/* Subroutine */ int sdrvpt_(logical *dotype, integer *nn, integer *nval, integer *nrhs, real *thresh, logical *tsterr, real *a, real *d__, real *e, real *b, real *x, real *xact, real *work, real *rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 0,0,0,1 }; /* Format strings */ static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002" ", test \002,i2,\002, ratio = \002,g12.5)"; static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', N =\002,i5" ",\002, type \002,i2,\002, test \002,i2,\002, ratio = \002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1, r__2, r__3; /* Local variables */ integer i__, j, k, n; real z__[3]; integer k1, ia, in, kl, ku, ix, nt, lda; char fact[1]; real cond; integer mode; real dmax__; integer imat, info; char path[3], dist[1], type__[1]; integer nrun, ifact, nfail, iseed[4]; real rcond; integer nimat; real anorm; integer izero, nerrs; logical zerot; real rcondc; real ainvnm; real result[6]; /* Fortran I/O blocks */ static cilist io___35 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SDRVPT tests SPTSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) REAL array, dimension (NMAX*2) */ /* D (workspace) REAL array, dimension (NMAX*2) */ /* E (workspace) REAL array, dimension (NMAX*2) */ /* B (workspace) REAL array, dimension (NMAX*NRHS) */ /* X (workspace) REAL array, dimension (NMAX*NRHS) */ /* XACT (workspace) REAL array, dimension (NMAX*NRHS) */ /* WORK (workspace) REAL array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) REAL array, dimension */ /* (max(NMAX,2*NRHS)) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --xact; --x; --b; --e; --d__; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { serrvx_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; lda = max(1,n); nimat = 12; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (n > 0 && ! dotype[imat]) { goto L110; } /* Set up parameters with SLATB4. */ slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cond, dist); zerot = imat >= 8 && imat <= 10; if (imat <= 6) { /* Type 1-6: generate a symmetric tridiagonal matrix of */ /* known condition number in lower triangular band storage. */ s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6); slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, &anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info); /* Check the error code from SLATMS. */ if (info != 0) { alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, & ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L110; } izero = 0; /* Copy the matrix to D and E. */ ia = 1; i__3 = n - 1; for (i__ = 1; i__ <= i__3; ++i__) { d__[i__] = a[ia]; e[i__] = a[ia + 1]; ia += 2; /* L20: */ } if (n > 0) { d__[n] = a[ia]; } } else { /* Type 7-12: generate a diagonally dominant matrix with */ /* unknown condition number in the vectors D and E. */ if (! zerot || ! dotype[7]) { /* Let D and E have values from [-1,1]. */ slarnv_(&c__2, iseed, &n, &d__[1]); i__3 = n - 1; slarnv_(&c__2, iseed, &i__3, &e[1]); /* Make the tridiagonal matrix diagonally dominant. */ if (n == 1) { d__[1] = dabs(d__[1]); } else { d__[1] = dabs(d__[1]) + dabs(e[1]); d__[n] = (r__1 = d__[n], dabs(r__1)) + (r__2 = e[n - 1], dabs(r__2)); i__3 = n - 1; for (i__ = 2; i__ <= i__3; ++i__) { d__[i__] = (r__1 = d__[i__], dabs(r__1)) + (r__2 = e[i__], dabs(r__2)) + (r__3 = e[i__ - 1], dabs(r__3)); /* L30: */ } } /* Scale D and E so the maximum element is ANORM. */ ix = isamax_(&n, &d__[1], &c__1); dmax__ = d__[ix]; r__1 = anorm / dmax__; sscal_(&n, &r__1, &d__[1], &c__1); if (n > 1) { i__3 = n - 1; r__1 = anorm / dmax__; sscal_(&i__3, &r__1, &e[1], &c__1); } } else if (izero > 0) { /* Reuse the last matrix by copying back the zeroed out */ /* elements. */ if (izero == 1) { d__[1] = z__[1]; if (n > 1) { e[1] = z__[2]; } } else if (izero == n) { e[n - 1] = z__[0]; d__[n] = z__[1]; } else { e[izero - 1] = z__[0]; d__[izero] = z__[1]; e[izero] = z__[2]; } } /* For types 8-10, set one row and column of the matrix to */ /* zero. */ izero = 0; if (imat == 8) { izero = 1; z__[1] = d__[1]; d__[1] = 0.f; if (n > 1) { z__[2] = e[1]; e[1] = 0.f; } } else if (imat == 9) { izero = n; if (n > 1) { z__[0] = e[n - 1]; e[n - 1] = 0.f; } z__[1] = d__[n]; d__[n] = 0.f; } else if (imat == 10) { izero = (n + 1) / 2; if (izero > 1) { z__[0] = e[izero - 1]; z__[2] = e[izero]; e[izero - 1] = 0.f; e[izero] = 0.f; } z__[1] = d__[izero]; d__[izero] = 0.f; } } /* Generate NRHS random solution vectors. */ ix = 1; i__3 = *nrhs; for (j = 1; j <= i__3; ++j) { slarnv_(&c__2, iseed, &n, &xact[ix]); ix += lda; /* L40: */ } /* Set the right hand side. */ slaptm_(&n, nrhs, &c_b23, &d__[1], &e[1], &xact[1], &lda, &c_b24, &b[1], &lda); for (ifact = 1; ifact <= 2; ++ifact) { if (ifact == 1) { *(unsigned char *)fact = 'F'; } else { *(unsigned char *)fact = 'N'; } /* Compute the condition number for comparison with */ /* the value returned by SPTSVX. */ if (zerot) { if (ifact == 1) { goto L100; } rcondc = 0.f; } else if (ifact == 1) { /* Compute the 1-norm of A. */ anorm = slanst_("1", &n, &d__[1], &e[1]); scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1); if (n > 1) { i__3 = n - 1; scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1); } /* Factor the matrix A. */ spttrf_(&n, &d__[n + 1], &e[n + 1], &info); /* Use SPTTRS to solve for one column at a time of */ /* inv(A), computing the maximum column sum as we go. */ ainvnm = 0.f; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { x[j] = 0.f; /* L50: */ } x[i__] = 1.f; spttrs_(&n, &c__1, &d__[n + 1], &e[n + 1], &x[1], & lda, &info); /* Computing MAX */ r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1); ainvnm = dmax(r__1,r__2); /* L60: */ } /* Compute the 1-norm condition number of A. */ if (anorm <= 0.f || ainvnm <= 0.f) { rcondc = 1.f; } else { rcondc = 1.f / anorm / ainvnm; } } if (ifact == 2) { /* --- Test SPTSV -- */ scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1); if (n > 1) { i__3 = n - 1; scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1); } slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); /* Factor A as L*D*L' and solve the system A*X = B. */ s_copy(srnamc_1.srnamt, "SPTSV ", (ftnlen)32, (ftnlen)6); sptsv_(&n, nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, & info); /* Check error code from SPTSV . */ if (info != izero) { alaerh_(path, "SPTSV ", &info, &izero, " ", &n, &n, & c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout); } nt = 0; if (izero == 0) { /* Check the factorization by computing the ratio */ /* norm(L*D*L' - A) / (n * norm(A) * EPS ) */ sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], & work[1], result); /* Compute the residual in the solution. */ slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); sptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[ 1], &lda, &result[1]); /* Check solution from generated exact solution. */ sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; } /* Print information about the tests that did not pass */ /* the threshold. */ i__3 = nt; for (k = 1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___35.ciunit = *nout; s_wsfe(&io___35); do_fio(&c__1, "SPTSV ", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L70: */ } nrun += nt; } /* --- Test SPTSVX --- */ if (ifact > 1) { /* Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero. */ i__3 = n - 1; for (i__ = 1; i__ <= i__3; ++i__) { d__[n + i__] = 0.f; e[n + i__] = 0.f; /* L80: */ } if (n > 0) { d__[n + n] = 0.f; } } slaset_("Full", &n, nrhs, &c_b24, &c_b24, &x[1], &lda); /* Solve the system and compute the condition number and */ /* error bounds using SPTSVX. */ s_copy(srnamc_1.srnamt, "SPTSVX", (ftnlen)32, (ftnlen)6); sptsvx_(fact, &n, nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1] , &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[ *nrhs + 1], &work[1], &info); /* Check the error code from SPTSVX. */ if (info != izero) { alaerh_(path, "SPTSVX", &info, &izero, fact, &n, &n, & c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout); } if (izero == 0) { if (ifact == 2) { /* Check the factorization by computing the ratio */ /* norm(L*D*L' - A) / (n * norm(A) * EPS ) */ k1 = 1; sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], & work[1], result); } else { k1 = 2; } /* Compute the residual in the solution. */ slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); sptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[1], & lda, &result[1]); /* Check solution from generated exact solution. */ sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[2]); /* Check error bounds from iterative refinement. */ sptt05_(&n, nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], & lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Check the reciprocal of the condition number. */ result[5] = sget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, "SPTSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( real)); e_wsfe(); ++nfail; } /* L90: */ } nrun = nrun + 7 - k1; L100: ; } L110: ; } /* L120: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of SDRVPT */ } /* sdrvpt_ */
/* Subroutine */ int sptt02_(integer *n, integer *nrhs, real *d__, real *e, real *x, integer *ldx, real *b, integer *ldb, real *resid) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2; /* Local variables */ integer j; real eps, anorm, bnorm; extern doublereal sasum_(integer *, real *, integer *); real xnorm; extern doublereal slamch_(char *); extern /* Subroutine */ int slaptm_(integer *, integer *, real *, real *, real *, real *, integer *, real *, real *, integer *); extern doublereal slanst_(char *, integer *, real *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SPTT02 computes the residual for the solution to a symmetric */ /* tridiagonal system of equations: */ /* RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* N (input) INTEGTER */ /* The order of the matrix A. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* D (input) REAL array, dimension (N) */ /* The n diagonal elements of the tridiagonal matrix A. */ /* E (input) REAL array, dimension (N-1) */ /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */ /* X (input) REAL array, dimension (LDX,NRHS) */ /* The n by nrhs matrix of solution vectors X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* B (input/output) REAL array, dimension (LDB,NRHS) */ /* On entry, the n by nrhs matrix of right hand side vectors B. */ /* On exit, B is overwritten with the difference B - A*X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* RESID (output) REAL */ /* norm(B - A*X) / (norm(A) * norm(X) * EPS) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ --d__; --e; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ if (*n <= 0) { *resid = 0.f; return 0; } /* Compute the 1-norm of the tridiagonal matrix A. */ anorm = slanst_("1", n, &d__[1], &e[1]); /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Compute B - A*X. */ slaptm_(n, nrhs, &c_b4, &d__[1], &e[1], &x[x_offset], ldx, &c_b5, &b[ b_offset], ldb); /* Compute the maximum over the number of right hand sides of */ /* norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = sasum_(n, &b[j * b_dim1 + 1], &c__1); xnorm = sasum_(n, &x[j * x_dim1 + 1], &c__1); if (xnorm <= 0.f) { *resid = 1.f / eps; } else { /* Computing MAX */ r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; *resid = dmax(r__1,r__2); } /* L10: */ } return 0; /* End of SPTT02 */ } /* sptt02_ */