm,txx,tyy,tzz,txy,tyz,tzx,c11,c22,c33,c44,c55,c66,c12,c13,c23)
#endif
	for        (iy=0; iy<fdm->nypad; iy++) {
	    for    (ix=0; ix<fdm->nxpad; ix++) {
		for(iz=0; iz<fdm->nzpad; iz++) {
		    
		    sxx = c11[iy][ix][iz] * txx[iy][ix][iz]
			+ c12[iy][ix][iz] * tyy[iy][ix][iz]
			+ c13[iy][ix][iz] * tzz[iy][ix][iz];
		    syy = c12[iy][ix][iz] * txx[iy][ix][iz]
			+ c22[iy][ix][iz] * tyy[iy][ix][iz]
			+ c23[iy][ix][iz] * tzz[iy][ix][iz];
		    szz = c13[iy][ix][iz] * txx[iy][ix][iz]
			+ c23[iy][ix][iz] * tyy[iy][ix][iz]
			+ c33[iy][ix][iz] * tzz[iy][ix][iz];
		    
		    sxy = c66[iy][ix][iz] * txy[iy][ix][iz];
		    syz = c44[iy][ix][iz] * tyz[iy][ix][iz];
		    szx = c55[iy][ix][iz] * tzx[iy][ix][iz];
		    
		    txx[iy][ix][iz] = sxx;
		    tyy[iy][ix][iz] = syy;
		    tzz[iy][ix][iz] = szz;

		    txy[iy][ix][iz] = sxy;
		    tyz[iy][ix][iz] = syz;
		    tzx[iy][ix][iz] = szx;
		}
	    }
	}

	/*------------------------------------------------------------*/
	/* free surface */
	/*------------------------------------------------------------*/
	if(fsrf) {
#ifdef _OPENMP
#pragma omp parallel for						\
    schedule(dynamic,fdm->ompchunk)					\
    private(ix,iy,iz)							\
    shared(fdm,txx,tyy,tzz,txy,tyz,tzx)
#endif
	    for        (iy=0; iy<fdm->nypad; iy++) {
		for    (ix=0; ix<fdm->nxpad; ix++) {
		    for(iz=0; iz<fdm->nb;    iz++) {
			txx[iy][ix][iz]=0;
			tyy[iy][ix][iz]=0;
			tzz[iy][ix][iz]=0;

			txy[iy][ix][iz]=0;
			tyz[iy][ix][iz]=0;
			tzx[iy][ix][iz]=0;
		    }
		}
	    }
	}

	/*------------------------------------------------------------*/
	/* inject stress source                                       */
	/*------------------------------------------------------------*/
	if(ssou) {
	    lint3d_bell(tzz,ww[it][0],cs);
	    lint3d_bell(txx,ww[it][1],cs);
	    lint3d_bell(tyy,ww[it][2],cs);
	}
	
	/*------------------------------------------------------------*/
	/* from stress to acceleration                                */
	/*------------------------------------------------------------*/
	/* 
	 * ax = Bx(txx) + Fy(txy) + Fz(txz)
	 * ay = Fx(txy) + By(tyy) + Fz(tyz)
	 * az = Fx(txz) + Fy(tyz) + Bz(tzz)
	 */	
#ifdef _OPENMP
#pragma omp parallel for					\
    schedule(dynamic,fdm->ompchunk)				\
    private(ix,iy,iz)						\
    shared(fdm,txx,tyy,tzz,txy,tyz,tzx,uax,uay,uaz,idx,idy,idz)
#endif
	for        (iy=NOP; iy<fdm->nypad-NOP; iy++) {
	    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
		for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {		    
		    uax[iy][ix][iz] = Dx( txx,ix,iy,iz,idx ) + Dy( txy,ix,iy,iz,idy ) + Dz( tzx,ix,iy,iz,idz ) ;
		    uay[iy][ix][iz] = Dx( txy,ix,iy,iz,idx ) + Dy( tyy,ix,iy,iz,idy ) + Dz( tyz,ix,iy,iz,idz ) ;
		    uaz[iy][ix][iz] = Dx( tzx,ix,iy,iz,idx ) + Dy( tyz,ix,iy,iz,idy ) + Dz( tzz,ix,iy,iz,idz ) ;		    
		}
	    }
	}

	/*------------------------------------------------------------*/
	/* inject acceleration source                                 */
	/*------------------------------------------------------------*/
	if(!ssou) {
	    lint3d_bell(uaz,ww[it][0],cs);
	    lint3d_bell(uax,ww[it][1],cs);
	    lint3d_bell(uay,ww[it][2],cs);
	}

	/*------------------------------------------------------------*/
	/* step forward in time                                       */
	/*------------------------------------------------------------*/
#ifdef _OPENMP
#pragma omp parallel for						\
    schedule(dynamic,fdm->ompchunk)					\
    private(ix,iy,iz)							\
    shared(fdm,uox,uoy,uoz,umx,umy,umz,upx,upy,upz,uax,uay,uaz,ro)
#endif
	for        (iy=0; iy<fdm->nypad; iy++) {
	    for    (ix=0; ix<fdm->nxpad; ix++) {
		for(iz=0; iz<fdm->nzpad; iz++) {
		    upx[iy][ix][iz] = 2*uox[iy][ix][iz] 
			-               umx[iy][ix][iz] 
			+               uax[iy][ix][iz] * ro[iy][ix][iz]; 

		    upy[iy][ix][iz] = 2*uoy[iy][ix][iz] 
			-               umy[iy][ix][iz] 
			+               uay[iy][ix][iz] * ro[iy][ix][iz]; 

		    upz[iy][ix][iz] = 2*uoz[iy][ix][iz] 
			-               umz[iy][ix][iz] 
			+               uaz[iy][ix][iz] * ro[iy][ix][iz]; 
		    
		}
	    }
	}
	/* circulate wavefield arrays */
	utz=umz; uty=umy; utx=umx;
	umz=uoz; umy=uoy; umx=uox;
	uoz=upz; uoy=upy; uox=upx;
	upz=utz; upy=uty; upx=utx;
	
	if(dabc) {
	    /* one-way ABC */
	    /* abcone3d_apply(uoz,umz,NOP,abcp,fdm); */
	    /* abcone3d_apply(uox,umx,NOP,abcp,fdm); */
	    /* abcone3d_apply(uoy,umy,NOP,abcp,fdm); */
	    
	    abcone3d_apply(uoz,umz,NOP,abcs,fdm);
	    abcone3d_apply(uox,umx,NOP,abcs,fdm);
	    abcone3d_apply(uoy,umy,NOP,abcs,fdm);

	    /* sponge ABC */
	    sponge3d_apply(umz,spo,fdm);
	    sponge3d_apply(uoz,spo,fdm);
	    
	    sponge3d_apply(umx,spo,fdm);
	    sponge3d_apply(uox,spo,fdm);

	    sponge3d_apply(umy,spo,fdm);
	    sponge3d_apply(uoy,spo,fdm);
	}	    

	/*------------------------------------------------------------*/
	/* cut wavefield and save */
	/*------------------------------------------------------------*/
	if(opot) {
		
#ifdef _OPENMP
#pragma omp parallel for			\
    schedule(dynamic,fdm->ompchunk)		\
    private(ix,iy,iz)				\
    shared(fdm,uox,uoy,uoz,idx,idy,idz)
#endif
	    for        (iy=NOP; iy<fdm->nypad-NOP; iy++) {
		for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
		    for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {	
			
			qp [iy][ix][iz] = Dx( uox,ix,iy,iz,idx )
			    +             Dy( uoy,ix,iy,iz,idy )
			    +             Dz( uoz,ix,iy,iz,idz );
			
			qsx[iy][ix][iz] = Dy( uoz,ix,iy,iz,idy ) - Dz( uoy,ix,iy,iz,idz );
			qsy[iy][ix][iz] = Dz( uox,ix,iy,iz,idz ) - Dx( uoz,ix,iy,iz,idx );
			qsz[iy][ix][iz] = Dx( uoy,ix,iy,iz,idx ) - Dy( uox,ix,iy,iz,idy );
		    }
		}
	    }

	    if(snap && it%jsnap==0) {
		cut3d(qp ,uc,fdm,acz,acx,acy);
		sf_floatwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfl);

		cut3d(qsz,uc,fdm,acz,acx,acy);
		sf_floatwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfl);

		cut3d(qsx,uc,fdm,acz,acx,acy);
		sf_floatwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfl);

		cut3d(qsy,uc,fdm,acz,acx,acy);
		sf_floatwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfl);
	    }
	    
	    lint3d_extract(qp , dd[0],cr);
	    lint3d_extract(qsx, dd[1],cr);
	    lint3d_extract(qsy, dd[2],cr);
	    lint3d_extract(qsz, dd[3],cr);
	    if(it%jdata==0) sf_floatwrite(dd[0],nr*(nc+1),Fdat);

	} else {

	    if(snap && it%jsnap==0) {
		cut3d(uoz,uc,fdm,acz,acx,acy);
		sf_floatwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfl);
		
		cut3d(uox,uc,fdm,acz,acx,acy);
		sf_floatwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfl);
		
		cut3d(uoy,uc,fdm,acz,acx,acy);
		sf_floatwrite(uc[0][0],sf_n(acx)*sf_n(acy)*sf_n(acz),Fwfl);
	    }
	    
	    lint3d_extract(uoz,dd[0],cr);
	    lint3d_extract(uox,dd[1],cr);
	    lint3d_extract(uoy,dd[2],cr);
	    if(it%jdata==0) sf_floatwrite(dd[0],nr*nc,Fdat);
	}

    }
    if(verb) fprintf(stderr,"\n");    
    
    /*------------------------------------------------------------*/
    /* deallocate arrays */
    
    free(**ww); free(*ww); free(ww);
    free(ss);
    free(rr);
    free(*dd);  free(dd);

    free(**ro);  free(*ro);  free(ro);
    free(**c11); free(*c11); free(c11);
    free(**c22); free(*c22); free(c22);
    free(**c33); free(*c33); free(c33);
    free(**c44); free(*c44); free(c44);
    free(**c55); free(*c55); free(c55);
    free(**c66); free(*c66); free(c66);
    free(**c12); free(*c12); free(c12);
    free(**c13); free(*c13); free(c13);
    free(**c23); free(*c23); free(c23);

    free(**umz); free(*umz); free(umz);
    free(**uoz); free(*uoz); free(uoz);
    free(**upz); free(*upz); free(upz);
    free(**uaz); free(*uaz); free(uaz);

    free(**umx); free(*umx); free(umx);
    free(**uox); free(*uox); free(uox);
    free(**upx); free(*upx); free(upx);
    free(**uax); free(*uax); free(uax);

    free(**umy); free(*umy); free(umy);
    free(**uoy); free(*uoy); free(uoy);
    free(**upy); free(*upy); free(upy);
    free(**uay); free(*uay); free(uay);

    free(**tzz); free(*tzz); free(tzz);
    free(**txx); free(*txx); free(txx);
    free(**tyy); free(*tyy); free(tyy);
    free(**txy); free(*txy); free(txy);
    free(**tyz); free(*tyz); free(tyz);
    free(**tzx); free(*tzx); free(tzx);

    if (snap) {
       free(**uc);  free(*uc);  free(uc);    
    }

    if(opot) {
	free(**qp);  free(*qp);  free(qp);    
	free(**qsx); free(*qsx); free(qsx);
	free(**qsy); free(*qsy); free(qsy);
	free(**qsz); free(*qsz); free(qsz);
    }
    /*------------------------------------------------------------*/


    exit (0);
}
Beispiel #8
0
int main(int argc, char *argv[])
{
	bool wantwf, verb;

	int ix, iz, is, it, wfit, im, ik, i, j, itau;
    int ns, nx, nz, nt, wfnt, rnx, rnz, nzx, rnzx, vnx, ntau, htau, nds;
	int scalet, snap, snapshot, fnx, fnz, fnzx, nk, nb;
	int rectx, rectz, repeat, gpz, n, m, pad1, trunc, spx, spz;

	float dt, t0, z0, dz, x0, dx, s0, ds, wfdt, srctrunc;
    float dtau, tau0, tau;

	int nr, ndr, nr0;

	char *path1, *path2, number[5], *left, *right;

	double tstart, tend;
	struct timeval tim;

	/*wavenumber domain tapering*/
	int taper;
	float *ktp;
	float ktmp,kx_trs,kz_trs,thresh;
	float dkx,dkz,kx0,kz0;
	float kx,kz;
	int nkz;

	sf_complex c, **lt, **rt;
	sf_complex *ww, **dd, ***dd3;
	float ***img1, **img2, ***mig1, **mig2;
    float *rr, **ccr, **sill, ***fwf, ***bwf;
	sf_complex *cwave, *cwavem, **wave, *curr;

	sf_axis at, ax, az, atau;

	sf_file Fdat, Fsrc, Fimg1, Fimg2;
	sf_file Ffwf, Fbwf, Fvel;
	sf_file Fleft, Fright;

	int cpuid, numprocs, nth, nspad, iturn;
    float *sendbuf, *recvbuf;
	sf_complex *sendbufc, *recvbufc;
	MPI_Comm comm=MPI_COMM_WORLD;

	MPI_Init(&argc, &argv);
	MPI_Comm_rank(comm, &cpuid);
	MPI_Comm_size(comm, &numprocs);

	sf_init(argc, argv);

#ifdef _OPENMP
#pragma omp parallel
	{
		nth=omp_get_num_threads();
	}
	sf_warning(">>> Using %d threads <<<", nth);
#endif

	gettimeofday(&tim, NULL);
	tstart=tim.tv_sec+(tim.tv_usec/1000000.0);

	if (!sf_getint("taper",&taper)) taper=0; /* tapering in the frequency domain */
	if (!sf_getfloat("thresh",&thresh)) thresh=0.92; /* tapering threshold */

	if(!sf_getbool("wantwf", &wantwf)) wantwf=false;
    if(!sf_getbool("verb", &verb)) verb=false;
	if(!sf_getint("pad1", &pad1)) pad1=1;
	/* padding factor on the first axis */

	if(!sf_getint("nb", &nb)) sf_error("Need nb= ");
	if(!sf_getfloat("srctrunc", &srctrunc)) srctrunc=0.4;
	if(!sf_getint("rectx", &rectx)) rectx=2;
	if(!sf_getint("rectz", &rectz)) rectz=2;
	if(!sf_getint("repeat", &repeat)) repeat=2;

	if(!sf_getint("scalet", &scalet)) scalet=1;
	if(!sf_getint("snap", &snap)) snap=100;
	/* interval of the output wavefield */
	if(!sf_getint("snapshot", &snapshot)) snapshot=0;
	/* print out the wavefield snapshots of this shot */
    if(!sf_getint("nds", &nds)) sf_error("Need nds=!");
    
    /* source and receiver positions */
	if(!sf_getint("gpz", &gpz)) sf_error("Need gpz=");
	if(!sf_getint("spx", &spx)) sf_error("Need spx=");
	if(!sf_getint("spz", &spz)) sf_error("Need spz=");
    
    /* tau parameters */
    if(!sf_getint("ntau", &ntau)) sf_error("Need ntau=");
    if(!sf_getfloat("dtau", &dtau)) sf_error("Need dtau=");
    if(!sf_getfloat("tau0", &tau0)) sf_error("Need tau0=");

	/* geometry parameters */
	if(!sf_getint("rnx", &rnx)) sf_error("Need rnx=");
	if(!sf_getint("ndr", &ndr)) ndr=1;
	if(!sf_getint("nr0", &nr0)) nr0=0;

	/* input/output files */
	Fdat=sf_input("--input");
	Fimg1=sf_output("--output");
    Fimg2=sf_output("Fimg2");
    Fsrc=sf_input("Fsrc");
    Fvel=sf_input("Fpadvel");

	if(wantwf){
		Ffwf=sf_output("Ffwf");
        Fbwf=sf_output("Fbwf");
	}

	at=sf_iaxa(Fsrc, 1); nt=sf_n(at); dt=sf_d(at); t0=sf_o(at);
    ax=sf_iaxa(Fvel, 2); vnx=sf_n(ax); dx=sf_d(ax); x0=sf_o(ax);
	az=sf_iaxa(Fvel, 1); rnz=sf_n(az); dz=sf_d(az); z0=sf_o(az);
    if(!sf_histint(Fdat, "n2", &nr)) sf_error("Need n2= in input!");
    if(!sf_histint(Fdat, "n3", &ns)) sf_error("Need n3= in input!");
    if(!sf_histfloat(Fdat, "d3", &ds)) sf_error("Need d3= in input!");
    if(!sf_histfloat(Fdat, "o3", &s0)) sf_error("Need o3= in input!");
    
    wfnt=(nt-1)/scalet+1;
    wfdt=dt*scalet;
    
    /* double check the geometry parameters */
    if(nds != (int)(ds/dx)) sf_error("Need ds/dx= %d", nds);
	//sf_warning("s0=%g, x0+(rnx-1)*dx/2=%g", s0, x0+(rnx-1)*dx/2);
    //if(s0 != x0+(rnx-1)*dx/2) sf_error("Wrong origin information!");
    if(vnx != nds*(ns-1)+rnx) sf_error("Wrong dimension in x axis!");

    /* set up the output files */
    atau=sf_iaxa(Fsrc, 1);
    sf_setn(atau, ntau);
    sf_setd(atau, dtau);
    sf_seto(atau, tau0);
    sf_setlabel(atau, "Tau");
    sf_setunit(atau, "s");
    
    sf_oaxa(Fimg1, az, 1);
    sf_oaxa(Fimg1, ax, 2);
    sf_oaxa(Fimg1, atau, 3);
    sf_oaxa(Fimg2, az, 1);
    sf_oaxa(Fimg2, ax, 2);
    sf_putint(Fimg2, "n3", 1);
    sf_settype(Fimg1, SF_FLOAT);
    sf_settype(Fimg2, SF_FLOAT);
    
    if(wantwf){
		sf_setn(ax, rnx);
        sf_seto(ax, -(rnx-1)*dx/2.0);
        sf_oaxa(Ffwf, az, 1);
        sf_oaxa(Ffwf, ax, 2);
        sf_putint(Ffwf, "n3", (wfnt-1)/snap+1);
        sf_putfloat(Ffwf, "d3", snap*wfdt);
        sf_putfloat(Ffwf, "o3", t0);
        sf_putstring(Ffwf, "label3", "Time");
        sf_putstring(Ffwf, "unit3", "s");
        sf_settype(Ffwf, SF_FLOAT);
        
        sf_oaxa(Fbwf, az, 1);
        sf_oaxa(Fbwf, ax, 2);
        sf_putint(Fbwf, "n3", (wfnt-1)/snap+1);
        sf_putfloat(Fbwf, "d3", -snap*wfdt);
        sf_putfloat(Fbwf, "o3", (wfnt-1)*wfdt);
        sf_putstring(Fbwf, "label3", "Time");
        sf_putstring(Fbwf, "unit3", "s");
        sf_settype(Fbwf, SF_FLOAT);
	}
	
    nx=rnx+2*nb; nz=rnz+2*nb;
	nzx=nx*nz; rnzx=rnz*rnx;
    nk=cfft2_init(pad1, nz, nx, &fnz, &fnx);
	fnzx=fnz*fnx;

	if(ns%numprocs==0) nspad=ns;
	else nspad=(ns/numprocs+1)*numprocs;
    
	/* print axies parameters for double check */
    sf_warning("cpuid=%d, numprocs=%d, nspad=%d", cpuid, numprocs, nspad);
	sf_warning("nt=%d, dt=%g, scalet=%d, wfnt=%d, wfdt=%g",nt, dt, scalet, wfnt, wfdt);
	sf_warning("vnx=%d, nx=%d, dx=%g, nb=%d, rnx=%d", vnx, nx, dx, nb, rnx);
	sf_warning("nr=%d, ndr=%d, nr0=%g", nr, ndr, nr0);
	sf_warning("nz=%d, rnz=%d, dz=%g, z0=%g", nz, rnz, dz, z0);
	sf_warning("spx=%d, spz=%d, gpz=%d", spx, spz, gpz);
	sf_warning("ns=%d, ds=%g, s0=%g", ns, ds, s0);
    sf_warning("ntau=%d, dtau=%g, tau0=%g", ntau, dtau, tau0);
    sf_warning("nzx=%d, fnzx=%d, nk=%d", nzx, fnzx, nk);

	/* allocate storage and read data */
	ww=sf_complexalloc(nt);
	sf_complexread(ww, nt, Fsrc);
	sf_fileclose(Fsrc);
	
    gpz=gpz+nb;
    spz=spz+nb;
    spx=spx+nb;
	nr0=nr0+nb;
    trunc=srctrunc/dt+0.5;
    
	dd=sf_complexalloc2(nt, nr);
	if(cpuid==0) dd3=sf_complexalloc3(nt, nr, numprocs);
	rr=sf_floatalloc(nzx);
	reflgen(nz, nx, spz, spx, rectz, rectx, repeat, rr);
    
    fwf=sf_floatalloc3(rnz, rnx, wfnt);
    bwf=sf_floatalloc3(rnz, rnx, wfnt);
    img1=sf_floatalloc3(rnz, vnx, ntau);
    img2=sf_floatalloc2(rnz, vnx);
    mig1=sf_floatalloc3(rnz, rnx, ntau);
    mig2=sf_floatalloc2(rnz, rnx);
    
    ccr=sf_floatalloc2(rnz, rnx);
    sill=sf_floatalloc2(rnz, rnx);
    
    curr=sf_complexalloc(fnzx);
	cwave=sf_complexalloc(nk);
	cwavem=sf_complexalloc(nk);
	icfft2_allocate(cwavem);

	if (taper!=0) {
		dkz = 1./(fnz*dz); kz0 = -0.5/dz;
		dkx = 1./(fnx*dx); kx0 = -0.5/dx;
		nkz = fnz;

		sf_warning("dkz=%f,dkx=%f,kz0=%f,kx0=%f",dkz,dkx,kz0,kx0);
		sf_warning("nk=%d,nkz=%d,nkx=%d",nk,nkz,fnx);

		kx_trs = thresh*fabs(0.5/dx);
		kz_trs = thresh*fabs(0.5/dz);
		sf_warning("Applying kz tapering below %f",kz_trs);
		sf_warning("Applying kx tapering below %f",kx_trs);
		ktp = sf_floatalloc(nk);
		/* constructing the tapering op */
		for (ix=0; ix < fnx; ix++) {
			kx = kx0+ix*dkx;
			for (iz=0; iz < nkz; iz++) {
				kz = kz0+iz*dkz;
				ktmp = 1.;
				if (fabs(kx) > kx_trs)
					ktmp *= powf((2*kx_trs - fabs(kx))/(kx_trs),2);
				if (fabs(kz) > kz_trs)
					ktmp *= powf((2*kz_trs - fabs(kz))/(kz_trs),2);
				ktp[iz+ix*nkz] = ktmp;
			}
		}
	}

	/* initialize image tables that would be used for summing images */
#ifdef _OPENMP
#pragma omp parallel for private(ix, iz, itau)
#endif
    for(ix=0; ix<vnx; ix++){
        for(iz=0; iz<rnz; iz++){
            img2[ix][iz]=0.;
            for(itau=0; itau<ntau; itau++){
                img1[itau][ix][iz]=0.;
            }
        }
    }

	path1=sf_getstring("path1");
	path2=sf_getstring("path2");
	if(path1==NULL) path1="./mat/left";
	if(path2==NULL) path2="./mat/right";

	/* shot loop */
	for (iturn=0; iturn*numprocs<nspad; iturn++){
		is=iturn*numprocs+cpuid;
        
        /* read data */
		if(cpuid==0){
			sf_seek(Fdat, ((off_t) is)*((off_t) nr)*((off_t) nt)*sizeof(float complex), SEEK_SET);

			if((iturn+1)*numprocs<=ns){
				sf_complexread(dd3[0][0], nr*nt*numprocs, Fdat);
			}else{
				sf_complexread(dd3[0][0], nr*nt*(ns-iturn*numprocs), Fdat);
				for(is=ns; is<nspad; is++)
					for(ix=0; ix<nr; ix++)
						for(it=0; it<nt; it++)
							dd3[is-iturn*numprocs][ix][it]=sf_cmplx(0.,0.);
				is=iturn*numprocs;
			}

			sendbufc=dd3[0][0];
			recvbufc=dd[0];
		}else{
			sendbufc=NULL;
			recvbufc=dd[0];
		}
		MPI_Scatter(sendbufc, nt*nr, MPI_COMPLEX, recvbufc, nt*nr, MPI_COMPLEX, 0, comm);

		if(is<ns){ /* effective shot loop */

			/* construct the names of left and right matrices */
			left=sf_charalloc(strlen(path1));
			right=sf_charalloc(strlen(path2));
			strcpy(left, path1);
			strcpy(right, path2);
			sprintf(number, "%d", is+1);
			strcat(left, number);
			strcat(right, number);

			Fleft=sf_input(left);
			Fright=sf_input(right);

			if(!sf_histint(Fleft, "n1", &n) || n != nzx) sf_error("Need n1=%d in Fleft", nzx);
			if(!sf_histint(Fleft, "n2", &m)) sf_error("No n2 in Fleft");
			if(!sf_histint(Fright, "n1", &n) || n != m) sf_error("Need n1=%d in Fright", m);
			if(!sf_histint(Fright, "n2", &n) || n != nk) sf_error("Need n2=%d in Fright", nk);

			/* allocate storage for each shot migration */
			lt=sf_complexalloc2(nzx, m);
			rt=sf_complexalloc2(m, nk);
			sf_complexread(lt[0], nzx*m, Fleft);
			sf_complexread(rt[0], m*nk, Fright);
			sf_fileclose(Fleft);
			sf_fileclose(Fright);

			/* initialize curr and imaging variables */
#ifdef _OPENMP
#pragma omp parallel for private(iz)
#endif
			for(iz=0; iz<fnzx; iz++){
				curr[iz]=sf_cmplx(0.,0.);
			}
#ifdef _OPENMP
#pragma omp parallel for private(ix, iz, itau)
#endif
			for(ix=0; ix<rnx; ix++){
				for(iz=0; iz<rnz; iz++){
					mig2[ix][iz]=0.;
					ccr[ix][iz]=0.;
					sill[ix][iz]=0.;
					for(itau=0; itau<ntau; itau++){
						mig1[itau][ix][iz]=0.;
					}
				}
			}

			/* wave */
			wave=sf_complexalloc2(fnzx, m);

			/* snapshot */
			if(wantwf && is==snapshot) wantwf=true;
			else wantwf=false;

			/* forward propagation */
			wfit=0;
			for(it=0; it<nt; it++){
				if(verb) sf_warning("Forward propagation it=%d/%d",it+1, nt);

				cfft2(curr, cwave);
				for(im=0; im<m; im++){
#ifdef _OPENMP
#pragma omp parallel for private(ik)
#endif
					for(ik=0; ik<nk; ik++){
#ifdef SF_HAS_COMPLEX_H
						cwavem[ik]=cwave[ik]*rt[ik][im];
#else
						cwavem[ik]=sf_cmul(cwave[ik],rt[ik][im]);
#endif
					}
					icfft2(wave[im],cwavem);
				}

#ifdef _OPENMP
#pragma omp parallel for private(ix, iz, i, j, im, c) shared(curr, it)
#endif
				for(ix=0; ix<nx; ix++){
					for(iz=0; iz<nz; iz++){
						i=iz+ix*nz;
						j=iz+ix*fnz;

						if(it<trunc){
#ifdef SF_HAS_COMPLEX_H
							c=ww[it]*rr[i];
#else
							c=sf_crmul(ww[it],rr[i]);
#endif
						}else{
							c=sf_cmplx(0.,0.);
						}

						//                    c += curr[j];

						for(im=0; im<m; im++){
#ifdef SF_HAS_COMPLEX_H
							c += lt[im][i]*wave[im][j];
#else
							c += sf_cmul(lt[im][i], wave[im][j]);
#endif
						}
						curr[j]=c;
					}
				}

				if (taper!=0) {
					if (it%taper == 0) {
						cfft2(curr,cwave);
						for (ik = 0; ik < nk; ik++) {
#ifdef SF_HAS_COMPLEX_H
							cwavem[ik] = cwave[ik]*ktp[ik];
#else
							cwavem[ik] = sf_crmul(cwave[ik],ktp[ik]);
#endif
						}
						icfft2(curr,cwavem);
					}
				}

				if(it%scalet==0){
#ifdef _OPENMP
#pragma omp parallel for private(ix, iz)
#endif
					for(ix=0; ix<rnx; ix++){
						for(iz=0; iz<rnz; iz++){
							fwf[wfit][ix][iz]=crealf(curr[(ix+nb)*fnz+(iz+nb)]);
						}
					}
					wfit++;
				}
			} //end of it

			/* check wfnt */
			if(wfit != wfnt) sf_error("At this point, wfit should be equal to wfnt");

			/* backward propagation starts from here... */
#ifdef _OPENMP
#pragma omp parallel for private(iz)
#endif
			for(iz=0; iz<fnzx; iz++){
				curr[iz]=sf_cmplx(0.,0.);
			}

			wfit=wfnt-1;
			for(it=nt-1; it>=0; it--){
				if(verb) sf_warning("Backward propagation it=%d/%d",it+1, nt);
#ifdef _OPENMP
#pragma omp parallel for private(ix)
#endif
				for(ix=0; ix<nr; ix++){
					curr[(nr0+ix*ndr)*fnz+gpz]+=dd[ix][it];
				}

				cfft2(curr, cwave);

				for(im=0; im<m; im++){
#ifdef _OPENMP
#pragma omp parallel for private(ik)
#endif
					for(ik=0; ik<nk; ik++){
#ifdef SF_HAS_COMPLEX_H
						cwavem[ik]=cwave[ik]*conjf(rt[ik][im]);
#else
						cwavem[ik]=sf_cmul(cwave[ik],conjf(rt[ik][im]));
#endif
					}
					icfft2(wave[im],cwavem);
				}

#ifdef _OPENMP
#pragma omp parallel for private(ix, iz, i, j, im, c) shared(curr, it)
#endif
				for(ix=0; ix<nx; ix++){
					for(iz=0; iz<nz; iz++){
						i=iz+ix*nz;
						j=iz+ix*fnz;

						//                    c=curr[j];
						c=sf_cmplx(0.,0.);

						for(im=0; im<m; im++){
#ifdef SF_HAS_COMPLEX_H
							c += conjf(lt[im][i])*wave[im][j];
#else
							c += sf_cmul(conjf(lt[im][i]), wave[im][j]);
#endif
						}
						curr[j]=c;
					}
				}

				if (taper!=0) {
					if (it%taper == 0) {
						cfft2(curr,cwave);
						for (ik = 0; ik < nk; ik++) {
#ifdef SF_HAS_COMPLEX_H
							cwavem[ik] = cwave[ik]*ktp[ik];
#else
							cwavem[ik] = sf_crmul(cwave[ik],ktp[ik]);
#endif
						}
						icfft2(curr,cwavem);
					}
				}

				if(it%scalet==0){
#ifdef _OPENMP
#pragma omp parallel for private(ix, iz)
#endif
					for(ix=0; ix<rnx; ix++){
						for(iz=0; iz<rnz; iz++){
							bwf[wfit][ix][iz]=crealf(curr[(ix+nb)*fnz+(iz+nb)]);
							ccr[ix][iz] += fwf[wfit][ix][iz]*bwf[wfit][ix][iz];
							sill[ix][iz] += fwf[wfit][ix][iz]*fwf[wfit][ix][iz];
						}
					}
					wfit--;
				}
			} //end of it
			if(wfit != -1) sf_error("Check program! The final wfit should be -1!");

			/* free storage */
			free(*rt); free(rt);
			free(*lt); free(lt);
			free(*wave); free(wave);
			free(left); free(right);

			/* normalized image */
#ifdef _OPENMP
#pragma omp parallel for private(ix, iz)
#endif
			for (ix=0; ix<rnx; ix++){
				for(iz=0; iz<rnz; iz++){
					mig2[ix][iz]=ccr[ix][iz]/(sill[ix][iz]+SF_EPS);
					//		sill[ix][iz]=0.;
				}
			}

			/* time-shift imaging condition */
			for(itau=0; itau<ntau; itau++){
				//sf_warning("itau/ntau=%d/%d", itau+1, ntau);
				tau=itau*dtau+tau0;
				htau=tau/wfdt;

				for(it=abs(htau); it<wfnt-abs(htau); it++){
#ifdef _OPENMP
#pragma omp parallel for private(ix, iz)
#endif
					for(ix=0; ix<rnx; ix++){
						for(iz=0; iz<rnz; iz++){
							mig1[itau][ix][iz]+=fwf[it+htau][ix][iz]*bwf[it-htau][ix][iz];
							//	sill[ix][iz]+=fwf[it+htau][ix][iz]*fwf[it+htau][ix][iz];
						} // end of iz
					} // end of ix
				} // end of it


				//#ifdef _OPENMP
				//#pragma omp parallel for private(ix, iz)
				//#endif 
				/* source illumination */
				//	for(ix=0; ix<rnx; ix++){
				//		for(iz=0; iz<rnz; iz++){
				//			mig1[itau][ix][iz] = mig1[itau][ix][iz]/(sill[ix][iz]+SF_EPS);
				//		}
				//	} 
			} //end of itau

			/* output wavefield snapshot */
			if(wantwf){
				for(it=0; it<wfnt; it++){
					if(it%snap==0){
						sf_floatwrite(fwf[it][0], rnzx, Ffwf);
						sf_floatwrite(bwf[wfnt-1-it][0], rnzx, Fbwf);
					}
				}
				sf_fileclose(Ffwf);
				sf_fileclose(Fbwf);
			}

			/* add all the shot images that are on the same node */
#ifdef _OPENMP
#pragma omp parallel for private(itau, ix, iz)
#endif
			for(itau=0; itau<ntau; itau++){
				for(ix=0; ix<rnx; ix++){
					for(iz=0; iz<rnz; iz++){
						img1[itau][ix+is*nds][iz] += mig1[itau][ix][iz];
					}
				}
			}

#ifdef _OPENMP
#pragma omp parallel for private(ix, iz)
#endif
			for(ix=0; ix<rnx; ix++){
				for(iz=0; iz<rnz; iz++){
					img2[ix+is*nds][iz] += mig2[ix][iz];
				}
			}
		} // end of is<ns
	} // end of iturn
	////////////////end of ishot
	MPI_Barrier(comm);

	cfft2_finalize();
    sf_fileclose(Fdat);
    
    free(ww); free(rr);
	free(*dd); free(dd);
	if(cpuid==0) {free(**dd3); free(*dd3); free(dd3);}
	free(cwave); free(cwavem); free(curr);
    free(*ccr); free(ccr);
    free(*sill); free(sill);
    free(**fwf); free(*fwf); free(fwf);
    free(**bwf); free(*bwf); free(bwf);
    free(**mig1); free(*mig1); free(mig1);
    free(*mig2); free(mig2);
    
    /* sum image */
    if(cpuid==0){
        sendbuf=(float *)MPI_IN_PLACE;
        recvbuf=img1[0][0];
    }else{
        sendbuf=img1[0][0];
        recvbuf=NULL;
    }
    MPI_Reduce(sendbuf, recvbuf, ntau*vnx*rnz, MPI_FLOAT, MPI_SUM, 0, comm);
    
    if(cpuid==0){
        sendbuf=MPI_IN_PLACE;
        recvbuf=img2[0];
    }else{
        sendbuf=img2[0];
        recvbuf=NULL;
    }
    MPI_Reduce(sendbuf, recvbuf, vnx*rnz, MPI_FLOAT, MPI_SUM, 0, comm);
    
    /* output image */
    if(cpuid==0){
        sf_floatwrite(img1[0][0], ntau*vnx*rnz, Fimg1);
        sf_floatwrite(img2[0], vnx*rnz, Fimg2);
    }
	MPI_Barrier(comm);

	sf_fileclose(Fimg1);
    sf_fileclose(Fimg2);
    free(**img1); free(*img1); free(img1);
    free(*img2); free(img2);
    
	gettimeofday(&tim, NULL);
	tend=tim.tv_sec+(tim.tv_usec/1000000.0);
	sf_warning(">> The computing time is %.3lf minutes <<", (tend-tstart)/60.);

	MPI_Finalize();
	exit(0);
}
Beispiel #9
0
/* main function */
int main(int argc, char* argv[])
{
    clock_t tstart,tend;
    double duration;

    /*flags*/
    bool verb, adj; /* migration(adjoint) flag */
    bool wantwf; /* outputs wavefield snapshots */
    bool wantrecord; /* actually means "need record" */
    bool illum; /* source illumination flag */
    bool roll; /* survey strategy */
    bool fm; /* forward modeling */

    /*I/O*/
    sf_file Fvel;
    sf_file left, right, leftb, rightb;
    sf_file Fsrc, Frcd/*source and record*/;
    sf_file Ftmpwf;
    sf_file Fimg;
    sf_file mask;

    /*axis*/
    sf_axis at, ax, az, as;

    /*grid index variables*/
    int nx, nz, nt, wfnt;
    int nzx, nx2, nz2, n2, m2, pad1, nk;
    int ix, iz, it, is;
    int nxb, nzb;
    int snpint, wfint;
    float dt, dx, dz, wfdt;
    float ox, oz;

    /*source/geophone location*/
    int   spx, spz;
    int   gpz,gpx,gpl; /*geophone depth/x-crd/length*/

    /*Model*/
    sf_complex **lt, **rt;
    sf_complex **ltb, **rtb;

    /*Data*/
    sf_complex ***wavefld;
    sf_complex ***record, **tmprec, **img, **imgsum;
    float **sill;

    /*source*/
    sf_complex *ww;
    float **rr;
    int **kill=NULL;
    int rectz,rectx,repeat; /*smoothing parameters*/
    float trunc;
    int sht0,shtbgn,shtend,shtnum,shtint;

    /*abc boundary*/
    int top,bot,lft,rht;

    /*tmp*/
    int tmpint;

    /*parameter structs*/
    geopar geop;
    mpipar mpip;

    /*MPI*/
    int rank, nodes;
    sf_complex *sendbuf, *recvbuf;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nodes);

    sf_init(argc, argv);

    if(rank==0) sf_warning("nodes=%d",nodes);

    if (!sf_getbool("verb", &verb)) verb=false; /*verbosity*/
    if (!sf_getbool("adj", &adj)) adj=true; /*migration*/
    if (!sf_getbool("wantwf", &wantwf)) wantwf=false; /*output forward and backward wavefield*/
    if (!sf_getbool("wantrecord", &wantrecord)) wantrecord=true; /*if n, using record data generated by this program */
    if (!sf_getbool("illum", &illum)) illum=false; /*if n, no source illumination applied */
    if (!sf_getbool("roll", &roll)) roll=true; /*if n, receiver is independent of source location and gpl=nx*/
    if (!sf_getbool("fm", &fm)) fm=false; /* if n, Born modelling  */
    if (!sf_getbool("incom", &incom)) incom=false; /* if n, use complete data */
    /* source/receiver info */
    if (!sf_getint("shtbgn", &shtbgn)) sf_error("Need shot starting location on grid!");
    if (!sf_getint("sht0", &sht0)) sht0=shtbgn; /*actual shot origin on grid*/
    if (!sf_getint("shtend", &shtend)) sf_error("Need shot ending location on grid!");
    if (!sf_getint("shtint", &shtint)) sf_error("Need shot interval on grid!");
    shtnum = (int)((shtend-shtbgn)/shtint) + 1;
    if (!sf_getint("spz", &spz)) sf_error("Need source depth!");
    if (!sf_getint("gpz", &gpz)) sf_error("Need receiver depth!");
    if (roll) if (!sf_getint("gpl", &gpl)) sf_error("Need receiver length");
    if (!sf_getint("snapinter", &snpint)) snpint=1;     /* snap interval */
    if (!sf_getint("wfint", &wfint)) wfint=50;     /* snap interval */
    /*--- parameters of source ---*/
    if (!sf_getfloat("srctrunc", &trunc)) trunc=0.4;
    if (!sf_getint("rectz", &rectz)) rectz=2;
    if (!sf_getint("rectx", &rectx)) rectx=2;
    if (!sf_getint("repeat", &repeat)) repeat=2;
    /* abc parameters */
    if (!sf_getint("top", &top)) top=40;
    if (!sf_getint("bot", &bot)) bot=40;
    if (!sf_getint("lft", &lft)) lft=40;
    if (!sf_getint("rht", &rht)) rht=40;
    /* simultaneous sources parameter */
    if (!sf_getint("nsource", &nsource)) nsource=1;
    if (!sf_getint("dsource", &dsource)) dsource=0;
    if (!sf_getfloat("tdelay", &tdelay)) tdelay=0;
    if (!sf_getint("choose", &choose)) choose=nsource;

    /*Set I/O file*/
    if (adj) { /* migration */
        if (wantrecord) {
            Frcd = sf_input("input"); /*record from elsewhere*/
            Fsrc  = sf_input("src");   /*source wavelet*/
        } else {
            Frcd = sf_output("rec"); /*record produced by forward modeling*/
            Fsrc = sf_input("input");   /*source wavelet*/
        }

        Fimg  = sf_output("output");
    } else { /* modeling */
        Fimg = sf_input("input");
        Frcd = sf_output("output");
        Fsrc  = sf_input("src");   /*source wavelet*/
    }

    left  = sf_input("left");
    right = sf_input("right");
    leftb  = sf_input("leftb");
    rightb = sf_input("rightb");
    Fvel  = sf_input("vel");  /*velocity - just for model dimension*/
    if (wantwf) {
        Ftmpwf  = sf_output("tmpwf");/*wavefield snap*/
    }
    if (incom) {
        mask=sf_input("mask"); /*mask operator*/
    }

    /*--- Axes parameters ---*/
    at = sf_iaxa(Fsrc, 1);
    nt = sf_n(at);
    dt = sf_d(at);
    az = sf_iaxa(Fvel, 1);
    nzb = sf_n(az);
    dz = sf_d(az);
    oz = sf_o(az);
    ax = sf_iaxa(Fvel, 2);
    nxb = sf_n(ax);
    dx = sf_d(ax);
    ox = sf_o(ax);
    nzx = nzb*nxb;
    nz = nzb - top - bot;
    nx = nxb - lft - rht;
    if (!roll) gpl = nx; /* global survey setting */
    /* wavefield axis */
    wfnt = (int)(nt-1)/snpint+1;
    wfdt = dt*snpint;
    ndelay=tdelay/dt;

    /* propagator matrices */
    if (!sf_getint("pad1",&pad1)) pad1=1; /* padding factor on the first axis */
    nz2 = kiss_fft_next_fast_size(nzb*pad1);
    nx2 = kiss_fft_next_fast_size(nxb);
    nk = nz2*nx2; /*wavenumber*/
    if (!sf_histint(left,"n1",&n2) || n2 != nzx) sf_error("Need n1=%d in left",nzx);
    if (!sf_histint(left,"n2",&m2))  sf_error("Need n2= in left");
    if (!sf_histint(right,"n1",&n2) || n2 != m2) sf_error("Need n1=%d in right",m2);
    if (!sf_histint(right,"n2",&n2) || n2 != nk) sf_error("Need n2=%d in right",nk);

    /*check record data*/
    if (adj && wantrecord) {
        sf_histint(Frcd,"n1", &tmpint);
        if (tmpint != nt ) sf_error("Error parameter n1 in record!");
        sf_histint(Frcd,"n2", &tmpint);
        if (tmpint != gpl ) sf_error("Error parameter n2 in record!");
        sf_histint(Frcd,"n3", &tmpint);
        if (tmpint != shtnum ) sf_error("Error parameter n3 in record!");
    }

    /*allocate memory*/
    ww=sf_complexalloc(nt);
    rr=sf_floatalloc2(nzx,nsource);
    lt = sf_complexalloc2(nzx,m2);
    rt = sf_complexalloc2(m2,nk);
    ltb = sf_complexalloc2(nzx,m2);
    rtb = sf_complexalloc2(m2,nk);
    geop = (geopar) sf_alloc(1, sizeof(*geop));
    mpip = (mpipar) sf_alloc(1, sizeof(*mpip));
    tmprec = sf_complexalloc2(nt, gpl);
    record = sf_complexalloc3(nt, gpl, shtnum);
    if (incom) {
        kill = sf_intalloc2(gpl, shtnum);
        sf_intread(kill[0],gpl*shtnum,mask);
    }
    wavefld = sf_complexalloc3(nz, nx, wfnt);
    if (illum ) sill = sf_floatalloc2(nz, nx);
    else sill = NULL;
    img = sf_complexalloc2(nz, nx);

    if (adj) {
        imgsum = sf_complexalloc2(nz, nx);
#ifdef _OPENMP
        #pragma omp parallel for private(ix,iz)
#endif
        for (ix=0; ix<nx; ix++)
            for (iz=0; iz<nz; iz++) {
                imgsum[ix][iz] = sf_cmplx(0.,0.);
            }

    }

    /*read from files*/
    sf_complexread(ww,nt,Fsrc);
    sf_complexread(lt[0],nzx*m2,left);
    sf_complexread(rt[0],m2*nk,right);
    sf_complexread(ltb[0],nzx*m2,leftb);
    sf_complexread(rtb[0],m2*nk,rightb);
    if(!adj) sf_complexread(img[0],nx*nz,Fimg);

    if(adj && wantrecord) {
        sf_complexread(record[0][0], shtnum*gpl*nt, Frcd);
        if(incom) {
            for (is=0; is<shtnum; is++)
                for (ix=0; ix<gpl; ix++)
                    if(kill[is][ix]==0)
                        for (it=0; it<nt; it++)
                            record[is][ix][it]=sf_cmplx(0.,0.);
        }
    } else {
#ifdef _OPENMP
        #pragma omp parallel for private(is,ix,it)
#endif
        for (is=0; is<shtnum; is++)
            for (ix=0; ix<gpl; ix++)
                for (it=0; it<nt; it++)
                    record[is][ix][it] = sf_cmplx(0.,0.);
    }

    /*close RSF files*/
    sf_fileclose(Fsrc);
    sf_fileclose(left);
    sf_fileclose(right);
    sf_fileclose(leftb);
    sf_fileclose(rightb);

    /*load constant geopar elements*/
    mpip->cpuid=rank;
    mpip->numprocs=nodes;
    /*load constant geopar elements*/
    geop->nx  = nx;
    geop->nz  = nz;
    geop->nxb = nxb;
    geop->nzb = nzb;
    geop->dx  = dx;
    geop->dz  = dz;
    geop->ox  = ox;
    geop->oz  = oz;
    geop->snpint = snpint;
    geop->spz = spz;
    geop->gpz = gpz;
    geop->gpl = gpl;
    geop->top = top;
    geop->bot = bot;
    geop->lft = lft;
    geop->rht = rht;
    geop->nt = nt;
    geop->dt = dt;
    geop->trunc = trunc;
    geop->shtnum = shtnum;

    /* output RSF files */

    if (rank==0) {
        sf_setn(ax, gpl);
        sf_setn(az, nz);
        as = sf_iaxa(Fvel, 2);
        sf_setn(as,shtnum);
        sf_setd(as,shtint*dx);
        sf_seto(as,shtbgn*dx+ox);

        if (adj) { /* migration */
            if(!wantrecord) {
                sf_oaxa(Frcd, at, 1);
                sf_oaxa(Frcd, ax, 2);
                sf_oaxa(Frcd, as, 3);
                sf_settype(Frcd,SF_COMPLEX);
            }
            sf_setn(ax, nx);
            /*write image*/
            sf_oaxa(Fimg, az, 1);
            sf_oaxa(Fimg, ax, 2);
            sf_settype(Fimg,SF_COMPLEX);

        } else { /* modeling */
            sf_oaxa(Frcd, at, 1);
            sf_oaxa(Frcd, ax, 2);
            sf_oaxa(Frcd, as ,3);
            sf_settype(Frcd,SF_COMPLEX);
        }

        if (wantwf) {
            sf_setn(ax, nx);
            /*write temp wavefield */
            sf_setn(at, (wfnt-1)/wfint+1);
            sf_setd(at, wfdt*wfint);

            sf_oaxa(Ftmpwf, az, 1);
            sf_oaxa(Ftmpwf, ax, 2);
            sf_oaxa(Ftmpwf, at, 3);
            sf_settype(Ftmpwf,SF_COMPLEX);
        }
    }

    tstart = clock();

    for (is=rank; is<shtnum; is+=nodes) {
        spx = shtbgn + shtint*is;
        if (roll)
            gpx = spx - (int)(gpl/2);
        else
            gpx = 0;
        geop->spx = spx;
        geop->gpx = gpx;

        if (verb) {
            sf_warning("============================");
            sf_warning("processing shot #%d", is);
            sf_warning("nx=%d nz=%d nt=%d", geop->nx, geop->nz, geop->nt);
            sf_warning("nxb=%d nzb=%d ", geop->nxb, geop->nzb);
            sf_warning("dx=%f dz=%f dt=%f", geop->dx, geop->dz, geop->dt);
            sf_warning("top=%d bot=%d lft=%d rht=%d", geop->top, geop->bot, geop->lft, geop->rht);
            sf_warning("rectz=%d rectx=%d repeat=%d srctrunc=%f",rectz,rectx,repeat,geop->trunc);
            sf_warning("spz=%d spx=%d gpz=%d gpx=%d gpl=%d", spz, spx, gpz, gpx, gpl);
            sf_warning("snpint=%d wfdt=%f wfnt=%d ", snpint, wfdt, wfnt);
            sf_warning("sht0=%d shtbgn=%d shtend=%d shtnum=%d", sht0, shtbgn, shtend, shtnum);
            if (roll) sf_warning("Rolling survey!");
            else sf_warning("Global survey (gpl=nx)!");
            if (illum) sf_warning("Using source illumination!");
            else sf_warning("No source illumination!");
            sf_warning("============================");
        }

        /*generate reflectivity map*/
        reflgen(nzb, nxb, spz+top, spx+lft, rectz, rectx, repeat, rr);

        lrosfor2(wavefld, sill, tmprec, verb, lt, rt, m2, geop, ww, rr, pad1, illum);

        if(adj && wantrecord)
#ifdef _OPENMP
            #pragma omp parallel for private(ix,it)
#endif
            for (ix=0; ix<gpl; ix++)
                for (it=0; it<nt; it++)
                    tmprec[ix][it] = record[is][ix][it];

        if(!fm) {
            lrosback2(img, wavefld, sill, tmprec, adj, verb, wantwf, ltb, rtb, m2, geop, pad1, illum);
        }

        if (adj) {
#ifdef _OPENMP
            #pragma omp parallel for private(ix,iz)
#endif
            for (ix=0; ix<nx; ix++)
                for (iz=0; iz<nz; iz++)
                    imgsum[ix][iz] += img[ix][iz];
        }

        if (!adj || !wantrecord)
#ifdef _OPENMP
            #pragma omp parallel for private(ix,it)
#endif
            for (ix=0; ix<gpl; ix++)
                for (it=0; it<nt; it++)
                    record[is][ix][it] = tmprec[ix][it];

        if (wantwf && is==0)
            for (it=0; it<wfnt; it++) {
                if (it%wfint == 0) {
                    sf_complexwrite(wavefld[it][0], nx*nz, Ftmpwf);
                }
            }
    } /*shot iteration*/

    MPI_Barrier(MPI_COMM_WORLD);
    /*write record/image*/
    if (adj) {
        if (rank==0) {
            sendbuf = (sf_complex *) MPI_IN_PLACE;
            recvbuf = imgsum[0];
        } else {
            sendbuf = imgsum[0];
            recvbuf = NULL;
        }
        MPI_Reduce(sendbuf, recvbuf, nx*nz, MPI_COMPLEX, MPI_SUM, 0, MPI_COMM_WORLD);
        if (rank==0)
            sf_complexwrite(imgsum[0], nx*nz, Fimg);
    }

    if (!adj || !wantrecord) {
        if (rank==0) {
            sendbuf = (sf_complex *) MPI_IN_PLACE;
            recvbuf = record[0][0];
        } else {
            sendbuf = record[0][0];
            recvbuf = NULL;
        }
        MPI_Reduce(sendbuf, recvbuf, shtnum*gpl*nt, MPI_COMPLEX, MPI_SUM, 0, MPI_COMM_WORLD);
        if (rank==0) {
            if(incom) {
                for (is=0; is<shtnum; is++)
                    for (ix=0; ix<gpl; ix++)
                        if(kill[is][ix]==0)
                            for (it=0; it<nt; it++)
                                record[is][ix][it]=sf_cmplx(0.,0.);
            }
            sf_complexwrite(record[0][0], shtnum*gpl*nt, Frcd);
        }
    }

    /*free memory*/
    free(ww);
    free(rr);
    free(*lt);
    free(lt);
    free(*rt);
    free(rt);
    free(*ltb);
    free(ltb);
    free(*rtb);
    free(rtb);
    free(geop);
    free(mpip);
    free(*tmprec);
    free(tmprec);
    free(**record);
    free(*record);
    free(record);
    free(**wavefld);
    free(*wavefld);
    free(wavefld);
    if (illum) {
        free(*sill);
        free(sill);
    }
    free(*img);
    free(img);
    if (adj) {
        free(*imgsum);
        free(imgsum);
    }
    if (incom) {
        free(* kill);
        free(kill);
    }

    tend = clock();
    duration=(double)(tend-tstart)/CLOCKS_PER_SEC;
    sf_warning(">> The CPU time of single shot migration is: %f seconds << ", duration);

    MPI_Finalize();
    exit(0);
}
Beispiel #10
0
int main(int argc, char* argv[])
{
    bool verb,fsrf,snap,expl,dabc,sout,uses;
    int  jsnap,ntsnap,jdata;
    char *atype;
#ifdef _OPENMP
    int ompnth=1;
#endif

    /* I/O files */
    sf_file Fwav=NULL; /* wavelet   */
    sf_file Fsou=NULL; /* sources   */
    sf_file Frec=NULL; /* receivers */
    sf_file Fvel=NULL; /* velocity  */
    sf_file Fang=NULL; /* angles    */
    sf_file Fdat=NULL; /* data      */
    sf_file Fwfl=NULL; /* wavefield */

    /* cube axes */
    sf_axis at,az,ax;
    sf_axis as,ar;

    int     nt,nz,nx,ns,nr,nb;
    int     it,iz,ix;
    float   dt,dz,dx,dt2;

    /* FDM structure */
    fdm2d    fdm=NULL;
    abcone2d abc=NULL;
    sponge   spo=NULL;

    /* I/O arrays */
    float  *ww=NULL;           /* wavelet   */
    pt2d   *ss=NULL;           /* sources   */
    pt2d   *rr=NULL;           /* receivers */
    float  *dd=NULL;           /* data      */

    float **tt=NULL;
    float **vp=NULL;           /* velocity */

    float **vpn=NULL;
    float **vpz=NULL;
    float **vpx=NULL;
    float **vsz=NULL;

    float **tht=NULL,**sit=NULL,**cot=NULL;
    float st,ct;

    float **pm=NULL,**po=NULL,**pp=NULL,**pa=NULL,**pt=NULL; /*      main wavefield */
    float **qm=NULL,**qo=NULL,**qp=NULL,**qa=NULL,**qt=NULL; /* auxiliary wavefield */
    float **sf=NULL; /* "stress" field */

    /* linear inteppolation weights/indices */
    lint2d cs,cr;

    /* FD operator size */
    float cox,cax,cbx,c1x,c2x;
    float coz,caz,cbz,c1z,c2z;

    /* wavefield cut params */
    sf_axis   acz=NULL,acx=NULL;
    int       nqz,nqx;
    float     oqz,oqx;
    float     dqz,dqx;
    float     **pc=NULL;

    float H1p,H2p,H1q,H2q;

    /*------------------------------------------------------------*/
    /* init RSF */
    sf_init(argc,argv);

    /* select anisotropy model */
    if (NULL == (atype = sf_getstring("atype"))) atype = "i";
    switch(atype[0]) {
	case 't':
	    sf_warning("TTI model");
	    break;

	case 'v':
	    sf_warning("VTI model");
	    break;

	case 'i':
	default:
	    sf_warning("ISO model");
	    break;
    }

    /*------------------------------------------------------------*/
    /* OMP parameters */
#ifdef _OPENMP
    ompnth=omp_init();
#endif
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    if(! sf_getbool("verb",&verb)) verb=false; /* verbosity */
    if(! sf_getbool("snap",&snap)) snap=false; /* wavefield snapshots */
    if(! sf_getbool("free",&fsrf)) fsrf=false; /* free surface */
    if(! sf_getbool("expl",&expl)) expl=false; /* "exploding reflector" */
    if(! sf_getbool("dabc",&dabc)) dabc=false; /* absorbing BC */
    if(! sf_getbool("sout",&sout)) sout=false; /* stress output */
    if(! sf_getbool("uses",&uses)) uses=false; /* use vsz */
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* I/O files */
    Fwav = sf_input ("in" ); /* wavelet   */
    Fvel = sf_input ("vel"); /* velocity  */
    Fsou = sf_input ("sou"); /* sources   */
    Frec = sf_input ("rec"); /* receivers */
    Fang = sf_input ("ang"); /* angles    */
    Fwfl = sf_output("wfl"); /* wavefield */
    Fdat = sf_output("out"); /* data      */

    /*------------------------------------------------------------*/
    /* axes */
    at = sf_iaxa(Fwav,2); sf_setlabel(at,"t"); if(verb) sf_raxa(at); /* time */
    az = sf_iaxa(Fvel,1); sf_setlabel(az,"z"); if(verb) sf_raxa(az); /* depth */
    ax = sf_iaxa(Fvel,2); sf_setlabel(ax,"x"); if(verb) sf_raxa(ax); /* space */

    as = sf_iaxa(Fsou,2); sf_setlabel(as,"s"); if(verb) sf_raxa(as); /* sources */
    ar = sf_iaxa(Frec,2); sf_setlabel(ar,"r"); if(verb) sf_raxa(ar); /* receivers */

    nt = sf_n(at); dt = sf_d(at);
    nz = sf_n(az); dz = sf_d(az);
    nx = sf_n(ax); dx = sf_d(ax);

    ns = sf_n(as);
    nr = sf_n(ar);
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* other execution parameters */
    if(! sf_getint("jdata",&jdata)) jdata=1;
    if(snap) {  /* save wavefield every *jsnap* time steps */
	if(! sf_getint("jsnap",&jsnap)) jsnap=nt;        
    }
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* setup output data header */
    sf_oaxa(Fdat,ar,1);

    sf_setn(at,nt/jdata);
    sf_setd(at,dt*jdata);
    sf_oaxa(Fdat,at,2);

    /* setup output wavefield header */
    if(snap) {
	if(!sf_getint  ("nqz",&nqz)) nqz=sf_n(az);
	if(!sf_getint  ("nqx",&nqx)) nqx=sf_n(ax);

	if(!sf_getfloat("oqz",&oqz)) oqz=sf_o(az);
	if(!sf_getfloat("oqx",&oqx)) oqx=sf_o(ax);

	dqz=sf_d(az);
	dqx=sf_d(ax);

	acz = sf_maxa(nqz,oqz,dqz); sf_raxa(acz);
	acx = sf_maxa(nqx,oqx,dqx); sf_raxa(acx);
	/* check if the imaging window fits in the wavefield domain */

	pc=sf_floatalloc2(sf_n(acz),sf_n(acx));

	ntsnap=0;
	for(it=0; it<nt; it++) {
	    if(it%jsnap==0) ntsnap++;
	}
	sf_setn(at,  ntsnap);
	sf_setd(at,dt*jsnap);
	if(verb) sf_raxa(at);

	sf_oaxa(Fwfl,acz,1);
	sf_oaxa(Fwfl,acx,2);
	sf_oaxa(Fwfl,at, 3);
    }

    /*------------------------------------------------------------*/
    /* expand domain for FD operators and ABC */
    if( !sf_getint("nb",&nb) || nb<NOP) nb=NOP;

    fdm=fdutil_init(verb,fsrf,az,ax,nb,1);

    sf_setn(az,fdm->nzpad); sf_seto(az,fdm->ozpad); if(verb) sf_raxa(az);
    sf_setn(ax,fdm->nxpad); sf_seto(ax,fdm->oxpad); if(verb) sf_raxa(ax);
    /*------------------------------------------------------------*/

    if(expl) {
	ww = sf_floatalloc( 1);
    } else {
	ww = sf_floatalloc(ns);
    }
    dd = sf_floatalloc(nr);

    /*------------------------------------------------------------*/
    /* setup source/receiver coordinates */
    ss = (pt2d*) sf_alloc(ns,sizeof(*ss)); 
    rr = (pt2d*) sf_alloc(nr,sizeof(*rr)); 

    pt2dread1(Fsou,ss,ns,2); /* read (x,z) coordinates */
    pt2dread1(Frec,rr,nr,2); /* read (x,z) coordinates */

    cs = lint2d_make(ns,ss,fdm);
    cr = lint2d_make(nr,rr,fdm);

    /*------------------------------------------------------------*/
    /* setup FD coefficients */
    cox = C0 / (dx*dx);
    cax = CA / (dx*dx);
    cbx = CB / (dx*dx);
    c1x = C1 / dx;
    c2x = C2 / dx;

    coz = C0 / (dz*dz);
    caz = CA / (dz*dz);
    cbz = CB / (dz*dz);
    c1z = C1 / dz;
    c2z = C2 / dz;

    /* precompute dt^2*/
    dt2 = dt*dt;

    /*------------------------------------------------------------*/ 
    tt = sf_floatalloc2(nz,nx); 
    /*------------------------------------------------------------*/

    /* input velocity */
    vp  =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 

    vpz =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
    sf_floatread(tt[0],nz*nx,Fvel ); 
    expand(tt,vpz,fdm); /* VPz */

    for    (ix=0; ix<fdm->nxpad; ix++) {
	for(iz=0; iz<fdm->nzpad; iz++) {	    
	    vp [ix][iz] = vpz[ix][iz];
	    vpz[ix][iz] = vpz[ix][iz] * vpz[ix][iz];
	}
    }
    if(fsrf) { /* free surface */
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nb; iz++) {
		vpz[ix][iz]=0;
	    }
	}
    }

    if(atype[0] != 'i') {
	vpn =sf_floatalloc2(fdm->nzpad,fdm->nxpad);     
	sf_floatread(tt[0],nz*nx,Fvel );    
	expand(tt,vpn,fdm); /* VPn */

	vpx =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
	sf_floatread(tt[0],nz*nx,Fvel );    
	expand(tt,vpx,fdm); /* VPx */

	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {	    
		vpn[ix][iz] = vpn[ix][iz] * vpn[ix][iz];
		vpx[ix][iz] = vpx[ix][iz] * vpx[ix][iz];
	    }
	}

	if(fsrf) { /* free surface */
	    for    (ix=0; ix<fdm->nxpad; ix++) {
		for(iz=0; iz<fdm->nb; iz++) {
		    vpn[ix][iz]=0;
		    vpx[ix][iz]=0;
		}
	    }
	}

	if(uses) {
	    vsz =sf_floatalloc2(fdm->nzpad,fdm->nxpad);
	    sf_floatread(tt[0],nz*nx,Fvel );    
	    expand(tt,vsz,fdm); /* VSz */
	    for    (ix=0; ix<fdm->nxpad; ix++) {
		for(iz=0; iz<fdm->nzpad; iz++) {
		    vsz[ix][iz] = vsz[ix][iz] * vsz[ix][iz];
		}
	    }
	}
    }

    /*------------------------------------------------------------*/
    if( atype[0]=='t') {
	/* input tilt angle */
	tht =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 

	sit =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
	cot =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 

	sf_floatread(tt[0],nz*nx,Fang); 
	expand(tt,tht,fdm);
	
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {	    
		tht[ix][iz] *= SF_PI/180.;
		sit[ix][iz] =   sinf(tht[ix][iz]);
		cot[ix][iz] =   cosf(tht[ix][iz]);
	    }
	}

	free(*tht); free(tht);
    }

    /*------------------------------------------------------------*/
    free(*tt); free(tt);    
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* allocate wavefield arrays */
    pm=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    po=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    pp=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    pa=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    for    (ix=0; ix<fdm->nxpad; ix++) {
	for(iz=0; iz<fdm->nzpad; iz++) {
	    pm[ix][iz]=0;
	    po[ix][iz]=0;
	    pp[ix][iz]=0;
	    pa[ix][iz]=0;
	}
    }
    
    if(atype[0] != 'i') {
	qm=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
	qo=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
	qp=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
	qa=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {
		qm[ix][iz]=0;
		qo[ix][iz]=0;
		qp[ix][iz]=0;
		qa[ix][iz]=0;
	    }
	}

	if(sout) sf=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    }

    /*------------------------------------------------------------*/
    if(dabc) {
	abc = abcone2d_make(NOP,dt,vp,fsrf,fdm); /* one-way */
	spo = sponge_make(fdm->nb);              /* sponge  */
    }

    /*------------------------------------------------------------*/
    /* 
     *  MAIN LOOP
     */
    /*------------------------------------------------------------*/
    if(verb) fprintf(stderr,"\n");
    for (it=0; it<nt; it++) {
	if(verb) fprintf(stderr,"\b\b\b\b\b%d",it);

	/* compute acceleration */
	switch(atype[0]) {
	    case 't':

		if(uses) {
#ifdef _OPENMP
#pragma omp parallel for						\
    schedule(dynamic,fdm->ompchunk)					\
    private(ix,iz,H1p,H2p,H1q,H2q,st,ct)				\
    shared(fdm,pa,po,qa,qo,						\
	   cox,cax,cbx,c1x,c2x,						\
	   coz,caz,cbz,c1z,c2z,						\
	   vpn,vpz,vpx,vsz,						\
	   sit,cot)
#endif
		    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
			for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
			    
			    st=sit[ix][iz];
			    ct=cot[ix][iz];
			    
			    H1p = H1(po,ix,iz,				\
				     st,ct,				\
				     cox,cax,cbx,c1x,c2x,		\
				     coz,caz,cbz,c1z,c2z);
			    
			    H2p = H2(po,ix,iz,				\
				     st,ct,				\
				     cox,cax,cbx,c1x,c2x,		\
				     coz,caz,cbz,c1z,c2z);
			    
			    H1q = H1(qo,ix,iz,				\
				     st,ct,				\
				     cox,cax,cbx,c1x,c2x,		\
				     coz,caz,cbz,c1z,c2z);
			    
			    H2q = H2(qo,ix,iz,				\
				     st,ct,				\
				     cox,cax,cbx,c1x,c2x,		\
				     coz,caz,cbz,c1z,c2z);
			    
			    /* p - main field */
			    pa[ix][iz] = 
				H1p * vsz[ix][iz] +
				H2p * vpx[ix][iz] + 
				H1q * vpz[ix][iz] -
				H1q * vsz[ix][iz];
			    
			    /* q - auxiliary field */
			    qa[ix][iz] = 
				H2p * vpn[ix][iz] -
				H2p * vsz[ix][iz] +
				H1q * vpz[ix][iz] +
				H2q * vsz[ix][iz];
			    
			}
		    }
		} else {
#ifdef _OPENMP
#pragma omp parallel for						\
    schedule(dynamic,fdm->ompchunk)					\
    private(ix,iz,H2p,H1q,st,ct)					\
    shared(fdm,pa,po,qa,qo,						\
	   cox,cax,cbx,c1x,c2x,						\
	   coz,caz,cbz,c1z,c2z,						\
	   vpn,vpz,vpx,							\
	   sit,cot)
#endif
		    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
			for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
			    
			    st=sit[ix][iz];
			    ct=cot[ix][iz];
			    
			    H2p = H2(po,ix,iz,				\
				     st,ct,				\
				     cox,cax,cbx,c1x,c2x,		\
				     coz,caz,cbz,c1z,c2z);
			    
			    H1q = H1(qo,ix,iz,				\
				     st,ct,				\
				     cox,cax,cbx,c1x,c2x,		\
				     coz,caz,cbz,c1z,c2z);
			    
			    /* p - main field */
			    pa[ix][iz] = 
				H2p * vpx[ix][iz] + 
				H1q * vpz[ix][iz];
			    
			    /* q - auxiliary field */
			    qa[ix][iz] = 
				H2p * vpn[ix][iz] +
				H1q * vpz[ix][iz];
			}
		    }

		}
		break;
		    
	    case 'v':

		if(uses) {
#ifdef _OPENMP
#pragma omp parallel for						\
    schedule(dynamic,fdm->ompchunk)					\
    private(ix,iz,H1p,H2p,H1q,H2q)					\
    shared(fdm,pa,po,qa,qo,						\
	   cox,cax,cbx,							\
	   coz,caz,cbz,							\
	   vpn,vpz,vpx,vsz)
#endif
		    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
			for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
			    
			    H1p = Dzz(po,ix,iz,coz,caz,cbz);
			    H1q = Dzz(qo,ix,iz,coz,caz,cbz);
			    
			    H2p = Dxx(po,ix,iz,cox,cax,cbx);
			    H2q = Dxx(qo,ix,iz,cox,cax,cbx);
			    
			    /* p - main field */
			    pa[ix][iz] = 
				H1p * vsz[ix][iz] +
				H2p * vpx[ix][iz] + 
				H1q * vpz[ix][iz] -
				H1q * vsz[ix][iz];
			    
			    /* q - auxiliary field */
			    qa[ix][iz] = 
				H2p * vpn[ix][iz] -
				H2p * vsz[ix][iz] +
				H1q * vpz[ix][iz] +
				H2q * vsz[ix][iz];
			}
		    } 
		} else {
#ifdef _OPENMP
#pragma omp parallel for					\
    schedule(dynamic,fdm->ompchunk)				\
    private(ix,iz,H2p,H1q)					\
    shared(fdm,pa,po,qa,qo,					\
	   cox,cax,cbx,						\
	   coz,caz,cbz,						\
	   vpn,vpx,vpz)
#endif
		    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
			for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
			    
			    H1q = Dzz(qo,ix,iz,coz,caz,cbz);			    
			    H2p = Dxx(po,ix,iz,cox,cax,cbx);
			    
			    /* p - main field */
			    pa[ix][iz] = 
				H2p * vpx[ix][iz] + 
				H1q * vpz[ix][iz];
			    
			    /* q - auxiliary field */
			    qa[ix][iz] = 
				H2p * vpn[ix][iz] +
				H1q * vpz[ix][iz];
			}
		    } 
		}
		break;
		
	    case 'i':
	    default:
#ifdef _OPENMP
#pragma omp parallel for					\
    schedule(dynamic,fdm->ompchunk)				\
    private(ix,iz)						\
    shared(fdm,pa,po,						\
	   cox,cax,cbx,						\
	   coz,caz,cbz,						\
	   vpz)
#endif
		for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
		    for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
			
			pa[ix][iz] = ( Dxx(po,ix,iz,cox,cax,cbx) + 
				       Dzz(po,ix,iz,coz,caz,cbz) ) * vpz[ix][iz];
			
		    }
		}   
		break;
	}

	/* inject acceleration source */
	if(expl) {
	    sf_floatread(ww, 1,Fwav);
	    ;                   lint2d_inject1(pa,ww[0],cs);
	    if(atype[0] != 'i') lint2d_inject1(qa,ww[0],cs);
	} else {
	    sf_floatread(ww,ns,Fwav);	
	    ;                   lint2d_inject(pa,ww,cs);
	    if(atype[0] != 'i') lint2d_inject(qa,ww,cs);
	}

	/* step forward in time */
#ifdef _OPENMP
#pragma omp parallel for	    \
    schedule(dynamic,fdm->ompchunk) \
    private(ix,iz)		    \
    shared(fdm,pa,po,pm,pp,dt2)
#endif
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {
		pp[ix][iz] = 2*po[ix][iz] 
		    -          pm[ix][iz] 
		    +          pa[ix][iz] * dt2;
	    }
	}
	/* circulate wavefield arrays */
	pt=pm;
	pm=po;
	po=pp;
	pp=pt;
	
	if(atype[0] != 'i') {
	    
#ifdef _OPENMP
#pragma omp parallel for			\
    schedule(dynamic,fdm->ompchunk)		\
    private(ix,iz)				\
    shared(fdm,qa,qo,qm,qp,dt2)
#endif
	    for    (ix=0; ix<fdm->nxpad; ix++) {
		for(iz=0; iz<fdm->nzpad; iz++) {
		    qp[ix][iz] = 2*qo[ix][iz] 
			-          qm[ix][iz] 
			+          qa[ix][iz] * dt2;
		}
	    }
	    /* circulate wavefield arrays */
	    qt=qm;
	    qm=qo;
	    qo=qp;
	    qp=qt;
	}

	/* one-way abc apply */
	if(dabc) {
	    abcone2d_apply(po,pm,NOP,abc,fdm);
	    sponge2d_apply(pm,spo,fdm);
	    sponge2d_apply(po,spo,fdm);
	    
	    if(atype[0] != 'i') {
		abcone2d_apply(qo,qm,NOP,abc,fdm);
		sponge2d_apply(qm,spo,fdm);
		sponge2d_apply(qo,spo,fdm);
	    }
	}
	
	/* compute stress */
	if(sout && (atype[0] != 'i')) {
#ifdef _OPENMP
#pragma omp parallel for			\
    schedule(dynamic,fdm->ompchunk)		\
    private(ix,iz)				\
    shared(fdm,po,qo,sf)
#endif
	    for    (ix=0; ix<fdm->nxpad; ix++) {
		for(iz=0; iz<fdm->nzpad; iz++) {
		    sf[ix][iz] = po[ix][iz] + qo[ix][iz];
		}
	    }
	}

	/* extract data at receivers */
	if(sout && (atype[0] != 'i')) {lint2d_extract(sf,dd,cr);
	} else {                       lint2d_extract(po,dd,cr);}
	if(it%jdata==0) sf_floatwrite(dd,nr,Fdat);

	/* extract wavefield in the "box" */
	if(snap && it%jsnap==0) {
	    if(sout && (atype[0] != 'i')) {cut2d(sf,pc,fdm,acz,acx);
	    } else {                       cut2d(po,pc,fdm,acz,acx);}
	    sf_floatwrite(pc[0],sf_n(acz)*sf_n(acx),Fwfl);
	}

    }
    if(verb) fprintf(stderr,"\n");    

    /*------------------------------------------------------------*/
    /* deallocate arrays */

    free(*pm); free(pm);
    free(*pp); free(pp);
    free(*po); free(po);
    free(*pa); free(pa);
    free(*pc); free(pc);

    free(*vp);  free(vp);
    free(*vpz); free(vpz);

    if(atype[0] != 'i') {
	free(*qm); free(qm);
	free(*qp); free(qp);
	free(*qo); free(qo);
	free(*qa); free(qa);

	free(*vpn); free(vpn);
	free(*vpx); free(vpx);

	if(uses){ free(*vsz); free(vsz); }
	if(sout){ free(*sf);  free(sf);  }
    }

    if(atype[0] == 't') {
	free(*sit); free(sit);
	free(*cot); free(cot);
    }

    free(ww);
    free(ss);
    free(rr);
    free(dd);
    /*------------------------------------------------------------*/

    exit (0);
}
Beispiel #11
0
int main(int argc, char* argv[])
{
    bool verb; /* verbosity flag */
    bool abc;  /* absorbing boundary conditions flag */
    bool free; /* free surface flag*/
    bool snap; /* wavefield snapshots flag */
    bool dens;
    int  jsnap;/* save wavefield every *jsnap* time steps */

    /* I/O files */
    sf_file Fw,Fs,Fr;
    sf_file Fd,Fu;
    sf_file Fv=NULL; /* velocity */
    sf_file Fe=NULL; /* density */

    /* cube axes */
    sf_axis at,az,ax,as,ar;
    int it,iz,ix,is,ir, iop;
    int nt,nz,nx,ns,nr,nz2,nx2;
    float z0,dz,x0,dx,idx,idz,dt,dt2;

    /* arrays */
    pt2d   *ss, *rr; /* source/receiver locations */
    float  *ww=NULL; /* wavelet */
    float  *dd=NULL; /* data */
    float **vv=NULL; /* velocity */
    float **ee=NULL; /* density  */

    float *fzs,*fxs,    *fzr,*fxr;
    int   *jzs,*jxs,    *jzr,*jxr;

    float *ws00,*ws01,*ws10,*ws11;
    float *wr00,*wr01,*wr10,*wr11;

    float **um,**uo,**up,**ud,**vp,**ro,**tt,**ut;
    float  *bzl,*bzh,*bxl,*bxh;  /* boundary */

    int   nop=2;       /* Laplacian operator size */
    float c0, c1, c2;  /* Laplacian operator coefficients */
    float co,c1x,c2x,c1z,c2z;

    int  nbz,nbx; /* boundary size */
    float tz, tx; /* sponge boundary decay coefficients */
    float dp;
    float ws;     /* injected data */

    int ompchunk;  /* OpenMP data chunk size */

/*------------------------------------------------------------*/

    /* init RSF */
    sf_init(argc,argv);

    if(! sf_getint("ompchunk",&ompchunk)) ompchunk=1;

    if(! sf_getbool("verb",&verb)) verb=false;
    if(! sf_getbool( "abc",&abc ))  abc=false;
    if(! sf_getbool("snap",&snap)) snap=false;
    if(! sf_getbool("free",&free)) free=false;
    if(! sf_getbool("dens",&dens)) dens=false;

    Fw = sf_input ("in" ); /* wavelet */
    Fv = sf_input ("vel"); /* velocity */
    Fs = sf_input ("sou"); /* sources */
    Fr = sf_input ("rec"); /* receivers */
    Fu = sf_output("wfl"); /* wavefield */
    Fd = sf_output("out"); /* data */

    if(dens) Fe = sf_input("den"); /* density */

    /* read axes*/
    at=sf_iaxa(Fw,1); sf_setlabel(at,"t"); if(verb) sf_raxa(at); /* time */
    az=sf_iaxa(Fv,1); sf_setlabel(az,"z"); if(verb) sf_raxa(az); /* depth */
    ax=sf_iaxa(Fv,2); sf_setlabel(ax,"x"); if(verb) sf_raxa(ax); /* space */
    as=sf_iaxa(Fs,2); sf_setlabel(as,"s"); if(verb) sf_raxa(as); /* source */
    ar=sf_iaxa(Fr,2); sf_setlabel(ar,"r"); if(verb) sf_raxa(ar); /* receiver */

    nt=sf_n(at); dt=sf_d(at);
    nz=sf_n(az);
    nx=sf_n(ax);
    ns=sf_n(as);
    nr=sf_n(ar);

    /* configure wavefield snapshots */
    if(snap) {
	if(! sf_getint("jsnap",&jsnap)) jsnap=nt;
    }

/*------------------------------------------------------------*/

    /* expand domain for absorbing boundary conditions */
    if(abc) {
	if(! sf_getint("nbz",&nbz)) nbz=nop; if(nbz<nop) nbz=nop;
	if(! sf_getint("nbx",&nbx)) nbx=nop; if(nbx<nop) nbx=nop;
	
	if(! sf_getfloat("tz",&tz)) tz=0.025;
	if(! sf_getfloat("tx",&tx)) tx=0.025;
    } else {
	nbz=nop;
	nbx=nop;
    }
    /* expanded domain ( az+2 nz, ax+2 nx ) */
    nz2=nz+2*nbz; dz=sf_d(az); z0=sf_o(az)-nbz*dz; 
    nx2=nx+2*nbx; dx=sf_d(ax); x0=sf_o(ax)-nbx*dx; 

    sf_setn(az,nz2); sf_seto(az,z0); if(verb) sf_raxa(az);
    sf_setn(ax,nx2); sf_seto(ax,x0); if(verb) sf_raxa(ax);
    
/*------------------------------------------------------------*/

    /* setup output data header */
    sf_oaxa(Fd,ar,1);
    sf_oaxa(Fd,at,2);

    /* setup output wavefield header */
    if(snap) {
	sf_setn(at,nt/jsnap);
	sf_setd(at,dt*jsnap);

	sf_oaxa(Fu,az,1);
	sf_oaxa(Fu,ax,2);
	sf_oaxa(Fu,at,3);
    }

    /* Laplacian coefficients */
    c0=-30./12.; 
    c1=+16./12.;
    c2=- 1./12.;

    dt2 = dt*dt;
    idz = 1/dz;
    idx = 1/dx;

    co = c0 * (idx*idx+idz*idz);
    c1x= c1 *  idx*idx;
    c2x= c2 *  idx*idx;
    c1z= c1 *          idz*idz;
    c2z= c2 *          idz*idz;

/*------------------------------------------------------------*/
     
    /* allocate arrays */
    ww=sf_floatalloc (nt);    sf_floatread(ww   ,nt   ,Fw);
    vv=sf_floatalloc2(nz,nx); sf_floatread(vv[0],nz*nx,Fv);

    ee=sf_floatalloc2(nz,nx); 
    if(dens) {
	sf_floatread(ee[0],nz*nx,Fe); 
    } else {
	for (iz=0; iz<nz; iz++) {
	    for (ix=0; ix<nx; ix++) {
		ee[ix][iz]=1;
	    }
	}
    }
    
    /* allocate source/receiver point arrays */
    ss = (pt2d*) sf_alloc(ns,sizeof(*ss)); 
    rr = (pt2d*) sf_alloc(nr,sizeof(*rr)); 

    pt2dread1(Fs,ss,ns,3); /* read 3 elements (x,z,v) */
    pt2dread1(Fr,rr,nr,2); /* read 2 elements (x,z)   */

    dd=sf_floatalloc(nr);
    for(ir=0;ir<nr;ir++) {
	dd[ir]=0;
    }
    
    jzs=sf_intalloc(ns); fzs=sf_floatalloc(ns); 
    jzr=sf_intalloc(nr); fzr=sf_floatalloc(nr);
    jxs=sf_intalloc(ns); fxs=sf_floatalloc(ns);
    jxr=sf_intalloc(nr); fxr=sf_floatalloc(nr);

    ws00 = sf_floatalloc(ns); wr00 = sf_floatalloc(nr); 
    ws01 = sf_floatalloc(ns); wr01 = sf_floatalloc(nr);
    ws10 = sf_floatalloc(ns); wr10 = sf_floatalloc(nr);
    ws11 = sf_floatalloc(ns); wr11 = sf_floatalloc(nr);
/*------------------------------------------------------------*/

    for (is=0;is<ns;is++) {

	if(ss[is].z >= z0 && 
	   ss[is].z <  z0 + (nz2-1)*dz &&
	   ss[is].x >= x0 && 
	   ss[is].x <  x0 + (nx2-1)*dx) {
	    
	    jzs[is] = (int)( (ss[is].z-z0)/dz);
	    fzs[is] =        (ss[is].z-z0)/dz - jzs[is];	    
	    jxs[is] = (int)( (ss[is].x-x0)/dx);
	    fxs[is] =        (ss[is].x-x0)/dx - jxs[is];
	} else {
	    jzs[is] = 0; jxs[is] = 0;
	    fzs[is] = 1; fxs[is] = 0;
	    ss[is].v= 0;
	}

	ws00[is] = (1-fzs[is])*(1-fxs[is]);
	ws01[is] = (  fzs[is])*(1-fxs[is]);
	ws10[is] = (1-fzs[is])*(  fxs[is]);
	ws11[is] = (  fzs[is])*(  fxs[is]);

    }

    for (ir=0;ir<nr;ir++) {

	if(rr[ir].z >= z0 && 
	   rr[ir].z < z0 + (nz2-1)*dz &&
	   rr[ir].x >= x0 && 
	   rr[ir].x < x0 + (nx2-1)*dx) {
	    
	    jzr[ir] = (int)( (rr[ir].z-z0)/dz);
	    fzr[ir] =        (rr[ir].z-z0)/dz - jzr[ir];
	    jxr[ir] = (int)( (rr[ir].x-x0)/dx);
	    fxr[ir] =        (rr[ir].x-x0)/dx - jxr[ir];

	    rr[ir].v=1;
	} else {
	    jzr[ir] = 0;
	    fzr[ir] = 1;
	    rr[ir].v= 0;
	}

	wr00[ir] = (1-fzr[ir])*(1-fxr[ir]);
	wr01[ir] = (  fzr[ir])*(1-fxr[ir]);
	wr10[ir] = (1-fzr[ir])*(  fxr[ir]);
	wr11[ir] = (  fzr[ir])*(  fxr[ir]);
    }
    
/*------------------------------------------------------------*/
    
    /* allocate temporary arrays */
    um=sf_floatalloc2(nz2,nx2);
    uo=sf_floatalloc2(nz2,nx2);
    up=sf_floatalloc2(nz2,nx2);
    ud=sf_floatalloc2(nz2,nx2);
    tt=sf_floatalloc2(nz2,nx2);

#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(iz,ix) shared(nx2,nz2,um,uo,up,ud,tt)
#endif
    for (iz=0; iz<nz2; iz++) {
	for (ix=0; ix<nx2; ix++) {
	    um[ix][iz]=0;
	    uo[ix][iz]=0;
	    up[ix][iz]=0;
	    ud[ix][iz]=0;
	    tt[ix][iz]=1;
	}
    }

/*------------------------------------------------------------*/

    /* velocity in the expanded domain (vp=vv^2)*/
    vp=sf_floatalloc2(nz2,nx2);
    ro=sf_floatalloc2(nz2,nx2);
    
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(iz,ix) shared(nz,nx,vp,ro,vv,ee)
#endif
    for (iz=0; iz<nz; iz++) {
	for (ix=0; ix<nx; ix++) {
	    vp[nbx+ix][nbz+iz] = vv[ix][iz] * vv[ix][iz];
	    ro[nbx+ix][nbz+iz] = ee[ix][iz];
	}
    }
    /* fill boundaries */
    for (iz=0; iz<nbz; iz++) {
	for (ix=0; ix<nx2; ix++) {
	    vp[ix][    iz  ] = vp[ix][    nbz  ];
	    vp[ix][nz2-iz-1] = vp[ix][nz2-nbz-1];
	    
	    ro[ix][    iz  ] = ro[ix][    nbz  ];
	    ro[ix][nz2-iz-1] = ro[ix][nz2-nbz-1];
	}
    }
    for (iz=0; iz<nz2; iz++) {
	for (ix=0; ix<nbx; ix++) {
	    vp[    ix  ][iz] = vp[    nbx  ][iz];
	    vp[nx2-ix-1][iz] = vp[nx2-nbx-1][iz];

	    ro[    ix  ][iz] = ro[    nbx  ][iz];
	    ro[nx2-ix-1][iz] = ro[nx2-nbx-1][iz];
	}
    }

/*------------------------------------------------------------*/

    /* free surface */
    if(abc && free) {
	for (iz=0; iz<nbz; iz++) {
	    for (ix=0; ix<nx2; ix++) {
		vp[ix][iz]=0;
	    }
	}
    }

/*------------------------------------------------------------*/

    /* sponge ABC setup */
    if(abc) {
	for (iz=0; iz<nbz; iz++) {
	    for (ix=0; ix<nx2; ix++) {
		tt[ix][    iz  ] = exp( - (tz*(nbz-iz))*(tz*(nbz-iz)) );
		tt[ix][nz2-iz-1] = tt[ix][iz];
	    }
	}
	for (iz=0; iz<nz2; iz++) {
	    for (ix=0; ix<nbx; ix++) {
		tt[    ix  ][iz] = exp( - (tx*(nbx-ix))*(tx*(nbx-ix)) );
		tt[nx2-ix-1][iz] = tt[ix][iz];
	    }
	}
    }

    /* one-way ABC setup */
    bzl=sf_floatalloc(nx2);
    bzh=sf_floatalloc(nx2);
    bxl=sf_floatalloc(nz2);
    bxh=sf_floatalloc(nz2);
    
    for (ix=0;ix<nx2;ix++) {
	dp = vp[ix][    nop  ] *dt/dz; bzl[ix] = (1-dp)/(1+dp);
	dp = vp[ix][nz2-nop-1] *dt/dz; bzh[ix] = (1-dp)/(1+dp);
    }
    for (iz=0;iz<nz2;iz++) {
	dp = vp[    nop  ][iz] *dt/dx; bxl[iz] = (1-dp)/(1+dp);
	dp = vp[nx2-nop-1][iz] *dt/dx; bxh[iz] = (1-dp)/(1+dp);
    }
/*------------------------------------------------------------*/
    /* 
     *  MAIN LOOP
     */
    if(verb) fprintf(stderr,"\n");
    for (it=0; it<nt; it++) {
	if(verb) fprintf(stderr,"\b\b\b\b\b%d",it);
	
	if(dens) { 	/* variable density */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(iz,ix) shared(nop,nx2,nz2,ud,uo,ro,co,c1x,c1z,c2x,c2z,idx,idz)
#endif
	    for(    ix=nop; ix<nx2-nop; ix++) {
		for(iz=nop; iz<nz2-nop; iz++) {

		    /* 4th order Laplacian operator */
		    ud[ix][iz] = 
			co * uo[ix  ][iz  ] + 
			c1x*(uo[ix-1][iz  ] + uo[ix+1][iz  ]) +
			c2x*(uo[ix-2][iz  ] + uo[ix+2][iz  ]) +
			c1z*(uo[ix  ][iz-1] + uo[ix  ][iz+1]) +
			c2z*(uo[ix  ][iz-2] + uo[ix  ][iz+2]);	  

		    /* density terms */
		    ud[ix][iz] -= (
			D1(uo,ix,iz,idz) * D1(ro,ix,iz,idz) +
			D2(uo,ix,iz,idx) * D2(ro,ix,iz,idx) ) / ro[ix][iz];
		}
	    }   

	} else {	/* constant density */

#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(iz,ix) shared(nop,nx2,nz2,ud,uo,co,c1x,c1z,c2x,c2z)
#endif
	    for(    ix=nop; ix<nx2-nop; ix++) {
		for(iz=nop; iz<nz2-nop; iz++) {

		    /* 4th order Laplacian operator */
		    ud[ix][iz] = 
			co * uo[ix  ][iz  ] + 
			c1x*(uo[ix-1][iz  ] + uo[ix+1][iz  ]) +
			c2x*(uo[ix-2][iz  ] + uo[ix+2][iz  ]) +
			c1z*(uo[ix  ][iz-1] + uo[ix  ][iz+1]) +
			c2z*(uo[ix  ][iz-2] + uo[ix  ][iz+2]);	  
		}
	    }
	}
	
	/* inject wavelet */
	for (is=0;is<ns;is++) {
	    ws = ww[it] * ss[is].v;
	    ud[ jxs[is]  ][ jzs[is]  ] -= ws * ws00[is];
	    ud[ jxs[is]  ][ jzs[is]+1] -= ws * ws01[is];
	    ud[ jxs[is]+1][ jzs[is]  ] -= ws * ws10[is];
	    ud[ jxs[is]+1][ jzs[is]+1] -= ws * ws11[is];
	}

#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(ix,iz) shared(nx2,nz2,ud,uo,um,up,vp,dt2)
#endif
	for(    ix=0; ix<nx2; ix++) {
	    for(iz=0; iz<nz2; iz++) {

		/* time step and velocity scale*/
		up[ix][iz] = 2*uo[ix][iz] - 
		               um[ix][iz] + 
		               ud[ix][iz] * vp[ix][iz] * dt2; 
	    }
	}
	/* circulate arrays */
	ut=um;
	um=uo;
	uo=up;
	up=ut;


	/* one-way ABC apply */	
	if(abc) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(ix,iz,iop) shared(nx2,nz2,nop,uo,um,bzl,bzh)
#endif
	    for(ix=0;ix<nx2;ix++) {
		for(iop=0;iop<nop;iop++) {
		    iz = nop-iop;
		    uo      [ix][iz  ] 
			= um[ix][iz+1] 
			+(um[ix][iz  ]
			- uo[ix][iz+1]) * bzl[ix];
		    
		    iz = nz2-nop+iop-1;
		    uo      [ix][iz  ] 
			= um[ix][iz-1]
			+(um[ix][iz  ]
			- uo[ix][iz-1]) * bzh[ix];
		}
	    }

#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,1) private(ix,iz,iop) shared(nx2,nz2,nop,uo,um,bzl,bzh)
#endif
	    for(iop=0;iop<nop;iop++) {
		for(iz=0;iz<nz2;iz++) {
		    ix = nop-iop;
		    uo      [ix  ][iz] 
			= um[ix+1][iz] 
			+(um[ix  ][iz]
			- uo[ix+1][iz]) * bxl[iz];
		    
		    ix = nx2-nop+iop-1;
		    uo      [ix  ][iz] 
			= um[ix-1][iz]
			+(um[ix  ][iz]
			- uo[ix-1][iz]) * bxh[iz];
		}
	    }
	}
	
	/* sponge ABC apply */
	if(abc) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,ompchunk) private(ix,iz) shared(nx2,nz2,uo,um,ud,tt)
#endif
	    for(    ix=0; ix<nx2; ix++) {
		for(iz=0; iz<nz2; iz++) {
		    uo[ix][iz] *= tt[ix][iz];
		    um[ix][iz] *= tt[ix][iz];
		    ud[ix][iz] *= tt[ix][iz];
		}
	    }
	}
	
	/* write wavefield */
	if(snap && it%jsnap==0) {
	    sf_floatwrite(uo[0],nz2*nx2,Fu);
	}

	/* collect data */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,1) private(ir) shared(dd,rr,uo,jzr,wr00,wr01,wr10,wr11)
#endif
	for (ir=0;ir<nr;ir++) {
	    dd[ir] =
		uo[ jxr[ir]  ][ jzr[ir]  ] * wr00[ir] +
		uo[ jxr[ir]  ][ jzr[ir]+1] * wr01[ir] +
		uo[ jxr[ir]+1][ jzr[ir]  ] * wr10[ir] +
		uo[ jxr[ir]+1][ jzr[ir]+1] * wr11[ir];
	    dd[ir] *= rr[ir].v;
	}
	/* write data */
	sf_floatwrite(dd,nr,Fd);
    }
    if(verb) fprintf(stderr,"\n");

    exit (0);
}
Beispiel #12
0
int main(int argc, char* argv[])
{
    bool verb,fsrf,snap,expl,dabc; 
    int  jsnap,ntsnap,jdata;

    /* OMP parameters */
#ifdef _OPENMP
    int ompnth;
#endif 

    /* I/O files */
    sf_file Fwav=NULL; /* wavelet   */
    sf_file Fsou=NULL; /* sources   */
    sf_file Frec=NULL; /* receivers */
    sf_file Fvel=NULL; /* velocity  */
    sf_file Fdat=NULL; /* data      */
    sf_file Fwfl=NULL; /* wavefield */

    /* cube axes */
    sf_axis at,az,ax;
    sf_axis as,ar;

    int     nt,nz,nx,ns,nr,nb;
    int     it,iz,ix;
    float   dt,dz,dx,idz,idx,dt2;

    /* FDM structure */
    fdm2d    fdm=NULL;
    abcone2d abc=NULL;
    sponge   spo=NULL;

    /* I/O arrays */
    float  *ww=NULL;           /* wavelet   */
    pt2d   *ss=NULL;           /* sources   */
    pt2d   *rr=NULL;           /* receivers */
    float  *dd=NULL;           /* data      */

    float **tt=NULL;
    float **vp=NULL;           /* velocity */

    float **vp2=NULL;
    float **vv2=NULL;
    float **vh2=NULL;

    float **rm,**ro,**rp,**ra,**rt; /*      main wavefield */
    float **qm,**qo,**qp,**qa,**qt; /* auxiliary wavefield */

    /* linear interpolation weights/indices */
    lint2d cs,cr;

    /* FD operator size */
    float cox,coz,cax,cbx,caz,cbz;

    /* wavefield cut params */
    sf_axis   acz=NULL,acx=NULL;
    int       nqz,nqx;
    float     oqz,oqx;
    float     dqz,dqx;
    float     **qc=NULL;

    float H2q,H1r;

    /*------------------------------------------------------------*/
    /* init RSF */
    sf_init(argc,argv);

    /*------------------------------------------------------------*/
    /* OMP parameters */
#ifdef _OPENMP
    ompnth=omp_init();
#endif
    /*------------------------------------------------------------*/

    if(! sf_getbool("verb",&verb)) verb=false; /* verbosity flag */
    if(! sf_getbool("snap",&snap)) snap=false; /* wavefield snapshots flag */
    if(! sf_getbool("free",&fsrf)) fsrf=false; /* free surface flag */
    if(! sf_getbool("expl",&expl)) expl=false; /* "exploding reflector" */
    if(! sf_getbool("dabc",&dabc)) dabc=false; /* absorbing BC */
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* I/O files */
    Fwav = sf_input ("in" ); /* wavelet   */
    Fvel = sf_input ("vel"); /* velocity  */
    Fsou = sf_input ("sou"); /* sources   */
    Frec = sf_input ("rec"); /* receivers */
    Fwfl = sf_output("wfl"); /* wavefield */
    Fdat = sf_output("out"); /* data      */

    /*------------------------------------------------------------*/
    /* axes */
    at = sf_iaxa(Fwav,2); sf_setlabel(at,"t"); if(verb) sf_raxa(at); /* time */
    az = sf_iaxa(Fvel,1); sf_setlabel(az,"z"); if(verb) sf_raxa(az); /* depth */
    ax = sf_iaxa(Fvel,2); sf_setlabel(ax,"x"); if(verb) sf_raxa(ax); /* space */

    as = sf_iaxa(Fsou,2); sf_setlabel(as,"s"); if(verb) sf_raxa(as); /* sources */
    ar = sf_iaxa(Frec,2); sf_setlabel(ar,"r"); if(verb) sf_raxa(ar); /* receivers */

    nt = sf_n(at); dt = sf_d(at);
    nz = sf_n(az); dz = sf_d(az);
    nx = sf_n(ax); dx = sf_d(ax);

    ns = sf_n(as);
    nr = sf_n(ar);
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* other execution parameters */
    if(! sf_getint("jdata",&jdata)) jdata=1;
    if(snap) {  /* save wavefield every *jsnap* time steps */
	if(! sf_getint("jsnap",&jsnap)) jsnap=nt;        
    }
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* expand domain for FD operators and ABC */
    if( !sf_getint("nb",&nb) || nb<NOP) nb=NOP;

    fdm=fdutil_init(verb,fsrf,az,ax,nb,1);

    sf_setn(az,fdm->nzpad); sf_seto(az,fdm->ozpad); if(verb) sf_raxa(az);
    sf_setn(ax,fdm->nxpad); sf_seto(ax,fdm->oxpad); if(verb) sf_raxa(ax);
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* setup output data header */
    sf_oaxa(Fdat,ar,1);

    sf_setn(at,nt/jdata);
    sf_setd(at,dt*jdata);
    sf_oaxa(Fdat,at,2);

    /* setup output wavefield header */
    if(snap) {
	if(!sf_getint  ("nqz",&nqz)) nqz=sf_n(az);
	if(!sf_getint  ("nqx",&nqx)) nqx=sf_n(ax);

	if(!sf_getfloat("oqz",&oqz)) oqz=sf_o(az);
	if(!sf_getfloat("oqx",&oqx)) oqx=sf_o(ax);

	dqz=sf_d(az);
	dqx=sf_d(ax);

	acz = sf_maxa(nqz,oqz,dqz); sf_raxa(acz);
	acx = sf_maxa(nqx,oqx,dqx); sf_raxa(acx);
	/* check if the imaging window fits in the wavefield domain */

	qc=sf_floatalloc2(sf_n(acz),sf_n(acx));

	ntsnap=0;
	for(it=0; it<nt; it++) {
	    if(it%jsnap==0) ntsnap++;
	}
	sf_setn(at,  ntsnap);
	sf_setd(at,dt*jsnap);
	if(verb) sf_raxa(at);

	sf_oaxa(Fwfl,acz,1);
	sf_oaxa(Fwfl,acx,2);
	sf_oaxa(Fwfl,at, 3);
    }

    if(expl) {
	ww = sf_floatalloc( 1);
    } else {
	ww = sf_floatalloc(ns);
    }
    dd = sf_floatalloc(nr);

    /*------------------------------------------------------------*/
    /* setup source/receiver coordinates */
    ss = (pt2d*) sf_alloc(ns,sizeof(*ss)); 
    rr = (pt2d*) sf_alloc(nr,sizeof(*rr)); 

    pt2dread1(Fsou,ss,ns,2); /* read (x,z) coordinates */
    pt2dread1(Frec,rr,nr,2); /* read (x,z) coordinates */

    cs = lint2d_make(ns,ss,fdm);
    cr = lint2d_make(nr,rr,fdm);

    /*------------------------------------------------------------*/
    /* setup FD coefficients */
    idz = 1/dz;
    idx = 1/dx;

    cox= C0 * (idx*idx);
    cax= CA *  idx*idx;
    cbx= CB *  idx*idx;

    coz= C0 * (idz*idz);
    caz= CA *  idz*idz;
    cbz= CB *  idz*idz;

    /* precompute dt^2*/
    dt2 = dt*dt;

    /*------------------------------------------------------------*/ 
    tt = sf_floatalloc2(nz,nx); 
    /*------------------------------------------------------------*/

    /* input velocity */

    vp  =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
    vp2 =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
    vv2 =sf_floatalloc2(fdm->nzpad,fdm->nxpad);     
    vh2 =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 

    sf_floatread(tt[0],nz*nx,Fvel );    expand(tt,vv2,fdm); /* vertical v */
    sf_floatread(tt[0],nz*nx,Fvel );    expand(tt,vp2,fdm); /* NMO v */
    sf_floatread(tt[0],nz*nx,Fvel );    expand(tt,vh2,fdm); /* horizontal v */

    for    (ix=0; ix<fdm->nxpad; ix++) {
	for(iz=0; iz<fdm->nzpad; iz++) {	    
	    vp2[ix][iz] = vp2[ix][iz] * vp2[ix][iz];
	    vv2[ix][iz] = vv2[ix][iz] * vv2[ix][iz];
	    vh2[ix][iz] = vh2[ix][iz] * vh2[ix][iz];
	}
    }    
    if(fsrf) { /* free surface */
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nb; iz++) {
		vp2[ix][iz]=0;
		vv2[ix][iz]=0;
		vh2[ix][iz]=0;
	    }
	}
    }

    /*------------------------------------------------------------*/
    free(*tt); free(tt);    
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* allocate wavefield arrays */
    qm=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    qo=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    qp=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    qa=sf_floatalloc2(fdm->nzpad,fdm->nxpad);

    rm=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    ro=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    rp=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    ra=sf_floatalloc2(fdm->nzpad,fdm->nxpad);

    for    (ix=0; ix<fdm->nxpad; ix++) {
	for(iz=0; iz<fdm->nzpad; iz++) {
	    qm[ix][iz]=0;
	    qo[ix][iz]=0;
	    qp[ix][iz]=0;
	    qa[ix][iz]=0;

	    rm[ix][iz]=0;
	    ro[ix][iz]=0;
	    rp[ix][iz]=0;
	    ra[ix][iz]=0;
	}
    }

    /*------------------------------------------------------------*/
    if(dabc) {
	/* one-way abc setup */
	abc = abcone2d_make(NOP,dt,vp,fsrf,fdm);
	/* sponge abc setup */
	spo = sponge_make(fdm->nb);
    }

    /*------------------------------------------------------------*/
    /* 
     *  MAIN LOOP
     */
    /*------------------------------------------------------------*/
    if(verb) fprintf(stderr,"\n");
    for (it=0; it<nt; it++) {
	if(verb) fprintf(stderr,"\b\b\b\b\b%d",it);

#ifdef _OPENMP
#pragma omp parallel for				\
    schedule(dynamic,fdm->ompchunk)			\
    private(ix,iz,H2q,H1r)					\
    shared(fdm,ra,ro,qa,qo,cox,coz,cax,caz,cbx,cbz,idx,idz,vp2)
#endif
	for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
	    for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {

		H2q = Dxx(qo,ix,iz,cox,cax,cbx);

		H1r = Dzz(ro,ix,iz,coz,caz,cbz);
		
		/* main field - q */
		qa[ix][iz] = H2q * vh2[ix][iz] + H1r * vv2[ix][iz] ;

		/* auxiliary field - r */
		ra[ix][iz] = H2q * vp2[ix][iz] + H1r * vv2[ix][iz] ;
		
	    }
	}   

	/* inject acceleration source */
	if(expl) {
	    sf_floatread(ww, 1,Fwav);
	    lint2d_inject1(ra,ww[0],cs);
	    lint2d_inject1(qa,ww[0],cs);
	} else {
	    sf_floatread(ww,ns,Fwav);	
	    lint2d_inject(ra,ww,cs);
	    lint2d_inject(qa,ww,cs);
	}

	/* step forward in time */
#ifdef _OPENMP
#pragma omp parallel for	    \
    schedule(dynamic,fdm->ompchunk) \
    private(ix,iz)		    \
    shared(fdm,ra,ro,rm,rp,qa,qo,qm,qp,dt2)
#endif
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {
		qp[ix][iz] = 2*qo[ix][iz] 
		    -          qm[ix][iz] 
		    +          qa[ix][iz] * dt2;

		rp[ix][iz] = 2*ro[ix][iz] 
		    -          rm[ix][iz] 
		    +          ra[ix][iz] * dt2;
	    }
	}
	/* circulate wavefield arrays */
	qt=qm;
	qm=qo;
	qo=qp;
	qp=qt;

	rt=rm;
	rm=ro;
	ro=rp;
	rp=rt;
	
	if(dabc) {
	    /* one-way abc apply */
	    abcone2d_apply(qo,qm,NOP,abc,fdm);
	    sponge2d_apply(qm,spo,fdm);
	    sponge2d_apply(qo,spo,fdm);
	    sponge2d_apply(qp,spo,fdm);

	    /* one-way abc apply */
	    abcone2d_apply(ro,rm,NOP,abc,fdm);
	    sponge2d_apply(rm,spo,fdm);
	    sponge2d_apply(ro,spo,fdm);
	    sponge2d_apply(rp,spo,fdm);
	}

	/* extract data */
	lint2d_extract(qo,dd,cr);

	if(snap && it%jsnap==0) {
	    cut2d(qo,qc,fdm,acz,acx);
	    sf_floatwrite(qc[0],sf_n(acz)*sf_n(acx),Fwfl);
	}
	if(        it%jdata==0) 
	    sf_floatwrite(dd,nr,Fdat);
    }
    if(verb) fprintf(stderr,"\n");    

    /*------------------------------------------------------------*/
    /* deallocate arrays */
    free(*rm); free(rm);
    free(*rp); free(rp);
    free(*ro); free(ro);
    free(*ra); free(ra);

    free(*qm); free(qm);
    free(*qp); free(qp);
    free(*qo); free(qo);
    free(*qa); free(qa);
    free(*qc); free(qc);

    free(*vp);  free(vp);
    free(*vp2); free(vp2);
    free(*vh2); free(vh2);
    free(*vv2); free(vv2);

    free(ww);
    free(ss);
    free(rr);
    free(dd);

    exit (0);
}
Beispiel #13
0
int main(int argc, char* argv[])
{
    int jt, jtm, is, st;			/* index */
    int nt, n1, n2, ns, ng, m[SF_MAX_DIM], nm;				 	/* dimensions */
    float ot, o1, d1;				/* original */
    sf_file in, dat, wfl, vel, sgrid, ggrid; /* I/O files */
    float **wvlt;
    sf_axis ax;
    HVel hv;
    HCoord hs, hg;
    bool verb;

    sf_init(argc,argv);

    in = sf_input ("in");   
/* source wavelet \n
   \t nt X 1: regular shot gather
   \t nt X ns: simultaneous source shotting
*/
    vel  = sf_input ("vel");  /* velocity field */
    sgrid  = sf_input ("sgrid");  /* source grid */
    ggrid  = sf_input ("ggrid");  /* geophone grid */
    dat = sf_output("out");  /* seismic data */
 
    if(sf_getstring("wfl")!=NULL) 
	wfl = sf_output("wfl"); /* wavefield movie file */
    else wfl=NULL;

    if (!sf_getint("jt",&jt)) jt=1; 
    /* time interval in observation system */
    if (!sf_getint("jtm",&jtm)) jtm=100; 
    /* time interval of wave movie */
    if (!sf_getfloat("ot", &ot)) ot = 0.0; 
    /* time delay */
    if (!sf_getbool("verb", &verb)) verb = false; 
    /* verbosity */

    /* velocity and observation system */
    hv = obs_vel(vel);
    m[0] = sf_n(hv->z);	nm = 1;
    if(hv->nd >= 2)	{m[1] = sf_n(hv->x); nm=2;}
    if(hv->nd >= 3)	{m[2] = sf_n(hv->y); nm=3;}
    hs = obs_coord(sgrid, m, nm);
    hg = obs_coord(ggrid, m, nm);
    ns = sf_n(hs->a2);
    ng = sf_n(hg->a2);

    /* waveform */
    ax = sf_iaxa(in, 1);
    n1 = sf_n(ax);	o1 = sf_o(ax);	d1 = sf_d(ax);
    if(!sf_histint(in, "n2", &n2) || n2 != ns) n2=1;
    wvlt = sf_floatalloc2(n1, n2);
    sf_floatread(wvlt[0], n1*n2, in);


    if(ot<o1) ot=o1;
    st = (ot-o1)/d1;
    nt = (n1-st+1)/jt;
    sf_setn(ax, nt);
    sf_setd(ax, d1*jt);
    sf_seto(ax, ot);
    sf_oaxa(dat, ax, 1);
    sf_oaxa(dat, hg->a2, 2);
    if(n2==1) sf_oaxa(dat, hs->a2, 3);

    if(wfl!=NULL)
    {
	sf_oaxa(wfl, hv->z, 1);
	if(hv->nd >= 2) sf_oaxa(wfl, hv->x, 2);
	if(hv->nd >= 3) sf_oaxa(wfl, hv->y, 3);
	sf_setn(ax, (n1-st+1)/jtm);
	sf_setd(ax, d1*jtm);
	sf_seto(ax, ot);
	sf_oaxa(wfl, ax, hv->nd+1);
	if(n2==1) sf_oaxa(wfl, hs->a2, hv->nd+2);
    }

    wavmod_init(hv, d1, n1, st, jt, jtm, hg->p, ng, verb);

    if(n2==1)
	for (is=0; is < ns; is++)
	{
	    wavmod_shot(dat, wfl, 1, hs->p+is, wvlt);
	    if(verb) sf_warning("shot %d of %d", is, ns/n2);
	}
    else 
	wavmod_shot(dat, wfl, ns, hs->p, wvlt);

    wavmod_close();

    free(wvlt[0]);
    free(wvlt);
    return (0);
}
Beispiel #14
0
int main(int argc, char* argv[])
{
    bool verb,fsrf,snap,dabc;
    int  jsnap,ntsnap;
    int  jdata;

    /* I/O files */
    sf_file Fwav=NULL; /* wavelet   */
    sf_file Fsou=NULL; /* sources   */
    sf_file Frec=NULL; /* receivers */

    sf_file Fvel=NULL; /* velocity  */
    sf_file Fref=NULL; /* reflectivity */
    sf_file Fden=NULL; /* density   */

    sf_file Fdat=NULL; /* data (background)      */
    sf_file Fwfl=NULL; /* wavefield (background) */

    sf_file Flid=NULL; /* data (scattered)      */
    sf_file Fliw=NULL; /* wavefield (scattered) */

    /* I/O arrays */
    float  *ww=NULL;           /* wavelet   */
    pt3d   *ss=NULL;           /* sources   */
    pt3d   *rr=NULL;           /* receivers */

    float ***vpin=NULL;         /* velocity  */
    float ***roin=NULL;         /* density   */
    float ***rfin=NULL;         /* reflectivity */

    float ***vp=NULL;           /* velocity     in expanded domain */
    float ***ro=NULL;           /* density      in expanded domain */
    float ***iro=NULL;          /* buoyancy     in the expanded domain */

    float ***rf=NULL;           /* reflectivity in expanded domain */

    float  *bdd=NULL;          /* data (background) */
    float  *sdd=NULL;          /* data (scattered)  */

    float ***vt=NULL;           /* temporary vp*vp * dt*dt */

    float ***fsrfbck=NULL;		/* ghost cells for free surface BC */
    float ***fsrfsct=NULL;		/* ghost cells for free surface BC */

    float ***bum,***buo,***bup,***bua,***buat,***but; /* wavefield: um = U @ t-1; uo = U @ t; up = U @ t+1 */
    float ***sum,***suo,***sup,***sua,***suat,***sut; /* wavefield: um = U @ t-1; uo = U @ t; up = U @ t+1 */

    /* cube axes */
    sf_axis at,a1,a2,a3,as,ar;
    int     nt,n1,n2,n3,ns,nr,nb;
    int     it,i1,i2,i3;
    float   dt,d1,d2,d3,id1,id2,id3,dt2;

    /* linear interpolation weights/indices */
    lint3d cs,cr;

    fdm3d    fdm;
    abcone3d abc;     /* abc */
    sponge spo;

    /* FD coefficients */
    float c1x,c1y,c1z,
          c2x,c2y,c2z,
          c3x,c3y,c3z;

    int ompchunk;
#ifdef _OPENMP
    int ompnth,ompath;
#endif

    sf_axis   ac1=NULL,ac2=NULL,ac3=NULL;
    int       nqz,nqx,nqy;
    float     oqz,oqx,oqy;
    float     dqz,dqx,dqy;
    float     ***uc=NULL;

    /* for benchmarking */
    clock_t start_t, end_t;
    float total_t;

    /*------------------------------------------------------------*/
    /* init RSF */
    sf_init(argc,argv);
    if(! sf_getint("ompchunk",&ompchunk)) ompchunk=1;

    /* OpenMP data chunk size */
#ifdef _OPENMP
    if(! sf_getint("ompnth",  &ompnth))     ompnth=0;
    /* OpenMP available threads */
    #pragma omp parallel
    ompath=omp_get_num_threads();
    if(ompnth<1) ompnth=ompath;
    omp_set_num_threads(ompnth);
    sf_warning("using %d threads of a total of %d",ompnth,ompath);
#endif

    if(! sf_getbool("verb",&verb)) verb=false; /* verbosity flag */
    if(! sf_getbool("snap",&snap)) snap=false; /* wavefield snapshots flag */
    if(! sf_getbool("dabc",&dabc)) dabc=false; /* Absorbing BC */
    if(! sf_getbool("free",&fsrf)) fsrf=false; /* free surface flag */

    Fwav = sf_input ("in" ); /* wavelet   */
    Fsou = sf_input ("sou"); /* sources   */
    Frec = sf_input ("rec"); /* receivers */

    Fvel = sf_input ("vel"); /* velocity  */
    Fden = sf_input ("den"); /* density   */
    Fref = sf_input ("ref"); /* reflectivity */

    Fwfl = sf_output("wfl"); /* wavefield */
    Fdat = sf_output("out"); /* data      */

    Fliw = sf_output("liw"); /* wavefield (scattered) */
    Flid = sf_output("lid"); /* data (scattered) */

    /* axes */
    at = sf_iaxa(Fwav,2);
    sf_setlabel(at,"t");
    if(verb) sf_raxa(at); /* time */
    as = sf_iaxa(Fsou,2);
    sf_setlabel(as,"s");
    if(verb) sf_raxa(as); /* sources */
    ar = sf_iaxa(Frec,2);
    sf_setlabel(ar,"r");
    if(verb) sf_raxa(ar); /* receivers */
    a1 = sf_iaxa(Fvel,1);
    sf_setlabel(a1,"z");
    if(verb) sf_raxa(a1); /* z */
    a2 = sf_iaxa(Fvel,2);
    sf_setlabel(a2,"x");
    if(verb) sf_raxa(a2); /* x */
    a3 = sf_iaxa(Fvel,3);
    sf_setlabel(a3,"y");
    if(verb) sf_raxa(a3); /* y */

    nt = sf_n(at);
    dt = sf_d(at);
    ns = sf_n(as);
    nr = sf_n(ar);
    n1 = sf_n(a1);
    d1 = sf_d(a1);
    n2 = sf_n(a2);
    d2 = sf_d(a2);
    n3 = sf_n(a3);
    d3 = sf_d(a3);

    if(! sf_getint("jdata",&jdata)) jdata=1;
    if(snap) {  /* save wavefield every *jsnap* time steps */
        if(! sf_getint("jsnap",&jsnap)) jsnap=nt;
    }

    /*------------------------------------------------------------*/
    /* expand domain for FD operators and ABC */
    if( !sf_getint("nb",&nb) || nb<NOP) nb=NOP;

    fdm=fdutil3d_init(verb,fsrf,a1,a2,a3,nb,ompchunk);

    sf_setn(a1,fdm->nzpad);
    sf_seto(a1,fdm->ozpad);
    if(verb) sf_raxa(a1);
    sf_setn(a2,fdm->nxpad);
    sf_seto(a2,fdm->oxpad);
    if(verb) sf_raxa(a2);
    sf_setn(a3,fdm->nypad);
    sf_seto(a3,fdm->oypad);
    if(verb) sf_raxa(a3);
    /*------------------------------------------------------------*/

    /* setup output data header */
    sf_oaxa(Fdat,ar,1);
    sf_oaxa(Flid,ar,1);

    sf_setn(at,nt/jdata);
    sf_setd(at,dt*jdata);
    sf_oaxa(Fdat,at,2);
    sf_oaxa(Flid,at,2);

    /* setup output wavefield header */
    if(snap) {
        if(!sf_getint  ("nqz",&nqz)) nqz=sf_n(a1);
        if(!sf_getint  ("nqx",&nqx)) nqx=sf_n(a2);
        if(!sf_getint  ("nqy",&nqy)) nqy=sf_n(a3);

        if(!sf_getfloat("oqz",&oqz)) oqz=sf_o(a1);
        if(!sf_getfloat("oqx",&oqx)) oqx=sf_o(a2);
        if(!sf_getfloat("oqy",&oqy)) oqy=sf_o(a3);

        dqz=sf_d(a1);
        dqx=sf_d(a2);
        dqy=sf_d(a3);

        ac1 = sf_maxa(nqz,oqz,dqz);
        ac2 = sf_maxa(nqx,oqx,dqx);
        ac3 = sf_maxa(nqy,oqy,dqy);

        /* check if the imaging window fits in the wavefield domain */

        uc=sf_floatalloc3(sf_n(ac1),sf_n(ac2),sf_n(ac3));

        ntsnap=0;
        for(it=0; it<nt; it++) {
            if(it%jsnap==0) ntsnap++;
        }
        sf_setn(at,  ntsnap);
        sf_setd(at,dt*jsnap);
        if(verb) sf_raxa(at);

        /*	sf_setn(at,nt/jsnap);
        sf_setd(at,dt*jsnap); */

        sf_oaxa(Fwfl,ac1,1);
        sf_oaxa(Fwfl,ac2,2);
        sf_oaxa(Fwfl,ac3,3);
        sf_oaxa(Fwfl,at, 4);

        sf_oaxa(Fliw,ac1,1);
        sf_oaxa(Fliw,ac2,2);
        sf_oaxa(Fliw,ac3,3);
        sf_oaxa(Fliw,at, 4);
    }


    /* source wavelet array allocation */
    ww = sf_floatalloc(ns);

    /* data array allocation*/
    bdd = sf_floatalloc(nr);
    sdd = sf_floatalloc(nr);

    /*------------------------------------------------------------*/
    /* setup source/receiver coordinates */
    ss = (pt3d*) sf_alloc(ns,sizeof(*ss));
    rr = (pt3d*) sf_alloc(nr,sizeof(*rr));

    pt3dread1(Fsou,ss,ns,3); /* read (x,y,z) coordinates */
    pt3dread1(Frec,rr,nr,3); /* read (x,y,z) coordinates */

    cs = lint3d_make(ns,ss,fdm);
    cr = lint3d_make(nr,rr,fdm);

    fdbell3d_init(1);
    /*------------------------------------------------------------*/
    /* setup FD coefficients */
    dt2 = dt*dt;
    id1 = 1/d1;
    id2 = 1/d2;
    id3 = 1/d3;

    c1x = C1*id2;
    c1y = C1*id3;
    c1z = C1*id1;

    c2x = C2*id2;
    c2y = C2*id3;
    c2z = C2*id1;

    c3x = C3*id2;
    c3y = C3*id3;
    c3z = C3*id1;

    /*------------------------------------------------------------*/
    /* input density */
    roin = sf_floatalloc3(n1, n2, n3);
    ro   = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    iro  = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);

    sf_floatread(roin[0][0],n1*n2*n3,Fden);
    expand3d(roin,ro,fdm);

    /* inverse density to avoid computation on the fly */
    /*
    there is 1 shell for i1=0 || i2=0 || i3=0 that is zero,
    no big deal but better to fix it
    */
    for 		(i3=1; i3<fdm->nypad; i3++) {
        for 	(i2=1; i2<fdm->nxpad; i2++) {
            for (i1=1; i1<fdm->nzpad; i1++) {
                iro[i3][i2][i1] = 6./(  3*ro[i3  ][i2  ][i1  ] +
                                        ro[i3  ][i2  ][i1-1] +
                                        ro[i3  ][i2-1][i1  ] +
                                        ro[i3-1][i2  ][i1  ] );
            }
        }
    }

    free(**roin);
    free(*roin);
    free(roin);

    /*------------------------------------------------------------*/
    /* input velocity */
    vpin = sf_floatalloc3(n1, n2, n3);
    vp   = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    vt   = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    sf_floatread(vpin[0][0],n1*n2*n3,Fvel);
    expand3d(vpin,vp,fdm);
    free(**vpin);
    free(*vpin);
    free(vpin);

    /*------------------------------------------------------------*/
    /* input reflectivity */
    rfin = sf_floatalloc3(n1, n2, n3);
    rf   = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    sf_floatread(rfin[0][0],n1*n2*n3,Fref);
    expand3d(rfin,rf,fdm);
    free(**rfin);
    free(*rfin);
    free(rfin);

    for 		(i3=0; i3<fdm->nypad; i3++) {
        for 	(i2=0; i2<fdm->nxpad; i2++) {
            for (i1=0; i1<fdm->nzpad; i1++) {
                vt[i3][i2][i1] = vp[i3][i2][i1] * vp[i3][i2][i1] * dt2;
            }
        }
    }

    /* free surface */
    if(fsrf) {
        fsrfbck = sf_floatalloc3(4*NOP, fdm->nxpad, fdm->nypad);
        fsrfsct = sf_floatalloc3(4*NOP, fdm->nxpad, fdm->nypad);
    }
    /*------------------------------------------------------------*/
    /* allocate wavefield arrays */
    bum  = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    buo  = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    bup  = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    bua  = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    buat = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);

    sum  = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    suo  = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    sup  = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    sua  = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);
    suat = sf_floatalloc3(fdm->nzpad, fdm->nxpad, fdm->nypad);

    for 		(i3=0; i3<fdm->nypad; i3++) {
        for 	(i2=0; i2<fdm->nxpad; i2++) {
            for (i1=0; i1<fdm->nzpad; i1++) {
                bum[i3][i2][i1]=0;
                buo[i3][i2][i1]=0;
                bup[i3][i2][i1]=0;
                bua[i3][i2][i1]=0;

                sum[i3][i2][i1]=0;
                suo[i3][i2][i1]=0;
                sup[i3][i2][i1]=0;
                sua[i3][i2][i1]=0;
            }
        }
    }

    /*------------------------------------------------------------*/
    /* one-way abc setup */
    abc = abcone3d_make(NOP,dt,vp,fsrf,fdm);
    /* sponge abc setup */
    spo = sponge_make(fdm->nb);

    free(**vp);
    free(*vp);
    free(vp);
    /*--------------------------------------------------------------*/
    /* 																*/
    /*						MAIN LOOP								*/
    /*																*/
    /*--------------------------------------------------------------*/
    if(verb) fprintf(stderr,"\nFORWARD BORN ACOUSTIC VARIABLE-DENSITY WAVE EXTRAPOLATION \n");
    /* extrapolation */
    start_t = clock();
    for (it=0; it<nt; it++) {
        if(verb) fprintf(stderr,"%d/%d  \r",it,nt);

#ifdef _OPENMP
        #pragma omp parallel private(i3,i2,i1)
#endif
        {

            if (fsrf) {
                /* free surface */
#ifdef _OPENMP
                #pragma omp for schedule(dynamic,fdm->ompchunk)
#endif
                for 		(i3=0; i3<fdm->nypad; i3++) {
                    for 	(i2=0; i2<fdm->nxpad; i2++) {
                        for (i1=nb; i1<nb+2*NOP; i1++) {
                            fsrfbck[i3][i2][2*NOP+(i1-nb)  ] =  buo[i3][i2][i1];
                            fsrfbck[i3][i2][2*NOP-(i1-nb)-1] = -buo[i3][i2][i1];

                            fsrfsct[i3][i2][2*NOP+(i1-nb)  ] =  suo[i3][i2][i1];
                            fsrfsct[i3][i2][2*NOP-(i1-nb)-1] = -suo[i3][i2][i1];
                        }
                    }
                }
            }


            // spatial derivatives z
#ifdef _OPENMP
            #pragma omp for schedule(dynamic,fdm->ompchunk)
#endif
            for 		(i3=NOP; i3<fdm->nypad-NOP; i3++) {
                for 	(i2=NOP; i2<fdm->nxpad-NOP; i2++) {
                    for (i1=NOP; i1<fdm->nzpad-NOP; i1++) {

                        // gather
                        buat[i3][i2][i1]  = iro[i3][i2][i1]*(
                                                c3z*(buo[i3][i2][i1+2] - buo[i3][i2][i1-3]) +
                                                c2z*(buo[i3][i2][i1+1] - buo[i3][i2][i1-2]) +
                                                c1z*(buo[i3][i2][i1  ] - buo[i3][i2][i1-1])
                                            );

                        suat[i3][i2][i1]  = iro[i3][i2][i1]*(
                                                c3z*(suo[i3][i2][i1+2] - suo[i3][i2][i1-3]) +
                                                c2z*(suo[i3][i2][i1+1] - suo[i3][i2][i1-2]) +
                                                c1z*(suo[i3][i2][i1  ] - suo[i3][i2][i1-1])
                                            );
                    }
                }
            }

            if (fsrf) {
                // free surface
#ifdef _OPENMP
                #pragma omp for schedule(dynamic,fdm->ompchunk)
#endif
                for 		(i3=NOP; i3<fdm->nypad-NOP; i3++) {
                    for 	(i2=NOP; i2<fdm->nxpad-NOP; i2++) {
                        for (i1=nb-NOP; i1<nb+NOP; i1++) {

                            buat[i3][i2][i1]  = iro[i3][i2][i1]*(
                                                    c3z*(fsrfbck[i3][i2][2*NOP+(i1-nb)+2] - fsrfbck[i3][i2][2*NOP+(i1-nb)-3]) +
                                                    c2z*(fsrfbck[i3][i2][2*NOP+(i1-nb)+1] - fsrfbck[i3][i2][2*NOP+(i1-nb)-2]) +
                                                    c1z*(fsrfbck[i3][i2][2*NOP+(i1-nb)  ] - fsrfbck[i3][i2][2*NOP+(i1-nb)-1])
                                                );

                            suat[i3][i2][i1]  = iro[i3][i2][i1]*(
                                                    c3z*(fsrfsct[i3][i2][2*NOP+(i1-nb)+2] - fsrfsct[i3][i2][2*NOP+(i1-nb)-3]) +
                                                    c2z*(fsrfsct[i3][i2][2*NOP+(i1-nb)+1] - fsrfsct[i3][i2][2*NOP+(i1-nb)-2]) +
                                                    c1z*(fsrfsct[i3][i2][2*NOP+(i1-nb)  ] - fsrfsct[i3][i2][2*NOP+(i1-nb)-1])
                                                );
                        }
                    }
                }
            }


#ifdef _OPENMP
            #pragma omp for schedule(dynamic,fdm->ompchunk)
#endif
            for 		(i3=NOP; i3<fdm->nypad-NOP; i3++) {
                for 	(i2=NOP; i2<fdm->nxpad-NOP; i2++) {
                    for (i1=NOP; i1<fdm->nzpad-NOP; i1++) {
                        // scatter
                        bua[i3][i2][i1] = c1z*(	buat[i3][i2][i1  ] -
                                                buat[i3][i2][i1+1]) +
                                          c2z*(	buat[i3][i2][i1-1] -
                                                  buat[i3][i2][i1+2]) +
                                          c3z*(	buat[i3][i2][i1-2] -
                                                  buat[i3][i2][i1+3]);

                        sua[i3][i2][i1] = c1z*(	suat[i3][i2][i1  ] -
                                                suat[i3][i2][i1+1]) +
                                          c2z*(	suat[i3][i2][i1-1] -
                                                  suat[i3][i2][i1+2]) +
                                          c3z*(	suat[i3][i2][i1-2] -
                                                  suat[i3][i2][i1+3]);
                    }
                }
            }

            // spatial derivatives x
#ifdef _OPENMP
            #pragma omp for schedule(dynamic,fdm->ompchunk)
#endif
            for 		(i3=NOP; i3<fdm->nypad-NOP; i3++) {
                for 	(i2=NOP; i2<fdm->nxpad-NOP; i2++) {
                    for (i1=NOP; i1<fdm->nzpad-NOP; i1++) {
                        // gather
                        buat[i3][i2][i1]  = iro[i3][i2][i1]*(
                                                c3x*(buo[i3][i2+2][i1] - buo[i3][i2-3][i1]) +
                                                c2x*(buo[i3][i2+1][i1] - buo[i3][i2-2][i1]) +
                                                c1x*(buo[i3][i2  ][i1] - buo[i3][i2-1][i1])
                                            );

                        suat[i3][i2][i1]  = iro[i3][i2][i1]*(
                                                c3x*(suo[i3][i2+2][i1] - suo[i3][i2-3][i1]) +
                                                c2x*(suo[i3][i2+1][i1] - suo[i3][i2-2][i1]) +
                                                c1x*(suo[i3][i2  ][i1] - suo[i3][i2-1][i1])
                                            );
                    }
                }
            }

#ifdef _OPENMP
            #pragma omp for schedule(dynamic,fdm->ompchunk)
#endif
            for 		(i3=NOP; i3<fdm->nypad-NOP; i3++) {
                for 	(i2=NOP; i2<fdm->nxpad-NOP; i2++) {
                    for (i1=NOP; i1<fdm->nzpad-NOP; i1++) {
                        // scatter
                        bua[i3][i2  ][i1] += c1x*(buat[i3][i2  ][i1] -
                                                  buat[i3][i2+1][i1]) +
                                             c2x*(buat[i3][i2-1][i1] -
                                                  buat[i3][i2+2][i1]) +
                                             c3x*(buat[i3][i2-2][i1] -
                                                  buat[i3][i2+3][i1]);

                        sua[i3][i2  ][i1] += c1x*(suat[i3][i2  ][i1] -
                                                  suat[i3][i2+1][i1]) +
                                             c2x*(suat[i3][i2-1][i1] -
                                                  suat[i3][i2+2][i1]) +
                                             c3x*(suat[i3][i2-2][i1] -
                                                  suat[i3][i2+3][i1]);
                    }
                }
            }

            // spatial derivatives y
#ifdef _OPENMP
            #pragma omp for schedule(dynamic,fdm->ompchunk)
#endif
            for 		(i3=NOP; i3<fdm->nypad-NOP; i3++) {
                for 	(i2=NOP; i2<fdm->nxpad-NOP; i2++) {
                    for (i1=NOP; i1<fdm->nzpad-NOP; i1++) {
                        // gather
                        buat[i3][i2][i1]  = iro[i3][i2][i1]*(
                                                c3x*(buo[i3+2][i2][i1] - buo[i3-3][i2][i1]) +
                                                c2x*(buo[i3+1][i2][i1] - buo[i3-2][i2][i1]) +
                                                c1x*(buo[i3  ][i2][i1] - buo[i3-1][i2][i1])
                                            );

                        suat[i3][i2][i1]  = iro[i3][i2][i1]*(
                                                c3x*(suo[i3+2][i2][i1] - suo[i3-3][i2][i1]) +
                                                c2x*(suo[i3+1][i2][i1] - suo[i3-2][i2][i1]) +
                                                c1x*(suo[i3  ][i2][i1] - suo[i3-1][i2][i1])
                                            );
                    }
                }
            }

#ifdef _OPENMP
            #pragma omp for schedule(dynamic,fdm->ompchunk)
#endif
            for 		(i3=NOP; i3<fdm->nypad-NOP; i3++) {
                for 	(i2=NOP; i2<fdm->nxpad-NOP; i2++) {
                    for (i1=NOP; i1<fdm->nzpad-NOP; i1++) {
                        // scatter
                        bua[i3][i2][i1] += c1y*(buat[i3  ][i2][i1] -
                                                buat[i3+1][i2][i1]) +
                                           c2y*(	buat[i3-1][i2][i1] -
                                                   buat[i3+2][i2][i1]) +
                                           c3y*(	buat[i3-2][i2][i1] -
                                                   buat[i3+3][i2][i1]);

                        sua[i3][i2][i1] += c1y*(suat[i3  ][i2][i1] -
                                                suat[i3+1][i2][i1]) +
                                           c2y*(	suat[i3-1][i2][i1] -
                                                   suat[i3+2][i2][i1]) +
                                           c3y*(	suat[i3-2][i2][i1] -
                                                   suat[i3+3][i2][i1]);
                    }
                }
            }

            /* step forward in time */
#ifdef _OPENMP
            #pragma omp for schedule(dynamic,fdm->ompchunk)
#endif
            for 		(i3=NOP; i3<fdm->nypad-NOP; i3++) {
                for 	(i2=NOP; i2<fdm->nxpad-NOP; i2++) {
                    for (i1=NOP; i1<fdm->nzpad-NOP; i1++) {
                        bup[i3][i2][i1] = 2*buo[i3][i2][i1]
                                          -					bum[i3][i2][i1]
                                          -					ro[i3][i2][i1]*vt[i3][i2][i1]*bua[i3][i2][i1];

                        sup[i3][i2][i1] = 2*suo[i3][i2][i1]
                                          -					sum[i3][i2][i1]
                                          -					ro[i3][i2][i1]*vt[i3][i2][i1]*sua[i3][i2][i1];

                    }
                }
            }

            /* single scattering */
#ifdef _OPENMP
            #pragma omp for schedule(dynamic,ompchunk)
#endif
            for 		(i3=NOP; i3<fdm->nypad-NOP; i3++) {
                for 	(i2=NOP; i2<fdm->nxpad-NOP; i2++) {
                    for (i1=NOP; i1<fdm->nzpad-NOP; i1++) {
                        sup[i3][i2][i1] -= 2*rf[i3][i2][i1]*ro[i3][i2][i1]*bua[i3][i2][i1]*dt2;
                    }
                }
            }



        }	/* end of the parallel section */

        /* inject acceleration source */
        sf_floatread(ww,ns,Fwav);
        lint3d_bell(bup,ww,cs);

        /* extract data */
        lint3d_extract(bup,bdd,cr);
        lint3d_extract(sup,sdd,cr);

        if(snap && it%jsnap==0) {
            cut3d(bup,uc,fdm,ac1,ac2,ac3);
            sf_floatwrite(uc[0][0],sf_n(ac1)*sf_n(ac2)*sf_n(ac3),Fwfl);

            cut3d(sup,uc,fdm,ac1,ac2,ac3);
            sf_floatwrite(uc[0][0],sf_n(ac1)*sf_n(ac2)*sf_n(ac3),Fliw);
        }
        if(        it%jdata==0) {
            sf_floatwrite(bdd,nr,Fdat);
            sf_floatwrite(sdd,nr,Flid);
        }

        /* one-way abc apply*/
        if (dabc) {
            abcone3d_apply(bup,buo,NOP,abc,fdm);
            sponge3d_apply(bup,        spo,fdm);
            sponge3d_apply(buo,        spo,fdm);

            abcone3d_apply(sup,suo,NOP,abc,fdm);
            sponge3d_apply(sup,        spo,fdm);
            sponge3d_apply(suo,        spo,fdm);
        }

        /* circulate wavefield arrays */
        but=bum;
        bum=buo;
        buo=bup;
        bup=but;

        sut=sum;
        sum=suo;
        suo=sup;
        sup=sut;

    } /* end time loop */
    end_t = clock();
    if(verb) fprintf(stderr,"\n");

    if (verb) {
        total_t = (float)(end_t - start_t) / CLOCKS_PER_SEC;
        fprintf(stderr,"Total time taken by CPU: %g\n", total_t  );
        fprintf(stderr,"Exiting of the program...\n");
    }


    /*------------------------------------------------------------*/
    /* deallocate arrays */
    free(**bum);
    free(*bum);
    free(bum);
    free(**buo);
    free(*buo);
    free(buo);
    free(**bup);
    free(*bup);
    free(bup);
    free(**bua);
    free(*bua);
    free(bua);
    free(**buat);
    free(*buat);
    free(buat);

    free(**sum);
    free(*sum);
    free(sum);
    free(**suo);
    free(*suo);
    free(suo);
    free(**sup);
    free(*sup);
    free(sup);
    free(**sua);
    free(*sua);
    free(sua);
    free(**suat);
    free(*suat);
    free(suat);

    if(snap) {
        free(**uc);
        free(*uc);
        free(uc);
    }

    if (fsrf) {
        free(**fsrfbck);
        free(*fsrfbck);
        free(fsrfbck);
        free(**fsrfsct);
        free(*fsrfsct);
        free(fsrfsct);
    }

    free(**vt);
    free(*vt);
    free(vt);

    free(**ro);
    free(*ro);
    free(ro);
    free(**iro);
    free(*iro);
    free(iro);

    free(**rf);
    free(*rf);
    free(rf);

    free(ww);
    free(ss);
    free(rr);

    free(bdd);
    free(sdd);

    if (dabc) {
        free(spo);
        free(abc);
    }
    free(fdm);
    /* ------------------------------------------------------------------------------------------ */
    /* CLOSE FILES AND EXIT */
    if (Fwav!=NULL) sf_fileclose(Fwav);

    if (Fsou!=NULL) sf_fileclose(Fsou);
    if (Frec!=NULL) sf_fileclose(Frec);

    if (Fvel!=NULL) sf_fileclose(Fvel);
    if (Fden!=NULL) sf_fileclose(Fden);

    if (Fref!=NULL) sf_fileclose(Fref);

    if (Fdat!=NULL) sf_fileclose(Fdat);

    if (Fwfl!=NULL) sf_fileclose(Fwfl);

    if (Fliw!=NULL) sf_fileclose(Fliw);
    if (Flid!=NULL) sf_fileclose(Flid);

    exit (0);
}
Beispiel #15
0
int main(int argc, char* argv[])
{
    bool verb,fsrf,snap,expl,dabc,abcone,is2D,cfl; 
    bool ignore_interpolation = false; /* ignore interpolation for receivers - makes code faster, but only works when receivers are on grid points */
    int  jsnap,ntsnap,jdata;
    float fmax, safety;
    enum SourceType srctype;
    /* I/O files */
    sf_file Fwav=NULL; /* wavelet   */
    sf_file Fsou=NULL; /* sources   */
    sf_file Frec=NULL; /* receivers */
    sf_file Fvel=NULL; /* velocity  */
    sf_file Fden=NULL; /* density   */
    sf_file Fdat=NULL; /* data      */
    sf_file Fwfl=NULL; /* wavefield */
/*set all y variables to be either zero or null to avoid compiler warnings
about being uninitialized */
    /* cube axes */
    sf_axis at,az,ax,ay=NULL; 
    sf_axis as,ar;

    int     nt,nz,nx,ny=0,ns,nr,nb;
    int     it,iz,ix,iy=0;
    float   dt,dz,dx,dy=0,idz,idx,idy=0;

    
    /* I/O arrays */
    float  *ww=NULL;           /* wavelet   */
    float  *dd=NULL;           /* data      */

    
    /* FD operator size */
    float co,cax,cbx,cay,cby,caz,cbz;

    /* wavefield cut params */
    sf_axis   acz=NULL,acx=NULL,acy=NULL;
    int       nqz,nqx,nqy;
    float     oqz,oqx,oqy;
    float     dqz,dqx,dqy;

    /*------------------------------------------------------------*/
    /* init RSF */
    sf_init(argc,argv);

    /*------------------------------------------------------------*/
    /* OMP parameters */

    if( !sf_getbool("ignint",&ignore_interpolation)) ignore_interpolation = false;
    if(! sf_getbool("verb",&verb)) verb=false; /* verbosity flag */
    if(! sf_getbool("snap",&snap)) snap=false; /* wavefield snapshots flag */
    if(! sf_getbool("free",&fsrf)) fsrf=false; /* free surface flag */
    if(! sf_getbool("expl",&expl)) expl=false; /* "exploding reflector" */
    if(! sf_getbool("dabc",&dabc)) dabc=false; /* absorbing BC */
    if(! sf_getbool("cfl",&cfl)) cfl=false; /* Use CFL check */ 
    if(! sf_getbool("abcone",&abcone)) abcone=false; /* Use Zero-incident boundary condition*/ 
   
    int ttype = 0;
    if(! sf_getint("srctype",&ttype)) ttype = 0; /* source type, see comments */
    if(ttype < 0 || ttype > 1) sf_error("Invalid source type specified");
           srctype = ttype;
    if (cfl) {
        if(! sf_getfloat("fmax",&fmax)) { /* max frequency for cfl check */
            sf_error("CFL: Must specify fmax for CFL check");
        }
        if(! sf_getfloat("safety",&safety) || safety < 0.0) safety= 0.8; /*safety factor for cfl check*/
    }
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* I/O files */
    Fwav = sf_input ("in" ); /* wavelet   */
    Fvel = sf_input ("vel"); /* velocity  */
    Fsou = sf_input ("sou"); /* sources   */
    Frec = sf_input ("rec"); /* receivers */
    Fwfl = sf_output("wfl"); /* wavefield */
    Fdat = sf_output("out"); /* data      */
    Fden = sf_input ("den"); /* density   */

	/* Determine dimensionality, if 2D then axis 3 has n size of 1 */
	sf_axis test = sf_iaxa(Fvel,3);
	if(sf_n(test) == 1) is2D = true;
	else is2D = false;

    /*------------------------------------------------------------*/
    /* axes */
    at = sf_iaxa(Fwav,2); sf_setlabel(at,"t"); if(verb) sf_raxa(at); /* time */
    az = sf_iaxa(Fvel,1); sf_setlabel(az,"z"); if(verb) sf_raxa(az); /* depth */
    ax = sf_iaxa(Fvel,2); sf_setlabel(ax,"x"); if(verb) sf_raxa(ax); /* space */

    as = sf_iaxa(Fsou,2); sf_setlabel(as,"s"); if(verb) sf_raxa(as); /* sources */
    ar = sf_iaxa(Frec,2); sf_setlabel(ar,"r"); if(verb) sf_raxa(ar); /* receivers */

    nt = sf_n(at); dt = sf_d(at);
    nz = sf_n(az); dz = sf_d(az);
    nx = sf_n(ax); dx = sf_d(ax);

    ns = sf_n(as);
    nr = sf_n(ar);

    if(!is2D){ /*If 3D*/
		ay=sf_iaxa(Fvel,3); sf_setlabel(ay,"y"); if(verb) sf_raxa(ay); /*space*/
		ny=sf_n(ay); dy=sf_d(ay);
	}
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* other execution parameters */
    if(! sf_getint("jdata",&jdata)) jdata=1;
    if(snap) {  /* save wavefield every *jsnap* time steps */
    	if(! sf_getint("jsnap",&jsnap)) jsnap=nt;        
    }
    /*------------------------------------------------------------*/
if(is2D){
/* Begin 2d code */
    /* FDM structure */
    fdm2d    fdm=NULL;
    abcone2d abc=NULL;
    sponge   spo=NULL;
    pt2d   *ss=NULL;           /* sources   */
    pt2d   *rr=NULL;           /* receivers */
   
    float **tt=NULL;
    float **ro=NULL;           /* density */
    float **roz=NULL;          /* normalized 1st derivative of density on axis 1 */
    float **rox=NULL;          /* normalized 1st derivative of density on axis 2 */
    float **vp=NULL;           /* velocity */
    float **vt=NULL;           /* temporary vp*vp * dt*dt */

    float **um,**uo,**up,**ua,**ut; /* wavefield: um = U @ t-1; uo = U @ t; up = U @ t+1 */

    /* linear interpolation weights/indices */
    lint2d cs,cr;
    float     **uc=NULL;

    /*------------------------------------------------------------*/
    /* expand domain for FD operators and ABC */
    if( !sf_getint("nb",&nb) || nb<NOP) nb=NOP;

    fdm=fdutil_init(verb,fsrf,az,ax,nb,1);

    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* setup output data header */
    sf_oaxa(Fdat,ar,1);

    sf_setn(at,nt/jdata);
    sf_setd(at,dt*jdata);
    sf_oaxa(Fdat,at,2);

    /* setup output wavefield header */
    if(snap) {
	if(!sf_getint  ("nqz",&nqz)) nqz=sf_n(az);
	if(!sf_getint  ("nqx",&nqx)) nqx=sf_n(ax);

	if(!sf_getfloat("oqz",&oqz)) oqz=sf_o(az);
	if(!sf_getfloat("oqx",&oqx)) oqx=sf_o(ax);

    sf_setn(az,fdm->nzpad); sf_seto(az,fdm->ozpad); if(verb) sf_raxa(az);
    sf_setn(ax,fdm->nxpad); sf_seto(ax,fdm->oxpad); if(verb) sf_raxa(ax);
	dqz=sf_d(az);
	dqx=sf_d(ax);

	acz = sf_maxa(nqz,oqz,dqz); sf_raxa(acz);
	acx = sf_maxa(nqx,oqx,dqx); sf_raxa(acx);
	/* check if the imaging window fits in the wavefield domain */

	uc=sf_floatalloc2(sf_n(acz),sf_n(acx));

	ntsnap=0;
	for(it=0; it<nt; it++) {
	    if(it%jsnap==0) ntsnap++;
	}
	sf_setn(at,  ntsnap);
	sf_setd(at,dt*jsnap);
	if(verb) sf_raxa(at);

	sf_oaxa(Fwfl,acz,1);
	sf_oaxa(Fwfl,acx,2);
	sf_oaxa(Fwfl,at, 3);
    }

    if(expl) {
    	ww = sf_floatalloc( 1);
    } else {
    	ww = sf_floatalloc(ns);
    }
    dd = sf_floatalloc(nr);

    /*------------------------------------------------------------*/
    /* setup source/receiver coordinates */
    ss = (pt2d*) sf_alloc(ns,sizeof(*ss)); 
    rr = (pt2d*) sf_alloc(nr,sizeof(*rr)); 

    pt2dread1(Fsou,ss,ns,2); /* read (x,z) coordinates */
    pt2dread1(Frec,rr,nr,2); /* read (x,z) coordinates */

    cs = lint2d_make(ns,ss,fdm);
    cr = lint2d_make(nr,rr,fdm);

    /*------------------------------------------------------------*/
    /* setup FD coefficients */
    idz = 1/dz;
    idx = 1/dx;

    co = C0 * (idx*idx+idz*idz);
    cax= CA *  idx*idx;
    cbx= CB *  idx*idx;
    caz= CA *  idz*idz;
    cbz= CB *  idz*idz;

    /*------------------------------------------------------------*/ 
    tt = sf_floatalloc2(nz,nx); 

    ro  =sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    roz =sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    rox =sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    vp  =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 
    vt  =sf_floatalloc2(fdm->nzpad,fdm->nxpad); 

    /* input density */
    sf_floatread(tt[0],nz*nx,Fden);     expand(tt,ro ,fdm);
    /* normalized density derivatives */
    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
	for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
	    roz[ix][iz] = DZ(ro,ix,iz,idz) / ro[ix][iz];
	    rox[ix][iz] = DX(ro,ix,iz,idx) / ro[ix][iz];
	}
    }   
    free(*ro); free(ro);

    /* input velocity */
    sf_floatread(tt[0],nz*nx,Fvel );    expand(tt,vp,fdm);
    float vpmax = 0.0; float vpmin = 10000000000000000;
    /* precompute vp^2 * dt^2 */
    for    (ix=0; ix<fdm->nxpad; ix++) {
        for(iz=0; iz<fdm->nzpad; iz++) {
            vt[ix][iz] = vp[ix][iz] * vp[ix][iz] * dt*dt;
            if (vp[ix][iz] < vpmin) vpmin = vp[ix][iz];
            else if (vp[ix][iz] > vpmax) vpmax = vp[ix][iz];
        }
    }
    if (cfl) cfl_acoustic(vpmin,vpmax,dx,-1.0f,dz,dt,fmax,safety,NUM_INTERVALS);
    if(fsrf) { /* free surface */
        for    (ix=0; ix<fdm->nxpad; ix++) {
            for(iz=0; iz<fdm->nb; iz++) {
                vt[ix][iz]=0;
            }
        }
    }

    free(*tt); free(tt);    
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* allocate wavefield arrays */
    um=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    uo=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    up=sf_floatalloc2(fdm->nzpad,fdm->nxpad);
    ua=sf_floatalloc2(fdm->nzpad,fdm->nxpad);

    for    (ix=0; ix<fdm->nxpad; ix++) {
	for(iz=0; iz<fdm->nzpad; iz++) {
	    um[ix][iz]=0;
	    uo[ix][iz]=0;
	    up[ix][iz]=0;
	    ua[ix][iz]=0;
	}
    }

    /*------------------------------------------------------------*/
	if (abcone) abc = abcone2d_make(NOP,dt,vp,fsrf,fdm);
    if(dabc) {
	/* one-way abc setup */
	/* sponge abc setup */
	spo = sponge_make(fdm->nb);
    }

    /*------------------------------------------------------------*/
    /* 
     *  MAIN LOOP
     */
    /*------------------------------------------------------------*/
    if(verb) fprintf(stderr,"\n");
    for (it=0; it<nt; it++) {
	if(verb) fprintf(stderr,"%d/%d \r",it,nt);

#pragma omp parallel for				\
    schedule(dynamic) \
    private(ix,iz)					\
    shared(fdm,ua,uo,co,caz,cbz)
	for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
	    for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
		
		/* 4th order Laplacian operator */
		ua[ix][iz] = 
		    co * uo[ix  ][iz  ] + 
		    caz*(uo[ix  ][iz-1] + uo[ix  ][iz+1]) +
		    cbz*(uo[ix  ][iz-2] + uo[ix  ][iz+2]) ; 
		/* density term */
        /*ua[ix][iz] -= (
		    DZ(uo,ix,iz,idz) * roz[ix][iz] +
		    DX(uo,ix,iz,idx) * rox[ix][iz] );
        */
	    }
	}   

#pragma omp parallel for				\
    schedule(dynamic)			\
    private(ix,iz)					\
    shared(fdm,ua,uo,co,cax,cbx)
	for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
	    for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
        ua[ix][iz] =  ua[ix][iz] + 
		    cax*(uo[ix-1][iz  ] + uo[ix+1][iz  ]) +
		    cbx*(uo[ix-2][iz  ] + uo[ix+2][iz  ]);
            }
    }

	/* inject acceleration source */
    if (srctype == ACCELERATION){
            if(expl) {
                sf_floatread(ww, 1,Fwav);
                lint2d_inject1(ua,ww[0],cs);
            } else {
                  sf_floatread(ww,ns,Fwav);
                  lint2d_inject(ua,ww,cs);
            }
    }

	/* step forward in time */
#pragma omp parallel for	    \
    schedule(dynamic) \
    private(ix,iz)		    \
    shared(fdm,ua,uo,um,up,vt)
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {
		up[ix][iz] = 2*uo[ix][iz] 
		    -          um[ix][iz] 
		    +          ua[ix][iz] * vt[ix][iz];
	    }
	}

    if(srctype == DISPLACEMENT){
            if(expl) {
                sf_floatread(ww, 1,Fwav);
                lint2d_inject1(up,ww[0],cs);
            } else {
                  sf_floatread(ww,ns,Fwav);
                  lint2d_inject(up,ww,cs);
            }
    }

    
	/* circulate wavefield arrays */
	ut=um;
	um=uo;
	uo=up;
	up=ut;
    
    if (abcone) abcone2d_apply(uo,um,NOP,abc,fdm);
	if(dabc) {
	    /* one-way abc apply */
	    sponge2d_apply(um,spo,fdm);
	    sponge2d_apply(uo,spo,fdm);
	    sponge2d_apply(up,spo,fdm);
	}

	/* extract data */
    if(ignore_interpolation){
        cut2d_extract(uo,dd,cr);
    } else {
	    lint2d_extract(uo,dd,cr);
    }

	if(snap && it%jsnap==0) {
	    cut2d(uo,uc,fdm,acz,acx);
	    sf_floatwrite(uc[0],sf_n(acz)*sf_n(acx),Fwfl);
	}
	if(        it%jdata==0) 
	    sf_floatwrite(dd,nr,Fdat);
    }
    if(verb) fprintf(stderr,"\n");    

    /*------------------------------------------------------------*/
    /* deallocate arrays */
    free(*um); free(um);
    free(*up); free(up);
    free(*uo); free(uo);
    free(*ua); free(ua);
    if(snap) { free(*uc); free(uc); }

    free(*rox); free(rox);
    free(*roz); free(roz);
    free(*vp);  free(vp);
    free(*vt);  free(vt);

    free(ww);
    free(ss);
    free(rr);
    free(dd);


    exit (0);
} else {
    /* FDM structure */
    fdm3d    fdm=NULL;
    abcone3d abc=NULL;
    sponge   spo=NULL;

    /* I/O arrays */
    pt3d   *ss=NULL;           /* sources   */
    pt3d   *rr=NULL;           /* receivers */
	/* Non-universal arrays */
    float***tt=NULL;
    float***ro=NULL;           /* density */
    float***roz=NULL;          /* normalized 1st derivative of density on axis 1 */
    float***rox=NULL;          /* normalized 1st derivative of density on axis 2 */
    float***roy=NULL;          /* normalized 1st derivative of density on axis 3 */
    float***vp=NULL;           /* velocity */
    float***vt=NULL;           /* temporary vp*vp * dt*dt */

    float***um,***uo,***up,***ua,***ut; /* wavefield: um = U @ t-1; uo = U @ t; up = U @ t+1 */

    /* linear interpolation weights/indices */
    lint3d cs,cr;

	/* Wavefield cut params that are not universal */
    float     ***uc=NULL;


    /*------------------------------------------------------------*/
    /* expand domain for FD operators and ABC */
    if( !sf_getint("nb",&nb) || nb<NOP) nb=NOP;

    fdm=fdutil3d_init(verb,fsrf,az,ax,ay,nb,1);

    sf_setn(az,fdm->nzpad); sf_seto(az,fdm->ozpad); if(verb) sf_raxa(az);
    sf_setn(ax,fdm->nxpad); sf_seto(ax,fdm->oxpad); if(verb) sf_raxa(ax);
    sf_setn(ay,fdm->nypad); sf_seto(ay,fdm->oypad); if(verb) sf_raxa(ay);
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* setup output data header */
    sf_oaxa(Fdat,ar,1);

    sf_setn(at,nt/jdata);
    sf_setd(at,dt*jdata);
    sf_oaxa(Fdat,at,2);

    /* setup output wavefield header */
    if(snap) {
	if(!sf_getint  ("nqz",&nqz)) nqz=sf_n(az);
	if(!sf_getint  ("nqx",&nqx)) nqx=sf_n(ax);
	if(!sf_getint  ("nqy",&nqy)) nqy=sf_n(ay);

	if(!sf_getfloat("oqz",&oqz)) oqz=sf_o(az);
	if(!sf_getfloat("oqx",&oqx)) oqx=sf_o(ax);
	if(!sf_getfloat("oqy",&oqy)) oqy=sf_o(ay);

	dqz=sf_d(az);
	dqx=sf_d(ax);
	dqy=sf_d(ay);

	acz = sf_maxa(nqz,oqz,dqz); sf_raxa(acz);
	acx = sf_maxa(nqx,oqx,dqx); sf_raxa(acx);
	acy = sf_maxa(nqy,oqy,dqy); sf_raxa(acy);
	/* check if the imaging window fits in the wavefield domain */

	uc=sf_floatalloc3(sf_n(acz),sf_n(acx),sf_n(acy));

	ntsnap=0;
	for(it=0; it<nt; it++) {
	    if(it%jsnap==0) ntsnap++;
	}
	sf_setn(at,  ntsnap);
	sf_setd(at,dt*jsnap);
	if(verb) sf_raxa(at);

	sf_oaxa(Fwfl,acz,1);
	sf_oaxa(Fwfl,acx,2);
	sf_oaxa(Fwfl,acy,3);
	sf_oaxa(Fwfl,at, 4);
    }

    if(expl) {
	ww = sf_floatalloc( 1);
    } else {
	ww = sf_floatalloc(ns);
    }
    dd = sf_floatalloc(nr);

    /*------------------------------------------------------------*/
    /* setup source/receiver coordinates */
    ss = (pt3d*) sf_alloc(ns,sizeof(*ss)); 
    rr = (pt3d*) sf_alloc(nr,sizeof(*rr)); 

    pt3dread1(Fsou,ss,ns,3); /* read (x,y,z) coordinates */
    pt3dread1(Frec,rr,nr,3); /* read (x,y,z) coordinates */

    cs = lint3d_make(ns,ss,fdm);
    cr = lint3d_make(nr,rr,fdm);

    /*------------------------------------------------------------*/
    /* setup FD coefficients */
    idz = 1/dz;
    idx = 1/dx;
    idy = 1/dy;

    co = C0 * (idx*idx+idy*idy+idz*idz);
    cax= CA *  idx*idx;
    cbx= CB *  idx*idx;
    cay= CA *  idy*idy;
    cby= CB *  idy*idy;
    caz= CA *  idz*idz;
    cbz= CB *  idz*idz;

    /*------------------------------------------------------------*/ 
    tt = sf_floatalloc3(nz,nx,ny); 

    ro  =sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    roz =sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    rox =sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    roy =sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    vp  =sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 
    vt  =sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad); 

    /* input density */
    sf_floatread(tt[0][0],nz*nx*ny,Fden);     expand3d(tt,ro ,fdm);

    /* normalized density derivatives */
    for        (iy=NOP; iy<fdm->nypad-NOP; iy++) {
	for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
	    for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
		roz[iy][ix][iz] = DZ3(ro,ix,iy,iz,idz) / ro[iy][ix][iz];
		rox[iy][ix][iz] = DX3(ro,ix,iy,iz,idx) / ro[iy][ix][iz];
		roy[iy][ix][iz] = DY3(ro,ix,iy,iz,idy) / ro[iy][ix][iz];
	    }
	}   
    }
    free(**ro);  free(*ro); free(ro);  

    /* input velocity */
    sf_floatread(tt[0][0],nz*nx*ny,Fvel );    expand3d(tt,vp,fdm);
    /* precompute vp^2 * dt^2 */
    float vpmin = 1000000000000; float vpmax = 0.0;
    for        (iy=0; iy<fdm->nypad; iy++) {
        for    (ix=0; ix<fdm->nxpad; ix++) {
            for(iz=0; iz<fdm->nzpad; iz++) {
                float vpt = vp[iy][ix][iz];
                vt[iy][ix][iz] = vp[iy][ix][iz] * vp[iy][ix][iz] * dt*dt;
                if (vpt > vpmax) vpmax = vpt;
                else if (vpt < vpmin) vpmin = vpt;
            }
        }
    }

    if (cfl) cfl_acoustic(vpmin,vpmax,dx,dy,dz,dt,fmax,safety,NUM_INTERVALS);

    if(fsrf) { /* free surface */
	for        (iy=0; iy<fdm->nypad; iy++) {
	    for    (ix=0; ix<fdm->nxpad; ix++) {
		for(iz=0; iz<fdm->nb; iz++) {
		    vt[iy][ix][iz]=0;
		}
	    }
	}
    }

    free(**tt);  free(*tt); free(tt);    
    /*------------------------------------------------------------*/

    /*------------------------------------------------------------*/
    /* allocate wavefield arrays */
    um=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    uo=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    up=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);
    ua=sf_floatalloc3(fdm->nzpad,fdm->nxpad,fdm->nypad);

    for        (iy=0; iy<fdm->nypad; iy++) {
	for    (ix=0; ix<fdm->nxpad; ix++) {
	    for(iz=0; iz<fdm->nzpad; iz++) {
		um[iy][ix][iz]=0;
		uo[iy][ix][iz]=0;
		up[iy][ix][iz]=0;
		ua[iy][ix][iz]=0;
	    }
	}
    }

    /*------------------------------------------------------------*/
	if (abcone) abc = abcone3d_make(NOP,dt,vp,fsrf,fdm);
    if(dabc) {
	/* one-way abc setup */
	/* sponge abc setup */
	spo = sponge_make(fdm->nb);
    }

    /*------------------------------------------------------------*/
    /* 
     *  MAIN LOOP
     */
    /*------------------------------------------------------------*/
    if(verb) fprintf(stderr,"\n");
    for (it=0; it<nt; it++) {
	if(verb) fprintf(stderr,"%d/%d \r",it,nt);

#pragma omp parallel for					\
    schedule(dynamic) \
    private(ix,iy,iz)						\
    shared(fdm,ua,uo,co,cax,cay,caz,cbx,cby,cbz,idx,idy,idz)
	for        (iy=NOP; iy<fdm->nypad-NOP; iy++) {
	    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
		for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
		    
		    /* 4th order Laplacian operator */
		    ua[iy][ix][iz] = 
			co * uo[iy  ][ix  ][iz  ] + 
			caz*(uo[iy  ][ix  ][iz-1] + uo[iy  ][ix  ][iz+1]) +
			cbz*(uo[iy  ][ix  ][iz-2] + uo[iy  ][ix  ][iz+2]);
		    
		    /* density term */
		    /*ua[iy][ix][iz] -= (
			DZ3(uo,ix,iy,iz,idz) * roz[iy][ix][iz] +
			DX3(uo,ix,iy,iz,idx) * rox[iy][ix][iz] +
			DY3(uo,ix,iy,iz,idy) * roy[iy][ix][iz] );
            */
		 }
	    }   
	}

#pragma omp parallel for					\
    schedule(dynamic) \
    private(ix,iy,iz)						\
    shared(fdm,ua,uo,co,cax,cay,caz,cbx,cby,cbz,idx,idy,idz)
	for        (iy=NOP; iy<fdm->nypad-NOP; iy++) {
	    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
		    for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
		    ua[iy][ix][iz] = ua[iy][ix][iz] + 
			cax*(uo[iy  ][ix-1][iz  ] + uo[iy  ][ix+1][iz  ]) +
			cbx*(uo[iy  ][ix-2][iz  ] + uo[iy  ][ix+2][iz  ]) ;
            }
        }
    }

#pragma omp parallel for					\
    schedule(dynamic) \
    private(ix,iy,iz)						\
    shared(fdm,ua,uo,co,cax,cay,caz,cbx,cby,cbz,idx,idy,idz)
	for        (iy=NOP; iy<fdm->nypad-NOP; iy++) {
	    for    (ix=NOP; ix<fdm->nxpad-NOP; ix++) {
		    for(iz=NOP; iz<fdm->nzpad-NOP; iz++) {
		    ua[iy][ix][iz] = ua[iy][ix][iz] + 
			cay*(uo[iy-1][ix  ][iz  ] + uo[iy+1][ix  ][iz  ]) +
			cby*(uo[iy-2][ix  ][iz  ] + uo[iy+2][ix  ][iz  ]);
            }
        }
    }

	/* inject acceleration source */
    if (srctype == ACCELERATION){
        if(expl) {
            sf_floatread(ww, 1,Fwav);
            lint3d_inject1(ua,ww[0],cs);
        } else {
            sf_floatread(ww,ns,Fwav);	
            lint3d_inject(ua,ww,cs);
        }
   }

	/* step forward in time */
#pragma omp parallel for	    \
    schedule(static) \
    private(ix,iy,iz)		    \
    shared(fdm,ua,uo,um,up,vt)
	for        (iy=0; iy<fdm->nypad; iy++) {
	    for    (ix=0; ix<fdm->nxpad; ix++) {
		for(iz=0; iz<fdm->nzpad; iz++) {
		    up[iy][ix][iz] = 2*uo[iy][ix][iz] 
			-              um[iy][ix][iz] 
			+              ua[iy][ix][iz] * vt[iy][ix][iz];
		}
	    }
	}

    if (srctype == DISPLACEMENT) {
        if(expl) {
            sf_floatread(ww, 1,Fwav);
            lint3d_inject1(up,ww[0],cs);
        } else {
            sf_floatread(ww,ns,Fwav);	
            lint3d_inject(up,ww,cs);
        }
    }
	/* circulate wavefield arrays */
	ut=um;
	um=uo;
	uo=up;
	up=ut;

    if(abcone) abcone3d_apply(uo,um,NOP,abc,fdm);
	if(dabc) {
	    /* one-way abc apply */
	    sponge3d_apply(um,spo,fdm);
	    sponge3d_apply(uo,spo,fdm);
	    sponge3d_apply(up,spo,fdm);
	}

	/* extract data */
    if (ignore_interpolation) {
	    cut3d_extract(uo,dd,cr);
    } else {
	    lint3d_extract(uo,dd,cr);
    }

	if(snap && it%jsnap==0) {
	    cut3d(uo,uc,fdm,acz,acx,acy);
	    sf_floatwrite(uc[0][0],sf_n(acz)*sf_n(acx)*sf_n(acy),Fwfl);
	}
	if(it%jdata==0) 
	    sf_floatwrite(dd,nr,Fdat);
    }
    if(verb) fprintf(stderr,"\n");    

    /*------------------------------------------------------------*/
    /* deallocate arrays */
    free(**um); free(*um); free(um);
    free(**up); free(*up); free(up);
    free(**uo); free(*uo); free(uo);
    free(**ua); free(*ua); free(ua);
    if (snap) { free(**uc); free(*uc); free(uc); }

    free(**rox); free(*rox); free(rox);
    free(**roy); free(*roy); free(roy);
    free(**roz); free(*roz); free(roz);

    free(**vp); free(*vp); free(vp);
    free(**vt); free(*vt); free(vt);

    free(ss);
    free(rr);
    free(dd);
    free(ww);

    exit (0);
    }
}