float lapack_small_systems(float *a, float *b, float *c, float *d, float *x, int system_size, int num_systems)
{

    float time_spent = 0;

    integer n=system_size;
    integer nrhs=1;
    integer info;

    
#ifdef TIMING_INFO 
    struct timeval T1,T2;
	gettimeofday(&T1,0);
    //clock_t t1, t2;
    //t1 = clock();
#endif

    for (int i = 0; i < num_systems; i++)
	{
        sgtsv_(&n, &nrhs, &a[i*system_size+1], &b[i*system_size],&c[i*system_size],&d[i*system_size], &n, &info);
 
        //serial0(&a[i*system_size],&b[i*system_size],&c[i*system_size],&d[i*system_size],&x[i*system_size],system_size);
	}

#ifdef TIMING_INFO 
    gettimeofday(&T2,0);
    time_spent = (float)(T2.tv_sec-T1.tv_sec)*1000+(float)(T2.tv_usec-T1.tv_usec)/1000;
    //t2 = clock();
    //time_spent = float(t2-t1)/float(CLOCKS_PER_SEC);

    printf("time spent: %f milliseconds\n",time_spent);
    //printf("time spent sec: %f seconds\n",(float)(T2.tv_sec-T1.tv_sec));
    //printf("time spent usec: %f microseconds\n",(float)(T2.tv_usec-T1.tv_usec));

 
#endif

    return time_spent;
}
Beispiel #2
0
/* Subroutine */ int stimgt_(char *line, integer *nm, integer *mval, integer *
	nns, integer *nsval, integer *nlda, integer *ldaval, real *timmin, 
	real *a, real *b, integer *iwork, real *reslts, integer *ldr1, 
	integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len)
{
    /* Initialized data */

    static char subnam[6*4] = "SGTTRF" "SGTTRS" "SGTSV " "SGTSL ";
    static char transs[1*2] = "N" "T";

    /* Format strings */
    static char fmt_9998[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9997[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "***\002)";
    static char fmt_9996[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";
    static char fmt_9999[] = "(\002 SGTTRS with TRANS = '\002,a1,\002'\002,/)"
	    ;

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3, i__4;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda, info;
    static char path[3];
    static real time;
    static integer isub, nrhs, i__, m, n;
    static char cname[6];
    static integer laval[1];
    extern doublereal sopgb_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    static integer itran;
    static char trans[1];
    extern /* Subroutine */ int sgtsl_(integer *, real *, real *, real *, 
	    real *, integer *);
    static real s1, s2;
    extern /* Subroutine */ int sgtsv_(integer *, integer *, real *, real *, 
	    real *, real *, integer *, integer *);
    static integer ic, im;
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen);
    extern doublereal second_(void);
    extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, 
	    logical *, integer *, integer *, ftnlen, ftnlen, ftnlen);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real 
	    *, integer *, integer *, integer *);
    static logical timsub[4];
    extern /* Subroutine */ int sprtbl_(char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, real *, integer *, integer *, 
	    integer *, ftnlen, ftnlen), sgttrf_(integer *, real *, real *, 
	    real *, real *, integer *, integer *), sgttrs_(char *, integer *, 
	    integer *, real *, real *, real *, real *, integer *, real *, 
	    integer *, integer *);
    static integer ldb, icl;
    static real ops;

    /* Fortran I/O blocks */
    static cilist io___8 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___25 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___26 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___27 = { 0, 0, 0, 0, 0 };
    static cilist io___29 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___30 = { 0, 0, 0, fmt_9999, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    STIMGT times SGTTRF, -TRS, -SV, and -SL.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix size M.   

    NNS     (input) INTEGER   
            The number of values of NRHS contained in the vector NSVAL.   

    NSVAL   (input) INTEGER array, dimension (NNS)   
            The values of the number of right hand sides NRHS.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) REAL   
            The minimum time a subroutine will be timed.   

    A       (workspace) REAL array, dimension (NMAX*4)   
            where NMAX is the maximum value permitted for N.   

    B       (workspace) REAL array, dimension (LDAMAX*NMAX)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    RESLTS  (output) REAL array, dimension   
                     (LDR1,LDR2,LDR3,NSUBS+1)   
            The timing results for each subroutine over the relevant   
            values of N.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= 1.   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NM).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --mval;
    --nsval;
    --ldaval;
    --a;
    --b;
    --iwork;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__4, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L180;
    }

/*     Check that N <= LDA for the input values. */

    for (isub = 2; isub <= 4; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L10;
	}
	s_copy(cname, subnam_ref(0, isub), (ftnlen)6, (ftnlen)6);
	atimck_(&c__2, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, (
		ftnlen)6);
	if (info > 0) {
	    io___8.ciunit = *nout;
	    s_wsfe(&io___8);
	    do_fio(&c__1, cname, (ftnlen)6);
	    e_wsfe();
	    timsub[isub - 1] = FALSE_;
	}
L10:
	;
    }

/*     Do for each value of M: */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

	m = mval[im];
	n = max(m,1);

/*        Time SGTTRF */

	if (timsub[0]) {
	    i__2 = n * 3;
	    stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0);
	    ic = 0;
	    s1 = second_();
L20:
	    sgttrf_(&m, &a[1], &a[n], &a[n * 2], &a[n * 3 - 2], &iwork[1], &
		    info);
	    s2 = second_();
	    time = s2 - s1;
	    ++ic;
	    if (time < *timmin) {
		i__2 = n * 3;
		stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0);
		goto L20;
	    }

/*           Subtract the time used in STIMMG. */

	    icl = 1;
	    s1 = second_();
L30:
	    s2 = second_();
	    untime = s2 - s1;
	    ++icl;
	    if (icl <= ic) {
		i__2 = n * 3;
		stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0);
		goto L30;
	    }

	    time = (time - untime) / (real) ic;
	    ops = sopgb_("SGTTRF", &m, &m, &c__1, &c__1, &iwork[1])
		    ;
	    reslts_ref(1, im, 1, 1) = smflop_(&ops, &time, &info);

	} else if (timsub[1]) {
	    i__2 = n * 3;
	    stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0);
	}

/*        Generate another matrix and factor it using SGTTRF so   
          that the factored form can be used in timing the other   
          routines. */

	if (ic != 1) {
	    sgttrf_(&m, &a[1], &a[n], &a[n * 2], &a[n * 3 - 2], &iwork[1], &
		    info);
	}

/*        Time SGTTRS */

	if (timsub[1]) {
	    for (itran = 1; itran <= 2; ++itran) {
		*(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]
			;
		i__2 = *nlda;
		for (ilda = 1; ilda <= i__2; ++ilda) {
		    ldb = ldaval[ilda];
		    i__3 = *nns;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			nrhs = nsval[i__];
			stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
			ic = 0;
			s1 = second_();
L40:
			sgttrs_(trans, &m, &nrhs, &a[1], &a[n], &a[n * 2], &a[
				n * 3 - 2], &iwork[1], &b[1], &ldb, &info);
			s2 = second_();
			time = s2 - s1;
			++ic;
			if (time < *timmin) {
			    stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &
				    c__0);
			    goto L40;
			}

/*                 Subtract the time used in STIMMG. */

			icl = 1;
			s1 = second_();
L50:
			s2 = second_();
			untime = s2 - s1;
			++icl;
			if (icl <= ic) {
			    stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &
				    c__0);
			    goto L50;
			}

			time = (time - untime) / (real) ic;
			ops = sopgb_("SGTTRS", &m, &nrhs, &c__0, &c__0, &
				iwork[1]);
			if (itran == 1) {
			    reslts_ref(i__, im, ilda, 2) = smflop_(&ops, &
				    time, &info);
			} else {
			    reslts_ref(i__, im, ilda, 5) = smflop_(&ops, &
				    time, &info);
			}
/* L60: */
		    }
/* L70: */
		}
/* L80: */
	    }
	}

	if (timsub[2]) {
	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		ldb = ldaval[ilda];
		i__3 = *nns;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    nrhs = nsval[i__];
		    i__4 = n * 3;
		    stimmg_(&c__12, &m, &m, &a[1], &i__4, &c__0, &c__0);
		    stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
		    ic = 0;
		    s1 = second_();
L90:
		    sgtsv_(&m, &nrhs, &a[1], &a[n], &a[n * 2], &b[1], &ldb, &
			    info);
		    s2 = second_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			i__4 = n * 3;
			stimmg_(&c__12, &m, &m, &a[1], &i__4, &c__0, &c__0);
			stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
			goto L90;
		    }

/*                 Subtract the time used in STIMMG. */

		    icl = 1;
		    s1 = second_();
L100:
		    s2 = second_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			i__4 = n * 3;
			stimmg_(&c__12, &m, &m, &a[1], &i__4, &c__0, &c__0);
			stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
			goto L100;
		    }

		    time = (time - untime) / (real) ic;
		    ops = sopgb_("SGTSV ", &m, &nrhs, &c__0, &c__0, &iwork[1]);
		    reslts_ref(i__, im, ilda, 3) = smflop_(&ops, &time, &info)
			    ;
/* L110: */
		}
/* L120: */
	    }
	}

	if (timsub[3]) {
	    i__2 = n * 3;
	    stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0);
	    stimmg_(&c__0, &m, &c__1, &b[1], &n, &c__0, &c__0);
	    ic = 0;
	    s1 = second_();
L130:
	    sgtsl_(&m, &a[1], &a[n], &a[n * 2], &b[1], &info);
	    s2 = second_();
	    time = s2 - s1;
	    ++ic;
	    if (time < *timmin) {
		i__2 = n * 3;
		stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0);
		stimmg_(&c__0, &m, &c__1, &b[1], &ldb, &c__0, &c__0);
		goto L130;
	    }

/*           Subtract the time used in STIMMG. */

	    icl = 1;
	    s1 = second_();
L140:
	    s2 = second_();
	    untime = s2 - s1;
	    ++icl;
	    if (icl <= ic) {
		i__2 = n * 3;
		stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0);
		stimmg_(&c__0, &m, &c__1, &b[1], &ldb, &c__0, &c__0);
		goto L140;
	    }

	    time = (time - untime) / (real) ic;
	    ops = sopgb_("SGTSV ", &m, &c__1, &c__0, &c__0, &iwork[1]);
	    reslts_ref(1, im, 1, 4) = smflop_(&ops, &time, &info);
	}
/* L150: */
    }

/*     Print a table of results for each timed routine. */

    for (isub = 1; isub <= 4; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L170;
	}
	io___25.ciunit = *nout;
	s_wsfe(&io___25);
	do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	e_wsfe();
	if (*nlda > 1 && (timsub[1] || timsub[2])) {
	    i__1 = *nlda;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		io___26.ciunit = *nout;
		s_wsfe(&io___26);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
		e_wsfe();
/* L160: */
	    }
	}
	io___27.ciunit = *nout;
	s_wsle(&io___27);
	e_wsle();
	if (isub == 1) {
	    sprtbl_(" ", "N", &c__1, laval, nm, &mval[1], &c__1, &reslts[
		    reslts_offset], ldr1, ldr2, nout, (ftnlen)1, (ftnlen)1);
	} else if (isub == 2) {
	    io___29.ciunit = *nout;
	    s_wsfe(&io___29);
	    do_fio(&c__1, "N", (ftnlen)1);
	    e_wsfe();
	    sprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, &
		    reslts_ref(1, 1, 1, 2), ldr1, ldr2, nout, (ftnlen)4, (
		    ftnlen)1);
	    io___30.ciunit = *nout;
	    s_wsfe(&io___30);
	    do_fio(&c__1, "T", (ftnlen)1);
	    e_wsfe();
	    sprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, &
		    reslts_ref(1, 1, 1, 5), ldr1, ldr2, nout, (ftnlen)4, (
		    ftnlen)1);
	} else if (isub == 3) {
	    sprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, &
		    reslts_ref(1, 1, 1, 3), ldr1, ldr2, nout, (ftnlen)4, (
		    ftnlen)1);
	} else if (isub == 4) {
	    sprtbl_(" ", "N", &c__1, laval, nm, &mval[1], &c__1, &reslts_ref(
		    1, 1, 1, 4), ldr1, ldr2, nout, (ftnlen)1, (ftnlen)1);
	}
L170:
	;
    }

L180:
    return 0;

/*     End of STIMGT */

} /* stimgt_ */
Beispiel #3
0
/* Subroutine */ int sdrvgt_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, real *a, real *af, real 
	*b, real *x, real *xact, real *work, real *rwork, integer *iwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
	    ", test \002,i2,\002, ratio = \002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio = \002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    real r__1, r__2;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, j, k, m, n;
    real z__[3];
    integer k1, in, kl, ku, ix, nt, lda;
    char fact[1];
    real cond;
    integer mode, koff, imat, info;
    char path[3], dist[1], type__[1];
    integer nrun, ifact, nfail, iseed[4];
    real rcond;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *), sscal_(integer *, real *, 
	    real *, integer *);
    integer nimat;
    extern doublereal sget06_(real *, real *);
    real anorm;
    integer itran;
    extern /* Subroutine */ int sgtt01_(integer *, real *, real *, real *, 
	    real *, real *, real *, real *, integer *, real *, integer *, 
	    real *, real *), sgtt02_(char *, integer *, integer *, real *, 
	    real *, real *, real *, integer *, real *, integer *, real *, 
	    real *), sgtt05_(char *, integer *, integer *, real *, 
	    real *, real *, real *, integer *, real *, integer *, real *, 
	    integer *, real *, real *, real *);
    char trans[1];
    integer izero, nerrs;
    extern doublereal sasum_(integer *, real *, integer *);
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical zerot;
    extern /* Subroutine */ int sgtsv_(integer *, integer *, real *, real *, 
	    real *, real *, integer *, integer *), slatb4_(char *, integer *, 
	    integer *, integer *, char *, integer *, integer *, real *, 
	    integer *, real *, char *), aladhd_(
	    integer *, char *), alaerh_(char *, char *, integer *, 
	    integer *, char *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *);
    real rcondc, rcondi;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    real rcondo, anormi;
    extern /* Subroutine */ int slagtm_(char *, integer *, integer *, real *, 
	    real *, real *, real *, real *, integer *, real *, real *, 
	    integer *);
    real ainvnm;
    extern doublereal slangt_(char *, integer *, real *, real *, real *);
    logical trfcon;
    real anormo;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slaset_(char *, integer *, 
	    integer *, real *, real *, real *, integer *), slatms_(
	    integer *, integer *, char *, integer *, char *, real *, integer *
, real *, real *, integer *, integer *, char *, real *, integer *, 
	     real *, integer *), slarnv_(integer *, 
	    integer *, integer *, real *), sgttrf_(integer *, real *, real *, 
	    real *, real *, integer *, integer *);
    real result[6];
    extern /* Subroutine */ int sgttrs_(char *, integer *, integer *, real *, 
	    real *, real *, real *, integer *, real *, integer *, integer *), serrvx_(char *, integer *), sgtsvx_(char *, char 
	    *, integer *, integer *, real *, real *, real *, real *, real *, 
	    real *, real *, integer *, real *, integer *, real *, integer *, 
	    real *, real *, real *, real *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVGT tests SGTSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (NMAX*4) */

/*  AF      (workspace) REAL array, dimension (NMAX*4) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NRHS)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --af;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
/* Computing MAX */
	i__2 = n - 1;
	m = max(i__2,0);
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L130;
	    }

/*           Set up parameters with SLATB4. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Types 1-6:  generate matrices of known condition number. */

/* Computing MAX */
		i__3 = 2 - ku, i__4 = 3 - max(1,n);
		koff = max(i__3,i__4);
		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], &
			info);

/*              Check the error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L130;
		}
		izero = 0;

		if (n > 1) {
		    i__3 = n - 1;
		    scopy_(&i__3, &af[4], &c__3, &a[1], &c__1);
		    i__3 = n - 1;
		    scopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1);
		}
		scopy_(&n, &af[2], &c__3, &a[m + 1], &c__1);
	    } else {

/*              Types 7-12:  generate tridiagonal matrices with */
/*              unknown condition numbers. */

		if (! zerot || ! dotype[7]) {

/*                 Generate a matrix with elements from [-1,1]. */

		    i__3 = n + (m << 1);
		    slarnv_(&c__2, iseed, &i__3, &a[1]);
		    if (anorm != 1.f) {
			i__3 = n + (m << 1);
			sscal_(&i__3, &anorm, &a[1], &c__1);
		    }
		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			a[n] = z__[1];
			if (n > 1) {
			    a[1] = z__[2];
			}
		    } else if (izero == n) {
			a[n * 3 - 2] = z__[0];
			a[(n << 1) - 1] = z__[1];
		    } else {
			a[(n << 1) - 2 + izero] = z__[0];
			a[n - 1 + izero] = z__[1];
			a[izero] = z__[2];
		    }
		}

/*              If IMAT > 7, set one column of the matrix to 0. */

		if (! zerot) {
		    izero = 0;
		} else if (imat == 8) {
		    izero = 1;
		    z__[1] = a[n];
		    a[n] = 0.f;
		    if (n > 1) {
			z__[2] = a[1];
			a[1] = 0.f;
		    }
		} else if (imat == 9) {
		    izero = n;
		    z__[0] = a[n * 3 - 2];
		    z__[1] = a[(n << 1) - 1];
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		} else {
		    izero = (n + 1) / 2;
		    i__3 = n - 1;
		    for (i__ = izero; i__ <= i__3; ++i__) {
			a[(n << 1) - 2 + i__] = 0.f;
			a[n - 1 + i__] = 0.f;
			a[i__] = 0.f;
/* L20: */
		    }
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		}
	    }

	    for (ifact = 1; ifact <= 2; ++ifact) {
		if (ifact == 1) {
		    *(unsigned char *)fact = 'F';
		} else {
		    *(unsigned char *)fact = 'N';
		}

/*              Compute the condition number for comparison with */
/*              the value returned by SGTSVX. */

		if (zerot) {
		    if (ifact == 1) {
			goto L120;
		    }
		    rcondo = 0.f;
		    rcondi = 0.f;

		} else if (ifact == 1) {
		    i__3 = n + (m << 1);
		    scopy_(&i__3, &a[1], &c__1, &af[1], &c__1);

/*                 Compute the 1-norm and infinity-norm of A. */

		    anormo = slangt_("1", &n, &a[1], &a[m + 1], &a[n + m + 1]);
		    anormi = slangt_("I", &n, &a[1], &a[m + 1], &a[n + m + 1]);

/*                 Factor the matrix A. */

		    sgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (
			    m << 1) + 1], &iwork[1], &info);

/*                 Use SGTTRS to solve for one column at a time of */
/*                 inv(A), computing the maximum column sum as we go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L30: */
			}
			x[i__] = 1.f;
			sgttrs_("No transpose", &n, &c__1, &af[1], &af[m + 1], 
				 &af[n + m + 1], &af[n + (m << 1) + 1], &
				iwork[1], &x[1], &lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L40: */
		    }

/*                 Compute the 1-norm condition number of A. */

		    if (anormo <= 0.f || ainvnm <= 0.f) {
			rcondo = 1.f;
		    } else {
			rcondo = 1.f / anormo / ainvnm;
		    }

/*                 Use SGTTRS to solve for one column at a time of */
/*                 inv(A'), computing the maximum column sum as we go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L50: */
			}
			x[i__] = 1.f;
			sgttrs_("Transpose", &n, &c__1, &af[1], &af[m + 1], &
				af[n + m + 1], &af[n + (m << 1) + 1], &iwork[
				1], &x[1], &lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L60: */
		    }

/*                 Compute the infinity-norm condition number of A. */

		    if (anormi <= 0.f || ainvnm <= 0.f) {
			rcondi = 1.f;
		    } else {
			rcondi = 1.f / anormi / ainvnm;
		    }
		}

		for (itran = 1; itran <= 3; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    if (itran == 1) {
			rcondc = rcondo;
		    } else {
			rcondc = rcondi;
		    }

/*                 Generate NRHS random solution vectors. */

		    ix = 1;
		    i__3 = *nrhs;
		    for (j = 1; j <= i__3; ++j) {
			slarnv_(&c__2, iseed, &n, &xact[ix]);
			ix += lda;
/* L70: */
		    }

/*                 Set the right hand side. */

		    slagtm_(trans, &n, nrhs, &c_b43, &a[1], &a[m + 1], &a[n + 
			    m + 1], &xact[1], &lda, &c_b44, &b[1], &lda);

		    if (ifact == 2 && itran == 1) {

/*                    --- Test SGTSV  --- */

/*                    Solve the system using Gaussian elimination with */
/*                    partial pivoting. */

			i__3 = n + (m << 1);
			scopy_(&i__3, &a[1], &c__1, &af[1], &c__1);
			slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

			s_copy(srnamc_1.srnamt, "SGTSV ", (ftnlen)32, (ftnlen)
				6);
			sgtsv_(&n, nrhs, &af[1], &af[m + 1], &af[n + m + 1], &
				x[1], &lda, &info);

/*                    Check error code from SGTSV . */

			if (info != izero) {
			    alaerh_(path, "SGTSV ", &info, &izero, " ", &n, &
				    n, &c__1, &c__1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			}
			nt = 1;
			if (izero == 0) {

/*                       Check residual of computed solution. */

			    slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &
				    lda);
			    sgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + 
				    m + 1], &x[1], &lda, &work[1], &lda, &
				    rwork[1], &result[1]);

/*                       Check solution from generated exact solution. */

			    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);
			    nt = 3;
			}

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			i__3 = nt;
			for (k = 2; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "SGTSV ", (ftnlen)6);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L80: */
			}
			nrun = nrun + nt - 1;
		    }

/*                 --- Test SGTSVX --- */

		    if (ifact > 1) {

/*                    Initialize AF to zero. */

			i__3 = n * 3 - 2;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    af[i__] = 0.f;
/* L90: */
			}
		    }
		    slaset_("Full", &n, nrhs, &c_b44, &c_b44, &x[1], &lda);

/*                 Solve the system and compute the condition number and */
/*                 error bounds using SGTSVX. */

		    s_copy(srnamc_1.srnamt, "SGTSVX", (ftnlen)32, (ftnlen)6);
		    sgtsvx_(fact, trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m 
			    + 1], &af[1], &af[m + 1], &af[n + m + 1], &af[n + 
			    (m << 1) + 1], &iwork[1], &b[1], &lda, &x[1], &
			    lda, &rcond, &rwork[1], &rwork[*nrhs + 1], &work[
			    1], &iwork[n + 1], &info);

/*                 Check the error code from SGTSVX. */

		    if (info != izero) {
/* Writing concatenation */
			i__5[0] = 1, a__1[0] = fact;
			i__5[1] = 1, a__1[1] = trans;
			s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			alaerh_(path, "SGTSVX", &info, &izero, ch__1, &n, &n, 
				&c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    if (ifact >= 2) {

/*                    Reconstruct matrix from factors and compute */
/*                    residual. */

			sgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &
				af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 
				1], &iwork[1], &work[1], &lda, &rwork[1], 
				result);
			k1 = 1;
		    } else {
			k1 = 2;
		    }

		    if (info == 0) {
			trfcon = FALSE_;

/*                    Check residual of computed solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			sgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 
				1], &x[1], &lda, &work[1], &lda, &rwork[1], &
				result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			sgtt05_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 
				1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, 
				&rwork[1], &rwork[*nrhs + 1], &result[3]);
			nt = 5;
		    }

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    i__3 = nt;
		    for (k = k1; k <= i__3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___46.ciunit = *nout;
			    s_wsfe(&io___46);
			    do_fio(&c__1, "SGTSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L100: */
		    }

/*                 Check the reciprocal of the condition number. */

		    result[5] = sget06_(&rcond, &rcondc);
		    if (result[5] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    aladhd_(nout, path);
			}
			io___47.ciunit = *nout;
			s_wsfe(&io___47);
			do_fio(&c__1, "SGTSVX", (ftnlen)6);
			do_fio(&c__1, fact, (ftnlen)1);
			do_fio(&c__1, trans, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				real));
			e_wsfe();
			++nfail;
		    }
		    nrun = nrun + nt - k1 + 2;

/* L110: */
		}
L120:
		;
	    }
L130:
	    ;
	}
/* L140: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVGT */

} /* sdrvgt_ */